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ABSTRACT The ability of the human pathogenic fungus Candida albicans to switch between yeast-like and
filamentous forms of growth has long been linked to pathogenesis. Numerous environmental conditions,
including growth at high temperatures, nutrient limitation, and exposure to serum, can trigger this mor-
phological switch and are frequently used in in vitro models to identify genes with roles in filamentation.
Previous work has suggested that differences exist between the various in vitro models both in the genetic
requirements for filamentation and transcriptional responses to distinct filamentation-inducing media, but
these differences had not been analyzed in detail. We compared 10 in vitro models for filamentation and
found broad genetic and transcriptomic differences between model systems. The comparative analysis
enabled the discovery of novel media-independent genetic requirements for filamentation as well as a
core filamentation transcriptional profile. Our data also suggest that the physical environment drives distinct
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programs of filamentation in C. albicans, which has significant implications for filamentation in vivo.

Candida albicans is a major pathogen of humans, causing ~20,000
invasive infections per year in the United Stated alone (CDC, 2013).
Mortality rates for Candida infections can be as high as 40%, and these
rates have remained static as mortality rates for less prevalent fungal
infections have declined (Pfaller and Diekema 2007). C. albicans is also
a constituent of the human microbiome and can be found in the gas-
trointestinal and genitourinary tracts of 30-70% of healthy adults
(Kleinegger et al. 1996). Invasive infections generally arise from over-
growth of C. albicans within a susceptible patient’s own microbiome,
but the conversion from commensal to pathogen is not well under-
stood. It is clear that morphological transitions of the fungus as well as
host immune factors play a part in this conversion.
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One of the defining characteristics of C. albicans infection is its
ability to transition between several morphological forms, and these
forms impart distinct properties important for in vivo survival and
pathogenesis. While C. albicans can exist in numerous cellular forms
[reviewed in Noble et al. (2017)], the most relevant forms for infection
appear to be elongated filamentous cells and rounded yeast-like cells.
Yeast-like and filamentous cells not only vary in their physiology, but
they also have distinct cell wall compositions and cell surface proteins,
which have key roles in pathogenesis and immune cell recognition.
Differing glucan compositions of yeast-like and filamentous cells drive
diverse immune responses to each cell type (Lowman et al. 2014). For
instance, macrophage recognition and activation of the TH17 response
to invading C. albicans appear to depend on filament-specific glucans
(Cheng et al. 2011; Lowman et al. 2014). Differing surface and secreted
molecules also change how C. albicans interacts with its human host.
The filament-specific adhesins Hwp1l and Als3 increase adhesion to
host cells and induce endocytosis of C. albicans, while the yeast-specific
protein Ywpl appears to have an antiadhesive effect and promotes
dispersal of yeast form cells (Staab et al. 1999; Granger et al. 2005;
Phan et al. 2007). In addition, the filament-specific toxin, Candidalysin,
permeabilizes epithelial cell membranes and is vital for mucosal in-
fection (Moyes et al. 2016). The distinct properties of each cell type
must contribute to pathogenesis, as cells that are unable to undergo the
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switch between yeast and filamentous growth in vitro are unable to
establish a systemic infection (Lo et al. 1997). In addition, cells locked in
either a yeast-like or filamentous state following infection are unable to
cause significant disease in animal models (Murad et al. 2001). Thus,
both morphologies are vital for pathogenesis in this organism.

Regulation of filamentation is a complex process that can be triggered
by a variety of environmental conditions. Much of the signaling for
filamentation funnels through the cAMP and Ste20 MAPK pathways
downstream of a variety of environmental cues, including temperature,
nitrogen starvation, serum, the quorum sensing factor farnesol,and CO,
(Sudbery 2011). Alkaline environments, on the other hand, appear to
trigger filamentation via the Rim101 pathway (Davis et al. 2000; Martin
et al. 2010). These pathways activate transcriptional activators that
regulate genes involved in the initiation and maintenance of filamen-
tation. C. albicans filamentation models suggest that the diverse signal-
ing events triggering filamentation all converge on a single response to
build and maintain the filamentous state.

Our understanding of the genetic requirements for filamentation is
based on work using a variety of in vitro models that are meant to mimic
the varied environmental filamentation triggers. However, variability
has been noted between these model systems in both the requirements
for filamentation and in the transcriptional response to filamentation.
Most of the variable observations have been made in single gene assays,
but some reports have shown hints of larger variation in genetic re-
quirements for filamentation and very distinct transcriptional re-
sponses to filamentation in differing inducing conditions (Martin
et al. 2013; O’Meara et al. 2015). As a field, however, we have not taken
a systematic approach to compare in vitro filamentation conditions and
have little data on how divergent C. albicans responses may be in these
distinct environments. Thus, the goal of our study was to compare
filamentation in diverse in vitro models to identify patterns underlying
filamentation across conditions that elucidate conserved features of C.
albicans biology.

