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Increasing nitrogen (N) loads present a threat to estuaries, which are among the most
heavily populated and perturbed parts of the world. N removal is largely mediated by
the sediment microbial process of denitrification, in direct competition to dissimilatory
nitrate reduction to ammonium (DNRA), which recycles nitrate to ammonium. Molecular
proxies for N pathways are increasingly measured and analyzed, a major question in
microbial ecology, however, is whether these proxies can add predictive power around
the fate of N. We analyzed the diversity and community composition of sediment nirS
and nrfA genes in 11 temperate estuaries, covering four types of land use in Australia,
and analyzed how these might be used to predict N removal. Our data suggest that
sediment microbiomes play a central role in controlling the magnitude of the individual
N removal rates in the 11 estuaries. Inclusion, however, of relative gene abundances of
16S, nirS, nrfA, including their ratios did not improve physicochemical measurement-
based regression models to predict rates of denitrification or DNRA. Co-occurrence
network analyses of nirS showed a greater modularity and a lower number of keystone
OTUs in pristine sites compared to urban estuaries, suggesting a higher degree of
niche partitioning in pristine estuaries. The distinctive differences between the urban and
pristine network structures suggest that the nirS gene could be a likely gene candidate to
understand the mechanisms by which these denitrifying communities form and respond
to anthropogenic pressures.

Keywords: denitrification, DNRA, functional genes, estuary, co-occurrence, nitrogen

INTRODUCTION

The addition of N to aquatic ecosystems has increased markedly over the past 30 years, and is
predicted to predominantly increase in estuaries throughout the world in the foreseeable future
(Seitzinger et al., 2010; Yu et al., 2019). Eutrophication, attributed to changes in nutrient ratios
due to run-off and sedimentation, contributes to numerous negative environmental impacts in
estuaries, including loss of habitat and biodiversity, increases in harmful algal blooms, hypoxia and
sporadic fish mortalities (Diaz and Rosenberg, 2008; Greaver et al., 2016). In addition, increased
anthropogenic nutrient loadings can impact the biogeochemical coupling between the water
column and estuarine sediments (Burgin and Hamilton, 2007), which have been shown to further
intensify eutrophic conditions (Howarth et al., 2012).
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Estuaries and deltas are amongst the most heavily populated
and most perturbed parts of the world, with up to 60 percent
of the world’s population living along the coast (Small and
Cohen, 2004). Estuarine microbial communities are responsible
for biogeochemical processes that can remove or recycle
N. Unlike other important macro- and micronutrients, e.g.,
phosphorus and iron (Fe2+), the reservoir of bioavailable N
is regulated almost solely by biological activity. Microbially
mediated processes which regulate the size of the N reservoir
include nitrification and denitrification, anaerobic ammonium
oxidation (anammox), N2 fixation and dissimilatory reduction
of NO−3 to NH+4 [DNRA; see Damashek and Francis (2018) and
references therein].

The relative importance between N loss and N retention
merits investigation due to the adverse effects of excess N in
estuarine ecosystems. Denitrification and anammox remove N.
DNRA, however, competes with denitrification for available
nitrate (NO−3 ) and retains the reactive N as a more bioavailable
form. Understanding the relative importance of N removal
(via denitrification) or N retention (via DNRA), including
how the balance between these changes under increased N
loadings, is key to predict the trajectories of eutrophication
in estuarine ecosystems (Giblin et al., 2013). Recently, Kessler
et al. (2018) investigated the key controls over the relative
rates of denitrification and DNRA in eleven estuaries in
Victoria, Australia. Critically, they confirmed several factors
which had been identified separately or in incubations,
but not together in intact cores. DNRA was found to be
enhanced relative to denitrification (1) when nitrate was
limiting, consistent with thermodynamic assumptions (Tiedje
et al., 1983; Dalsgaard and Bak, 1994); (2) when sediments
were highly reducing (e.g., Brunet and Garcia-Gil, 1996);
and (3) when large concentrations of dissolved Fe2+ were
present, consistent with proposed Fe2+-DNRA mechanisms
(Roberts et al., 2014; Robertson et al., 2016). We expand
on the denitrification and DNRA rates measured by Kessler
et al. (2018), by integrating molecular data collected in
conjunction with the biogeochemical experiments presented
therein, obtaining amplicon sequences of the genes catalyzing
nitrite reduction during denitrification (nirS) and DNRA
(nrfA). We use these data to test whether we can improve
our understanding and prediction capacities for denitrification
and DNRA, thereby better understanding drivers of the
potential fate of N.