We took a dual approach to characterize filamentation in C.
albicans. To gain a sense of genetic requirements across varied fil-
amentation conditions, we screened 124 mutant C. albicans strains
for their ability to filament in 10 distinct in vitro conditions. To
discern patterns underlying genetic responses to filamentation, we
examined the transcriptional response of a wild-type strain to the
same 10 in vitro conditions. The results of our study have led us to
three main conclusions. First, there is wide variability in the genes
required for filamentation in inducing conditions, and few mutant
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Figure 1 Filamentation scoring range for liquid
and solid filamentation conditions. C. albicans
wild-type and 124 mutant strains were tested
for their ability to filament in liquid and solid fila-
mentation conditions. For both assays, cells grown
overnight in YPD were centrifuged and washed 2x
with PBS prior to the experiment. For the liquid
assays, 10 pl of washed cells were added to a
prewarmed glass-bottom microscopy dish with in-
ducing media. Cells were imaged after 3 hr of in-
cubation at 37° with shaking. For solid assays, 1 pl
of washed cells was plated onto solid media and
grown at 37° for 4-5 d before imaging. The images
shown are representative images from the analysis
at the respective scores for inducing conditions.
The scoring range for Spider solid media is shown
in Figure S7.

strains exhibit filamentation defects across the majority of condi-
tions tested. Second, gene expression also varies widely across con-
ditions, and only a small subset of genes are differentially regulated
across all conditions. Finally, both the genetic screen and the tran-
scriptional analysis suggest that filamentation in solid and liquid
media represent distinct programs of filamentation, which is a fun-
damental shift in our understanding of the process and has impli-
cations for both pathogenesis and treatment.

MATERIALS AND METHODS

Strains and media

Strains were grown in yeast extract-peptone-dextrose (YPD) noninduc-
ing media, prepared as previously described (Sherman 1991), 10% fetal
bovine serum (FBS) media (10% FBS with 2% dextrose), 10% FBS
media with YPD (10% FBS, 10 g yeast extract, 20 g peptone, 2% dex-
trose, and H,O for a final volume of 1 L), Lee’s media (Lee et al. 1975),
RPMI media with 2.1 mM L-glutamine and buffered with 165 mM
MOPs, and Spider medium (10 g D-mannitol, 10 g nutrient broth, 2 g
K,HPO,, in 1 L of H,O). For solid media, 16 g of agar (RPI) was added
per liter of media.

Wild-type strain SC5314 and marker-matched strain SN250 (Noble
and Johnson 2005) were used as controls throughout. Mutant strains
(Supplemental Material, Table S6) were selected from the Noble de-
letion collection (Noble et al. 2010) obtained from the Fungal Genetics
Stock Center (Manhattan, KS).

Filamentation analysis

Cells were grown overnight in 3 ml YPD media at 30° with shaking.
One-milliliter aliquots of overnight cultures were centrifuged at top
speed in a microcentrifuge and washed twice with an equal volume
of phosphate buffered saline (PBS) at pH 7.2. Washed cells were
resuspended in an equal volume of PBS. For solid filamentation
phenotypic assays, 1 pl of resuspended cells were plated in a grid
on noninducing (YPD) and inducing (FBS, Lee’s, RPMI, Spider)
agar plates. Noninducing plates were incubated at 30° and inducing
plates were incubated at 37°. All strains were tested in triplicate and
the triplicates were plated on different agar plates. Colonies and
colony edges were imaged 4-5 d postincubation. Colony edges were
imaged on a Evos FL inverted microscope at 4x magnification. For
liquid filamentation assays, 10 pl of washed cells was added to 2 ml
of prewarmed media in a glass-bottom microscopy dish (MatTak).
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Figure 2 Mutant cells display variation in their ability to filament in
distinct inducing conditions. Mutant strains were scored for their
phenotype in filament-inducing and noninducing media. Strains were
scored from 4 (bright yellow) representing the wild-type phenotype, to
0 (bright blue) representing a mutant phenotype in each respective
media. Filament-inducing conditions included liquid or solid FBS (FL
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Table 1 Mutant strains with broad, severe filamentation defects
Solid?

Liquid®

ORFP Geneb F L R S F L R S
C1.08990C KEX2 0.00 0.50 0.33 0.67 0.00 0.00 0.00 1.00
C3_02960C KRES | 0.00 0.33 0.00 0.00 1.83 0.00 0.00 1.33
C4_00610W 1.67 0.33 1.00 0.17 1.33 1.00 0.00 2.17
CR_03430W 0.83 0.17 0.00 0.17 0.17 1.33 2.17 3.67
Cé6_02740W 3.17 3.33 1.33 0.00 0.00 0.00 1.33 0.33
C1_04630C 1.67 0.17 1.17 1.33 2.17 0.00 0.50 3.50
C3_02240C GPA2 1.83 2.83 2.33 2.17 1.83 0.00 0.00 0.00
C1_14340C RIM10171.50 0.83 1.50 0.83 0.00 0.00 3.33 3.33
C2_01620W COX4 3.17_3.3311.50 0.33 0.67 0.00 2.50 0.33
CR_07580C TSC11 3.00 1.50 2.17 2.67 2.00 0.33 0.00 1.00
C6_03920W SNF4 3.17 2.00 3.50 0.00 2.50 0.17 1.17 0.33
C4_04530C PHR1 | 2.50 1.83 2.17 2.50 0.00 0.83 0.00 3.17

C4_04090C 0.17 3.50 2.50 0.50 1.67 1.33 0.00 3.50
C3_03880C PEP8 | 2.00 0.00 1.17 1.83 1.33 1.00 3.83 3.50
CR_02640W RFG1 1.50 2.50 3.33 3.17 2.50 0.00 2.50 0.17
C1_.07970C IRE1 [ 0.83 1.67 1.33 2.00 2.33 1.17 2.83 3.83
CR_07090W STT4 ©2.33 1.83 2.50 3.67/2.17 0.67 3.00 0.83

a'Average filamentation scores from three independent scorers in the indicated
strains in liquid and solid conditions. F (FBS), L (Lee’s media), R (RPMI-MOPs
media), or S (Spider media). Darkened boxes indicate filamentation scores 2.50
and below.
ORF (open reading frame) and Gene refer to the genes mutated in the indicated
strain.

Incubated cells were grown in the microscopy dishes, with shaking,
at 37° for 3 hr and imaged on a Zeiss Axiovision microscope at 20X
magnification. For liquid YPD assays, 10 pl of the washed overnight
cells were imaged on a glass slide. Five images were taken for all
inducing conditions and 3-5 images were taken for the noninducing
condition (File S1).

Phenotypes of mutant strains were compared to the control strains
SC5314, a wild-type strain, and SN250, a marker-matched control strain
for the deletion strain set. Strains were scored from 0 (completely
abnormal) to 4 (similar to controls). Thus, in filament-inducing con-
ditions, a score of four represented a strain with no observable fila-
mentation defect, while in noninducing conditions, a score of four
represented a strain growing in a yeast-like state (Figure 1 and Figure S1,
Figure S2, Figure S3, Figure S4, Figure S5, Figure S6, Figure S7, Figure
S8, Figure S9, and Figure S10). Liquid assays were scored from micro-
scopic images of cells in culture, while solid assays were scored by
observing filaments extending from the edge of the fungal colony with
the exception of Spider plates (Figure S7). Spider plates were scored by
the colony phenotype on the plate due to significant issues in the re-
liability of filaments extending from the colony in control cells. For the
purposes of our analysis, we considered scores of 2.5 or below to rep-
resent a significant filamentation defect. Phenotypes were scored by
three independent scorers and the final scores were averaged.

and FS, respectively), liquid or solid Lee’s (LL and LS, respectively),
liquid or solid RPMI (RL or RS, respectively), and liquid or solid Spider
(SL and SS, respectively). Scores of 4 (bright yellow) in these conditions
represented wild-type filamentation and scores of 0 (bright blue) rep-
resented afilamentous cells. Noninducing conditions, YL and YS (liquid
and solid YPD), were scored from 4 (bright yellow) representing a wild-
type, nonfilamentous phenotype to O (bright blue) representing fully
filamentous cells. The score heatmap has distinct conditions shown in
columns and individual mutant strain scores in rows. Score details can
be found in Table S2.
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Table 2 Average filamentation scores and virulence

State?  Virulence® FBS  Lee's RPMI  Spider YPD
Liquid Defect 3.06 2.66c 3.12 2.89 3.39
Liquid WT 3.35  1.74¢ 296 3.12 3.53
Solid Defect 270  1.49¢  2.25¢ 2.62 3.50
Solid WT 2.81 208 3.31° 2.56 3.57

9State refers to liquid or solid assays.
Virulence refers to murine tail vein injection models of systemic infection.
Values in each condition in the “defect” category represent the average fila-
mentation score of strains with a competitive growth defect in a pooled exper-
iment, a virulence defect in a single-strain assay with an analogous mutation in
a different strain background, or in both. Values in the "WT" category repre-
sent average filamentation scores of strains with no known virulence defects.
Note that most mutations in the WT strain set have not been tested in single-
Cstrain virulence assays.
P-value between strains grown in Lee’s liquid conditions is 6.3 x 107¢, in Lee's
solid conditions is 0.028, and between RPMI solid conditions is 6.5 x 107¢, as
measured by a Students t-test.

RNA extraction and cDNA generation
SC5314 cells were grown overnight in YPD media at 30° with shaking.
Cells were washed twice and resuspended with equal volumes of PBS.
For liquid conditions, 100 pl of washed cells was incubated in 50 ml of
prewarmed media in a 250-ml flask and grown for 3 hr at 37° (in-
ducing) or 30° (noninducing). Cells were harvested by filtration as
previously described (Blankenship et al. 2010). For solid conditions,
140 pl of cells and 200 pl of H,O were spread on the surface of
prewarmed agar plates using 3.5-mm glass beads. Plates were incubated
at 37° (inducing) or 30° (noninducing) for 3 hr, and cells were har-
vested as described in Creger and Blankenship (2017). Harvested cells
were centrifuged in a microcentrifuge and frozen at —80°.

RNA was extracted from frozen cells using an RNeasy kit with
on-column DNase treatment (Qiagen). RNA quality (260/280 ratios)
was measured on a Nanodrop machine.

RNAseq analysis

RNASeq libraries were generated beginning with 1.8 ng of total RNA
following standardized protocols with the TruSeq RNA v2 kit (Ilumina,
San Diego, CA). Libraries were diluted to a concentration of 6.0 pmol and
sequenced ona HiSeq2500 (Illumina) and 100 bp single reads were generated.
Total reads and percentages of mapped reads are detailed in Table S1.

Bioinformatics analysis

All eight Candida chromosomes were downloaded from NCBI, and an-
notation was downloaded into a gff3 file and transformed into a gtf file
using gffread. Fastq files were generated using the bcl2fastq software,
version 1.84. The fastq files for each sample were analyzed using the
Tuxedo pipeline in order to find differentially expressed genes. Read align-
ment was performed using tophat version 2.0. FPKM values were calcu-
lated with cufflinks 2.2. The cuffmerge and cuftdiff software were used to
calculate fold change values between sets of samples. A P-value of 0.05 was
used to differentiate between statistically significant and insignificant genes.
FPKM (Fragments Per Kilobase per Million mapped reads) values of each
set were normalized to FPKM values from the liquid YPD media samples.