Hypotheses which we tested by incorporating molecular
data with the rates from Kessler et al. (2018) were: (H1) the
same environmental parameters correlated with denitrification
and DNRA rates would be correlated with nirS and nrfA
community compositions. (H2): based on the functional genes
catalyzing nitrite reduction during denitrification and DNRA
pathways we could differentiate between estuaries with a low
and high N removal capacity. (H3): The linear regression
models from Kessler et al. (2018) would improve when
we integrate bacterial biomass and functional N gene copy
data. In summary, here we investigated the potential to
use functional gene data to improve/inform the prediction
of the fate of N.

MATERIALS AND METHODS

Study Area
Eleven estuaries spanning a range of land uses were sampled
along the coast of Victoria, Australia during July and August
2017. Biotic and abiotic samples were collected from the main
basin of the estuaries, which were defined as the deepest, central
muddy area of the estuary. Water quality and parameters were
measured at six depths in the 11 estuaries and a summary
of the biochemical and physical metadata can be found in
the Supplementary Tables S1–S5 from Kessler et al. (2018)
at the following AGU weblink https://agupubs.onlinelibrary.
wiley.com/doi/full/10.1029/2018GB005908. DNRA (DNRA15)
and denitrification (D15) rates were also measured by Kessler
et al. (2018) at six depths. Rates were corrected for site porosity
and are expressed in this study in µmol L−1 hr−1 using total
sediment volume. To quantify denitrification and DNRA rates
Kessler et al. (2018) used six sediment cores which were sacrificed
over six time points; at the start of their rate measurements
(referred to as T1; no addition of 15N isotope tracer), after 1,
2, 3, 5, and 8 h (last time point is referred to as T6). In this
manuscript we present metagenomics data from 6 depths (0–0.5,
0.5–1, 1–2, 2–3, 3–5, and 5–10 cm) and from the time points T1
(environmental representative; n = 66 cores) and T6 (enrichment
with 50 µmol L−1 15NO−3 , with a final concentration; n = 66
cores) to gain a better insight into the relationships between
microbial identity and denitrification and DNRA rates.

The estuaries were classified into four predominant land uses
based on percentage of catchment area fertilized (Fert%) and
population per km2 of catchment area [Pop; see Kessler et al.
(2018)]. Overall, three estuaries could be classified as estuaries
with high D15:DNRA15 ratios (AIR; WER and PAT) and three
could be classified with low D15:DNRA15 ratios (HOP; YAR and
MAL). The D15:DNRA15 ratio ranged from estuaries dominated
by denitrification (D15:DNRA15 = 8.4) to estuaries dominated by
DNRA [D15:DNRA15 = 0.3; as measured by Kessler et al. (2018)].

DNA Extractions
Sediment cores were collected in polyethylene tubes (6.6 cm
internal diameter), and sediment samples were preserved with
LifeGuard soil preservation solution (QIAGEN; cat. no. 12868–
100) in 50 mL plastic centrifuge tubes and stored at −20◦C.
The LifeGuard solution was removed after the samples were
centrifuged for 5 min at 2,500 g and at 4◦C. Approximately
2 g of wet sediment was weighed out into the powerbead
tubes and DNA and RNA were extracted using the QIAGEN
RNeasy PowerSoil Total RNA (QIAGEN; cat. no. 12866-25) and
RNeasy PowerSoil DNA Elution (QIAGEN; cat. no. 12867-25)
Kits according to manufacturer’s instructions. Nucleic acids were
quantified on a QuBIT 2.0 fluorometer.