Clustering analyses and statistics

Filamentation and gene expression data were clustered using the Multiple
Experiment Viewer (mev.tm4.org) using hierarchical clustering with a
Pearson correlation metric with complete linkage clustering. Approximately
unbiased (AU) P values were calculated for both the filamentation and gene
expression analysis using the pvclust package (Suzuki and Shimodaira 2006)
on R Studio, Inc. (2016) using complete hierarchical clustering and the
correlation-based dissimilarity matrix with 10,000 bootstrap replications.

Data availability

Theraw data discussed in this paper have been deposited in NCBI’s Gene
Expression Omnibus (Edgar et al. 2002) and are accessible through
GEO Series accession number GSE99902 (https://www.ncbinlm.nih.
gov/geo/query/acc.cgi?acc=GSE99902).

RESULTS

A comparative phenotypic screen for filamentation
demonstrates widely divergent filamentation phenotypes
Phenotypic differences in C. albicans filamentation have been noted
anecdotally between mutant strains tested in distinct inducing condi-
tions, which suggests that some of the genetic requirements for the
initiation and maintenance of filamentation vary between conditions.
For instance, the protein kinase A ortholog Tpkl is required for fila-
mentation on solid media, while the other protein kinase A ortholog
TPK2 is required for filamentation in liquid media (Bockmuhl et al.
2001). The transcription factor Efgl, whose activity is dependent on
protein kinase A activation, is required for filamentation in most
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120 Figure 3 Little overlap exists between liquid and
solid filamentation defects. The total number of
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with solid only (medium gray) and liquid only
(dark gray) are also represented on each bar.
The percentage of strains exhibiting a defect in
both conditions compared to the total number or
strains exhibiting a defect in at least one condi-
tion is shown below each bar.
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Figure 4 Clustering analysis of filamentation data shows a difference
between filamentation in solid and liquid conditions. Hierarchical cluster-
ing analysis of the data in Figure 2 and Table S3 identified conditions with
similar suites of mutant strains that exhibit filamentation defects. (A). A
heat map showing relatedness of phenotypes between strains in each
condition. Blue represents strains with phenotypic defects and yellow
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conditions tested, but is not required for filamentation in an oral model
of infection or during filamentation in embedded conditions (Riggle
et al. 1999). In addition, many of the strains tested in this work had
differing filamentation phenotypes on solid Spider media at 30° vs.
liquid media containing FBS at 37° (Noble et al. 2010). However, it is
unclear if these differences are restricted to a few condition-specific
genes or if larger differences exist between induction conditions.

To compare genetic requirements for filamentation, we analyzed the
filamentation of 124 C. albicans deletion strains previously shown to
have filamentation defects in solid Spider media at a low induction
temperature (Noble et al. 2010) in 10 distinct media conditions. Fila-
mentation was examined in solid and liquid versions of 10% FBS, Lee’s
media, RPMI media, and Spider media, with noninducing media
(YPD) at a noninducing temperature as a control (Figure 1 and Figure
S1, Figure S2, Figure S3, Figure S4, Figure S5, Figure S6, Figure S7,
Figure S8, Figure S9, and Figure S10).

While the majority of the tested strains (122 of 124 deletion strains)
had a filamentation defect in a least one condition in our assay, we
observed a great deal of phenotypic variability between mutant strains
and also within individual strains tested in differing inducing conditions
(Figure 2 and Table S2). This suggests that distinct inducing conditions
have very different genetic requirements to initiate and/or maintain
filamentation. Indeed, 32 mutant strains exhibited a strong filamenta-
tion defect (a score of 2.5 or less) in only one condition (Table S2). The
majority of singleton phenotypic defects were observed in either solid
or liquid Lee’s media, which had the highest numbers of strains with
phenotypic defects overall. Generally, the filamentation results across
media types suggest that genetic requirements for the initiation or
maintenance of filamentation are distinct between inducing conditions.

Strains with broad defects may have media-independent
roles in filamentation

While many strains did not exhibit consistent defects in filamentation
across the panel of conditions tested, we noted that 17 strains had severe
defects across most, if not all, of the inducing conditions (Table 1). Two
of the strains in this group of highly defective strains, containing mu-
tations in riml01A/A and gpa2A/A, have well-documented roles in
pathways important for triggering pathogenesis. Rim101 responds to
extracellular pH and triggers expression of filamentation-specific genes
by activation of the transcription factor Efgl (Davis et al. 2000; Li ef al.
2004). Gpa2 is a G protein a-subunit that is part of the cAMP signaling
pathway, one of the main environmental response pathways for fila-
mentation (Maidan et al. 2005). The broad defect that strains bearing
deletions in these genes had across distinct filamentation conditions
was anticipated, and suggests that other genes with broad defects across
conditions also have vital roles in filamentation.

The broad defects of the 15 additional strains with significant
filamentation defects in at least six of eight tested conditions suggest
that these genes also have vital, general roles in the initiation or
maintenance of filamentation. Only three of these 15 strains, containing
mutations in kre5A/A, kex2A/A, and C4_00610WA/A, had filamenta-
tion defects across all media (Table 1). Mutations in cox4A/A, irelA/A,
pep8A/A, phrlA/A, rfglA/A, snf4A/A, sttdA /A, tsc11A/A, CR_03430WA/A,

represents strains with phenotypes close to wild type in each
condition. Conditions labels, across the top of the heat map, are the
same as those used in Figure 2. Mutant strain phenotype of each of the
124 mutant strains tested is shown across each row. (B). The dendro-
gram of the hierarchical phenotypic clustering. Approximately unbi-
ased (AU) P-values for each cluster are shown in red.
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Table 3 Percent overlap of genes upregulated in distinct filamentation conditions

Conditions FL FS LL LS RL RS SL SS
FL 100.00
FS 42.16 100.00
LL 56.27 40.05 100.00
LS 37.83 50.47 32.99 100.00
RL 44.19 35.12 41.40 36.21 100.00
RS 32.56 41.23 26.56 54.12 41.06 100.00
SL 75.95 44.96 58.11 40.86 42.93 34.98 100.00
SS 47.02 40.50 36.94 42.53 31.34 34.81 54.77 100.00

Percentage reflects the number of upregulated genes that overlapped between the respective conditions divided by the total number of genes upregulated in both
conditions. The conditions are labeled following the convention used in the paper. Shading of cells represents a grayscale heatmap, from low overlap (white) to high

overlap (dark gray).