Amplicon Sequencing
Amplicons targeting nirS (denitrification) and nrfA (DNRA)
genes were amplified from environmental DNA extracts and
sequenced at the Ramaciotti Centre for Genomics (UNSW
Sydney). Nextera XT barcode incorporation, purification, library
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TABLE 1 | Library preparation and cycling conditions for the nirS and nrfA genes.

PCR cycling conditions

Gene Fw primer Rv primer Initial
denaturation

Denaturation Annealing Extension Cycles Final
extension

Hold References

nirS nirS_Cd3aF nirS_R3Cd 95◦C; 5 min 95◦C; 40 s 57◦C; 40 s 72◦C; 60 s 40 72◦C; 10 min 10◦C Michotey et al., 2000;
Throbäck et al., 2004

nrfA nrfAF2aw nrfA_R1 95◦C; 5 min 95◦C; 40 s 53◦C; 45 s 72◦C; 60 s 40 72◦C; 10 min 10◦C Mohan et al., 2004;
Welsh et al., 2014

generation and sequencing using the Illumina MiSeq platform
(Illumina, Inc., San Diego, CA, United States), with 300 bp
paired reads, were performed according to the manufacturer’s
directions. PCR primers and cycling conditions for the different
amplicons are shown in Table 1.

Zero radius OTU abundance tables were prepared by merging
pair-end reads using FLASH (Magoč and Salzberg, 2011), unique
sequences were denoised into zero-radius operational taxonomic
unit (zOTUs) with the UNOISE algorithm [default settings;
Edgar and Flyvbjerg (2015)] using USEARCH 64 bit v8.0.1517
(Edgar, 2010). Per sample abundance profiles were built by
mapping all reads per gene against the denoised reads using
usearch otutab command (default settings). Amplicon data were
analyzed using MEGAN6 (Huson et al., 2007). nirS and nrfA
sequences were aligned against the NCBI-nr database (September
2018) using DIAMOND (Buchfink et al., 2014). Sequence data
have been submitted to the National Center for Biotechnology
Information under bioproject ID PRJNA61138.

High resolution OTUs (zOTUs, ASVs) are becoming
commonly used in microbial molecular surveys, especially those
using highly conserved taxonomic marker genes (e.g., 16S rRNA
gene), however, a number of studies have explored different
sequence similarity cut-off thresholds ranging from 80 to 100%
of protein coding genes to maximize ecological information
and minimize noise (Bowen et al., 2013; Caro-Quintero and
Ochman, 2015; Lee and Francis, 2017; Tapolczai et al., 2019). In
this study we denoised nirS and nrfA gene sequences into zOTUs
and subsequently clustered these into 88% identity threshold
OTU’s (using USEARCH -cluster_fast -id 0.88), utilizing both
the high and lower resolution data. We acknowledge that the
appropriate degree of sequence clustering will vary with the gene
investigated, the sequenced region of the gene, and the aims
of the research question. By using higher and lower resolution
data we have attempted to maximize information and minimize
potential noise.

The nirS library ranged between 10,162 and 63,322 reads
per sample, and the nrfA library ranged between 17,677
and 66,449 reads per sample. Pairwise tests, analyses of
similarities (ANOSIM), similarity percentage analyses (SIMPER)
and canonical correspondence analyses were done on Hellinger
transformed, non-rarefied data. Microbiome networks were
constructed using rarefied data. Rarefaction curves for the nirS
and nrfA amplicon sequence data are shown in Supplementary
Figures S1, S2. As we were interested how the microbial
communities were structured in different land uses, we rarified
the amplicon data within each land use to its lowest per sample

sequence depth, resulting in 14,959 nirS reads for the urban sites,
14,491 nirS reads for the agricultural sites and 10,162 nirS reads
for the pristine sites. The rarefied nrfA sequence tables for each
land resulted in 23,218 reads for the urban sites, 21,496 reads for
the agricultural sites and 25,035 reads for the pristine sites (see
statistics subsection below for more detail).