CI1_04630CA/A, C4_04090CA/A, and C6_02740WA /A exhibited significant
defects in filamentation in at least six conditions. While mutations in
these genes were previously known to affect filamentation, their pre-
cise role in the process has not been described. Additional work will
be needed to either tie these genes to existing filamentation pathways
or identify novel pathways in which these genes participate.

Correlation of filamentation to virulence

The ultimate goal of in vitro filamentation assays is to predict filamen-
tation, and thus pathogenesis, in vivo. Given the varied phenotypes
observed in the in vitro filamentation assays, we wanted to investigate
whether filamentation defects in any of the in vitro conditions were
more highly associated with virulence defects. All of the strains in the
deletion set we analyzed were previously tested for competitive survival
in vivo in pooled sets, which could identify strains with survival defects
in a murine tail vein injection model of infection (Noble et al. 2010). A
total of 42 strains in our assay demonstrated survival defects in those
pooled infection assays (Table S3). We also identified deletion muta-
tions analogous to 27 of the deletion mutations in our set that had been
tested for virulence in single-strain assays using the same model of
infection (Skrzypek et al. 2017). Thirteen of the 27 strains with single-
strain virulence defects did not exhibit survival defects in pooled
infection assays (Table S3). For the purpose of our analysis, we desig-
nated strains with competitive growth defects and/or single-strain vir-
ulence defects in analogous mutant strains as virulence defective strains,
which accounted for 55 of the 124 strains tested.

We compared average filamentation scores of strains in each inducing
condition with known virulence defects, as defined above, with average
filamentation scores for strains with no known virulence defects in the
same condition (neither a competitive defect or known defect in single-
strain virulence assays) to determine whether filamentation in certain
conditions might be predictive of virulence defects. Only two conditions,
solid Lee’s and solid RPMI, showed a statistically significant reduction in
filamentation scores in strains with virulence defects as defined above
(Table 2). The strongest defect was in solid RMPI media, where the
average score of virulence defective strains was >1 point lower than
the strains with no known virulence defects. While this analysis is not
completely definitive, our hypothesis is that filamentation defects in solid
RPMI medium are predictive of filamentation defects in vivo, which is
directly contributing to virulence defects in these mutant strains.

Mutant phenotypes are correlated by media state

rather than media composition

We hypothesized that mutant strains would exhibit consistent pheno-
typic defects between liquid and solid versions (distinct states) of the
same media but differ from media with distinct compositions (distinct
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compositions). However, this hypothesis was strongly refuted by our
assay. Overlapping phenotypic defects between media with similar
composition but in distinct states ranged between 28.5 and 35.3% for
filamentous conditions (Figure 3). In noninducing conditions, where a
phenotypic defect represented hyper-filamentation, only three strains
had overlapping hyper-filamentous phenotypes in liquid and solid me-
dia. These data suggest that there are large differences between fila-
mentation in liquid and solid media even when the media components
are largely identical.

The lack of phenotypic correlation between the liquid and solid
versions of the same media was surprising, and led us to investigate
whether any correlations might exist between different media conditions.
Clustering analysis was used to compare the conditions tested in our assay.
Not surprisingly, noninducing conditions clustered together based on the
large number of strains without a phenotypic defect in these conditions
(Figure 4). Also clustering together were several inducing conditions that
varied in media composition, but that were similar in media state (Figure
4). Liquid RPMI, FBS, and Spider conditions clustered together, and solid
RPMI, Lee’s, and FBS were in a distinct cluster. Liquid Lee’s media was an
outlier, likely due to the significant number of strains exhibiting a defect
in this condition. Solid Spider was also an outlier to these clusters, per-
haps due to the distinct scoring mechanism that had to be applied to this
condition. These clustering data suggest that physical cues have a stron-
ger impact on the induction and maintenance of filamentation than
distinctive nutrient cues, and that the genetic requirements for filamen-
tation in liquid conditions may be quite unique from the requirements
for filamentation in solid conditions.

Transcriptional clustering analysis confirms solid/
liquid divide
Based on the variations we observed in our phenotypic analysis, we
hypothesized that gene expression would vary greatly between condi-
tions and that identifying factors regulated in common between
conditions might allow for the elucidation of media-independent
filamentation response genes. These assays would also provide novel
insight into the expression profiles of C. albicans cells grown on agar
plates, which, to our knowledge, have not been attempted previously.
RNA was extracted from cells grown for 3 hr in liquid or solid fila-
mentation media at 37° or in noninducing media at 30° and analyzed
by RNAseq in triplicate for all experimental and control conditions.
As expected, variability was observed in genes differentially regulated
in the filamentation induction conditions, although overlap between
conditions was noted (Table 3 and Table S4).

Clustering analysis was used to identify filamentation conditions
with similar expression profiles. Cells grown in solid RPMI, Lee’s, Spider,
or FBS media formed one cluster, whereas cells grown in liquid RPMI,
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Figure 5 Clustering analysis of gene expression data shows a liquid/
solid divide in gene expression. Hierarchical clustering was used to
compare the expression of genes in distinct filamentation and control
conditions. (A). Clustering revealed related gene regulation between
conditions, as shown by the tree at the top of the heatmap. Gene
expression was log, transformed prior to clustering. Full details of
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Lee’s, Spider, or FBS formed a second cluster, and cells grown in solid
YPD media formed an outgroup (Figure 5). While the P-values in the
clustering data in the phenotypic assay were moderately supportive of a
divide between liquid and solid filamentation programs, the P-values
expression data were highly supportive of this divide (Figure 4B and
Figure 5B). The combined data strongly supports our hypothesis that
physical stimuli drive different patterns of response in C. albicans cells
induced to form hyphae.

A conserved filamentation response

Based on the clustering analysis, we identified three core filamentation
responses: genes differentially regulated in all filamentation conditions,
in all solid conditions, or in all liquid conditions (Figure 6 and Table S5).
In total, 2327 genes were upregulated or downregulated twofold or
more in at least one condition, representing almost 40% of the C.
albicans genome. However, only 129 genes were upregulated and
15 genes were downregulated in all filamentation conditions (Figure 6A).
Genes encoding cell wall/membrane proteins (PHRI, PGA7, PGA13, RBT1,
RBT5, HYRI, HWPI, SAP10, IHDI), adhesins (ALS3, IFF4, C1_13100W),
alcohol dehydrogenases (ADHI, ADHS5, C6_04410C, ADH2), transcription
factors (TRY6, ZCF26, WOR3, ZCF38, BRG1, HACI), and iron uptake and
utilization genes (ALS3, CFL2, CFL11, FET34, FRE9, FRP1, FRP2,
FTHI, RBT5, SIT1) were among the genes upregulated in common
between conditions.

It is difficult to compare assays between research groups due to the
variation in experimental conditions, controls used, and times tested.
Our controls were at a lower temperature, and it is possible that some of
the genes differentially regulated in common between the inducing
conditions were regulated in response to growth at 37° rather than
filamentation. However, a number of the genes upregulated in all con-
ditions in this study have been shown by others to be upregulated in
certain filamentation conditions. Notably, ALS3, HWP1, RBT1, IHDI,
and DCK1, identified as part of the core filamentation response to three
distinct liquid filamentation conditions at 3 hr of induction by Martin
et al. 2013 were also upregulated in all filamentation conditions in our
assay. Three genes from the Martin ef al. set, however, were not present
in our set: ECEI was highly upregulated in all of our filamentation
conditions with the exception of liquid Lee’s media while SUN41 and
HGT2 were only upregulated in a few conditions. Some of the variation
we observe between our study and the Martin et al. study may be due to
differences in our control conditions and others may have arisen due to
the distinct media tested in our assays.

Unique filamentation response profiles in liquid and

solid conditions

In addition to the conserved filamentation response, we also identified
unique responses to liquid and solid conditions. Three hundred and one
genes were upregulated and 56 genes downregulated in all liquid
conditions. Of these differentially regulated genes, 50 show expression
patterns that are completely unique to liquid conditions (not showing
similar regulation in any solid condition) (Table S5). Many of the
liquid-unique genes are not well described, and their expression levels
are generally 2-4-fold upregulated within most conditions. There are
two exceptions. HSP21, which encodes a small heat shock protein that
is important for filamentation, virulence, and neutrophil resistance

the expression study are in Table S4. (B). A dendrogram of the hier-
archical expression clustering. Approximately unbiased (AU) P-values
for each cluster are shown in red.
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Figure 6 Gene expression analysis in filamentous conditions identifies three patterns of gene expression. Gene expression was measured by
RNAseq analysis in each inducing and noninducing condition in triplicate with the YPD liquid used as the normalizing condition. The heat maps
represent the average expression of genes in each condition, using the same labels shown in Figure 1. Expression in each condition was
normalized by comparing FPKM values for each gene to the FPKM value of that gene in YPD liquid conditions. All data shown have been log,
transformed. (A) One hundred forty-four genes showed similar regulation patterns, with 129 genes upregulated and 15 genes downregulated,
across all conditions. (B) Three hundred fifty-seven genes showed similar regulation patterns across all liquid conditions. The genes shown are
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Table 4 Low filamentation scores do not correlate with gene upregulation

Condition? FL FS LL LS RL RS SL SS
Gene exp fil exp fil exp fil exp fil exp fil exp fil exp fil exp fil
PHR1 273 250 228 000 243 183 151 083 270 217 208 000 270 250 152 3.17
BRG1 385 183 494 200 395 067 436 000 274 267 314 400 355 283 274 267
DCK1 231 383 260 367 206 250 232 400 162 367 149 400 229 400 156 @ 083
C4_00080C 3.12 400 220 3.17 465 100 230 400 261 333 187 383 288 400 267 3.00
CFL11 840 383 816 383 878 117 7.18 233 820 400 627 400 810 400 580 4.00

a " . - L ) ) ; . .
Condition name follows the convention used throughout the paper. exp, gene expression (logy); fil, filamentation score for strain bearing a mutation in the indicated

gene. Filamentation scores of 2.5 and below are highlighted in gray.