Quantitative PCR
The qPCR reactions were carried out on a 7500 Applied
Biosystems real-time PCR instrument. Melt curves were added
as a final step in the qPCR reaction to test the stringency of the
reactions. PCR products were examined via gel electrophoresis to
confirm expected product size specificity. Triplicate, no-template
controls did not amplify. Standard deviations between triplicate
reactions were <15%. Cycling conditions are shown in Table 2.
The gene abundances are expressed as copies per gram wet
sediment and data can be found in Supplementary Table S1.

Bacterial 16S rRNA
Quantitative PCRs of the 16S rRNA gene were performed
using the 341f (CCTACGGGAGGCAGCAG) and 518r
(ATTACCGCGGCTGCTGG) primer sets (Muyzer et al.,
1993). The 20 µL reaction consisted of 10 µL Power SYBRTM

Green PCR Master Mix (Thermo Fisher cat. no. 4368577),
0.1 µL each of 100 µM primer stock 341f and 518r, 0.5 µL BSA
and 7.3 µL H2O. Standards were created using the Escherichia
coli non-K-12, wild-type W strain (ATCC #9637) from a Topo
cloning kit (cat. number: K204001). Cells were inoculated
with lysogeny broth, and DNA was extracted using a DNeasy
PowerSoil Kit (Thermo Fisher cat. no. 12888-100). The E. coli
DNA was then serial diluted from 10 ng µl−1 to 10−5 ng µl−1 to
create a standard curve.

nirS qPCR
Quantitative PCRs of the nirS gene were performed using the
nirS_Cd3aF (GTSAACGTSAAGGARACSGG) and nirS_R3Cd
(GASTTCGGRTGSGTCTTGA) primer set (Michotey et al.,
2000; Throbäck et al., 2004). The 20 µL reaction consisted
of 10 µL Power SYBRTM Green PCR Master Mix (Thermo
Fisher cat. no. 4368577), 0.4 µL each of 100 µM primer stock,
0.5 µL BSA and 6.7 µL H2O. Standards were created using
a Pseudomonas stutzeri type strain (DSM 5190; doi: 10.13145/
bacdive12996.20180622.3). The P. stutzeri DNA was serial diluted
from 10 ng µl−1 to 10−5 ng µl−1 to create a standard curve.
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8 Dissimilatory Nitrate Reduction to
Ammonium (DNRA) nrfA qPCR
Quantitative PCRs of the nrfA gene were performed using
primers nrfA_F2aw (CARTGYCAYGTBGARTA) and nrfA_R1
(TWNGGCATRTGRCARTC) from Mohan et al. (2004) and
Welsh et al. (2014). The 20 µL reaction consisted of 10 µL
Power SYBRTM Green PCR Master Mix (Thermo Fisher cat. no.
4368577), 0.4 µL each of 100 µM primer stock nrfA_F2aw and
nrfA_R1, 0.5 µL BSA and 6.7 µL H2O. Standards were created
using the E. coli non-K-12, wild-type W strain (ATCC #9637)
from a Topo cloning kit. The E. coli DNA was serial diluted from
10 ng µl−1 to 10−5 ng µl−1 to create a standard curve.