(Mayer et al. 2012), is upregulated 2.5-fold to 367-fold (average 119-
fold) among the distinct liquid filamentation conditions tested.
C7_00350C, encoding a protein of unknown function, is upregulated
4.5-17.5-fold in the same conditions.

There was less coordination in genes upregulated in all solid con-
ditions. One hundred eighty-nine genes were upregulated and 64 genes
were downregulated in all solid conditions. Few genes, however, were
uniquely-specific to solid conditions, with five genes upregulated and
18 genes downregulated only in solid conditions (Table S5). One in-
teresting gene upregulated in only solid conditions was the transcrip-
tion factor CUPY. This transcription factor negatively regulates Sok1,
which, in liquid conditions at least, is important for the degradation of
Nrgl, a negative regulator of filamentation (Lu et al. 2014). The upre-
gulation was not high, between two- and fourfold, but could suggest a
distinct role for CUPY in cells grown in solid filamentation conditions.
Opverall, our data suggest that there is a core change in gene expression
during filamentation that is independent of induction conditions, and
that there are distinct responses that are specific to the physical state of
the inducing media (Table S5).

Gene upregulation does not correlate with

phenotypic defects

Studies have shown that upregulation of genes in environmental
conditions is not predictive of the phenotype of strains bearing
mutations in those genes in the same environmental conditions,
although this is a common prediction (Winzeler and Davis 1997;
Giaever et al. 2002). Observations in C. albicans filamentous cells
suggest that upregulation of genes in single-condition assays is also
not predictive of phenotype (Banerjee et al. 2008; Martin et al. 2011),
and we wanted to determine whether this held true in our assay as
well. We extracted the expression data for genes that were mutated in
each of the 124 mutant strains tested for filamentation defects. We
first looked at genes from the 129 genes that were heavily upregulated
in all conditions. This included CFL11, CIP1, BRGI1, C4_00080C,
PHRI, and DCK1, which were also tested in our phenotypic screen.
From this set of six genes, only PHRI showed significant filamenta-
tion defects across most inducing conditions (Table 4). When we
compare the set of genes showing upregulation in a particular con-
dition and the phenotype of the coordinate mutant strain, the per-
centage of genes with both upregulation and a severe filamentation
defect hovers ~30% for all assays tested with the exception of Lee’s

media (Figure 7, dark bars). The majority of mutant strains exhibiting
filamentation defects in each condition, with the exception of Lee’s
media, show no coordinate gene upregulation in a wild-type strain.
The percentage of mutant strains with defects in a particular condi-
tion showing coordinate upregulation of that gene in the same con-
dition largely mirrors the percentage of tested strains showing defects
in each condition (Figure 7, light bars), suggesting that overlap of
gene function and expression may simply be due to chance. These
data support prior observations that overall expression levels are poor
predictors of gene importance in particular processes.

DISCUSSION

Our work has shown that single-media assays are not reliable indicators
of filamentation phenotypes across a broad spectrum of conditions. Our
data suggest, instead, that distinct conditions have moderately over-
lapping genetic requirements for filamentation, and the majority of these
genetic requirements are condition-specific. This leads to a question of
why C. albicans has such distinct genetic requirements for, and tran-
scriptional responses to, filamentation in distinct conditions. One pos-
sibility is that distinct stress responses converged onto the same
phenotypic solution, filamentation. When cells are starved of nutrients,
morphogenesis from yeast cells to filamentous cells allows C. albicans
to forage distal locations from the mother cell in a rapid fashion. When
C. albicans is ingested by a phagocytic cell, the morphological change
from yeast to filamentous form allows the fungus to physically escape
the larger phagocytic cell (Lorenz et al. 2004). And coordinate with
changes in physical shape, filamentation also changes the suite of mol-
ecules presented on the surface of the cell, which allows C. albicans to
evade the immune system, scour nutrients from host cells, and adhere
tightly to cell surfaces. Differences in the genetic requirements for
filamentation may exist because these responses may have not yet co-
alesced into a single filamentation pathway.

Another possible reason C. albicans has divergent responses to the
filamentation induction condition is that distinct programs of filamen-
tation would allow C. albicans to tailor its response to specific environ-
mental signals. C. albicans resides in a wide variety of niches within the
human body with very distinct environmental conditions. Filamentous
cells in these niches may have unique characteristics that allow them to
survive in that environment. This could explain the unique transcrip-
tomes present in each condition, but still leaves the question of why
distinct genetic requirements for filamentation in each condition exist

those with liquid-specific profiles, indicated by the bar on the right, and genes with similar expression patterns in at least one solid condition. (C)
Two hundred fifty-three genes showed similar regulation patterns across all solid conditions. The genes shown are those with solid-specific
profiles, indicated by the bar on the right, and genes with similar expression patterns in at least one liquid condition. The genes similarly regulated
in all conditions were not included in B and C. Gene identifications and expression levels are shown in Table S5. Data for the full set can be found
in Table S2.
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Percent of strains

and whether these genes are involved in initiation or maintenance of
filamentation in these conditions.

At the outset of our experiments, we hypothesized that genetic
requirements for filamentation and transcriptional responses to fila-
mentation would be similar in liquid and solid versions of media with the
same components. Our data, however, strongly suggest that filamenta-
tion programs are distinct in solid and liquid media, both in the genetic
requirements for filamentation and in the transcriptional response to
filamentation. Based on these observations, we hypothesize that C.
albicans must differentiate between filamentation in a free-floating state
and on surfaces in the gastrointestinal and genitourinary tracts of the
human body and that its ability to respond appropriately to these
distinct conditions is important for its survival in vivo. Thus, filamen-
tation on solid surfaces in vitro might mimic filamentation on epithelial
or endothelial surfaces within the body and perhaps within tissues as
well, while filamentation in liquid media in vitro would mimic filamen-
tation of C. albicans in bodily fluids or perhaps within phagocytic cells
of the immune system. Our data suggest that we need to treat solid and
liquid filamentation as two distinct phenotypes and that defects in each
process will have different impacts on pathogenesis.

While there are large differences in the genetic requirements for
filamentation between conditions, our data identified a number of core
genes important for filamentation across conditions (Table 1). The role
that most of these genes play in the initiation or maintenance of fila-
mentation is currently not known, but the function these genes or their
orthologs in related species play in other cellular processes may provide
hints about their functions. Two genes from this core set of genes with
broad roles in filamentation, STT4 and TSC11, may contribute to fila-
mentation via their roles in regulating the actin cytoskeleton. Saccha-
romyces cerevisiae orthologs of Stt4, a phosphatidylinositol 4-kinase,
and Tscll, a member of the TORC2 complex, act in pathways that
activate the GTPase Rhol, which regulates the polarization of the actin
cytoskeleton and the Pkcl cell wall integrity pathway in S. cerevisiae
(Schmidt et al. 1997; Levin 2005). Polarization of the actin cytoskeleton
is required for the filament formation in C. albicans (Akashi et al. 1994)
(Cali et al. 1998) and blocking polarization by either destabilizing actin
can prevent expression of hyphal responsive genes (Wolyniak and
Sundstrom 2007). It seems likely that these genes are playing similar
roles in C. albicans and implicates other members of their signaling
pathway (Stt4) or complex (Tscl1) in filamentation as well.
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Figure 7 Gene upregulation is not linked to pheno-
typic defects in coordinate conditions. The expression
of genes represented in the mutant collection were
compared to the mutant phenotype of the respective
deletion strain in each condition. For each condition,
the number of strains with a severe phenotypic
defect and upregulation of the respective gene were
compared to the total number of strains exhibiting a
defect in that condition to calculate the percentage
defective in upregulated genes (dark gray bars). This is
compared to the percentage of strains showing
a phenotypic defect in each condition (light gray bars).

Cell wall structure is distinct between filamentous and yeast cells
(Lowman et al. 2014), and four genes in the core filamentation set,
KRES5, PHRI, IREI, and C4_04090C, may play a role in the generation
of distinct cell wall features. Both KRES5, which encodes a putative
glucosyltransferase, and PHRI, which encodes a cell surface glycosi-
dase, have roles in altering cell wall glucan composition (Skrzypek et al.
2017). Tangentially, IRE1, which encodes a protein kinase important
for cell wall integrity that may be involved in the ER-related unfolded
protein response (Blankenship et al. 2010), and C4_04090C, which
encodes a putative ER chaperone important for glycoprotein folding
(Skrzypek et al. 2017), may also be involved in either altering cell wall
composition (C4_04090C) or responding to changes in the cell wall
architecture (Irel). The importance of these cell wall linked genes to
filamentation across a broad spectrum of filamentation conditions sug-
gests that cell wall changes are required for filamentation and blocking
these changes by altering filament glucans or glycoproteins could in-
hibit filamentation, and thus pathogenesis, in vivo.

The identification of core genetic requirements, however, does not
rule out the possibility that certain in vitro conditions have a predictive
value for specific in vivo phenotypes. In our assays, RPMI solid media
defects appear to correlate with competitive survival or virulence de-
fects in murine tail vein injection models of infections. It is possible that
filamentation phenotypes in other media can predict virulence at other
infection sites, such as the oral or vaginal mucosa or in intra-abdominal
infections. Identifying the unique genetic requirements for these re-
sponses could identify targeted approaches for treatment.

Our work has identified problems underlying reliance on single-
model systems in the investigation of filamentation in the pathogenic
fungus C. albicans. However, it also highlights the strength of compar-
ing multiple models of the same process. We were able to identify core
genetic requirements and gene expression profiles for filamentation
only by looking at a suite of in vitro filamentation models. This ap-
proach also uncovered distinct programs of filamentation in solid and
liquid media that were hidden, in part, by our reliance on liquid models
of filamentation for expression profiling.

Conclusions

Similar to investigators in most other organismal systems, the C. albicans
field relies on in vitro models to study in vivo biological processes. Further,
studies in C. albicans, like studies in other systems, utilize a variety of
in vitro models to examine a single phenotype. We found very little overlap
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in the genetic requirements for filamentation among the model systems we
tested, and transcriptional responses to those conditions also varied widely
between models. This suggests that reliance on a single-model system for
filamentation will generate both false-positive and false-negative results. It
is only with a broad screen across multiple conditions that we can identify
genes with filamentation roles conserved across conditions and identify
transcriptional responses that are specific to the overall process of
filamentation. Discrepancies between model systems are not confined to
C. albicans filamentation. In many cases where discrepancy exists between
results in different model systems, it is generally observed as a weakness of
in vitro investigations (Haibe-Kains ef al. 2013). In some cases, comparisons
can be used to identify the in vitro models that best replicate in vivo con-
ditions (Wilding and Bodmer 2014), although this appears to be rare. Rather
than looking at the differences between model systems as a weakness, we
suggest that comparative approaches can be used to increase the likelihood
that the outcome of assays best reflect the core requirements for an in vivo
phenotype. In addition, the identification of themes underlying differences
in model systems, like the divergence between solid and liquid filamentation,
can identify biological processes overlooked in single-model approaches.
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