Statistical Analysis
Pairwise tests using permutational multivariate analyses of
variances (PERMANOVAs) were used to test whether there
were significant differences between the two time points
(T1 and T6) within each estuary. Analysis of similarities
(ANOSIM) was used to test whether we could identify
statistical differences between the 11 estuaries based on the
nirS and nrfA amplicon data clustered at zOTU level and
at the 88% similarity level. Similarity percentage analysis
(SIMPER) was used to analyze the dissimilarity (%) between
the nirS and nrfA communities for all possible pairwise estuary
combinations. Canonical correspondence analyses (CCA) were
used to visualize the β-diversity variation in the nirS and
nrfA amplicon data and to identify multiple explanatory
variables between the denitrifying (nirS) and DNRA (nrfA)
communities. Environmental parameters were standardized with
the ‘standardize’ function (variables were scaled to zero mean
and unit variance) using decostand from the Vegan Package
(Oksanen et al., 2007) and significant (p < 0.05) environmental
parameters were derived using the ‘envfit’ function in Vegan
and overlaid as vectors. Statistical tests were conducted using
the PRIMER v7 software and the Vegan package version
2.5–6 (Oksanen et al., 2007) in R version 3.6.1 (R Core
Team, 2013). Co-occurrence networks were made using the
OTUs clustered at 88% and zOTU thresholds in R using
the igraph version 1.2.4.2 (Csardi and Nepusz, 2006) and
qgraph version 1.6.4 (Epskamp et al., 2012) packages. For the
networks the OTU tables for the nirS and nrfA amplicon data
were rarefied to the minimum sample depth in each land
use, and only the OTUs which contributed >1% were used.
Statistical significances of edges were computed in Cytoscape
v. 3.7.1 using the CoNet application, as outlined by Faust
and Raes (2016). To account for the false discovery rate
the p-values for the Pearson correlations were computed via
100 permutations and 100 bootstrap distributions. For the
permutations we used shuffle_rows as a resampling parameter,
and the ‘Renormalize’ option in the CoNet application to
reduce the compositionality bias as suggested by Faust et al.
(2012), Faust and Raes (2016)). For the regression models
we used the same statistical approach as outlined in Kessler
et al. (2018), by following the guidelines suggested by Crawley
(2012). Correlations and p-values were calculated using the
Spearman coefficient rs using the Corrplot package in R studio.
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P-values were corrected for multiple comparison using the Holm
(1979) method.

RESULTS

Physical Parameters, Water Quality and
Biomass
The 11 sampled estuaries span 5 catchments and could broadly
be classified into four land uses. Two agricultural estuaries
[HOP and CUR; with a percentage of catchment area fertilized
(Fert%) of 87% and a population per km2 of catchment area
(Pop) of 5.5], three rural areas (AIR, LW, and LKN; were
Fert% ranged from 14–33% and Pop from 1 to 11.6), three
urban sites (WER, YAR, and PAT; with a Fert% between 43–
57% and a Pop from 58 up to 1,003), and three pristine sites
(TAM, WIN, and MAL; with a Fert% between 0.5–2.9% and
a Pop < 0.4; see Figure 1). Water temperature varied up to
5.6◦C between sites, and bottom water salinities ranged from
nearly fresh (1.5) to saline (36.4). Oxygen concentrations in the
overlying sediment waters ranged from oxygenated (99.4% air

saturation) to nearly anoxic (5.6% air saturation). At the pristine
sites, NOx and reactive PO3−

4 concentrations in the overlying
sediment waters were generally ≤1 µmol L−1, while highest
NOx concentrations were observed at the agricultural site CUR
(49 µmol L−1). Reactive PO3−

4 measured up to 8.0 µmol L−1 at
the urban site WER. NH+4 concentrations in the waters above the
sediment were highest (between 127 and 129 µmol L−1) at the
agricultural sites (HOP and CUR) and at the urban site (YAR)
respectively. Porewater NH+4 concentrations increased with
sediment depth and acid volatile sulfide (AVS; a proxy for highly
reduced conditions) showed a similar trend. Sediment organic
carbon profiles showed similar concentrations from the surface
down to 10 cm depth. Principal coordinate analysis (PCoA)
of 24 environmental parameters, which included integrated
physico-chemical water column and pore water characteristics,
showed that each estuary had a unique abiotic signature (see
Supplementary Table S2 for 24 physico-chemical parameters
and Supplementary Figure S3 for PCoA plot).

The abundances of total bacteria, derived from 16S rRNA gene
qPCRs as a proxy for bacterial biomass, ranged from 2.91× 108 to
7.85 × 109 16S rRNA gene copies per gram wet sediment across

FIGURE 1 | Location of the 11 estuaries in Australia (A) and, in greater detail, in the southwestern coast (B), as indicated by the red box in A. Colors indicate land
usage. Hopkins River (HOP; Fert% 88.7 and Pop 5.5); Curdies River (CUR; Fert% 86.6 and Pop 5.5); Aire River (AIR; Fert% 14 and Pop 1); Werribee River (WER;
Fert% 56.4 and Pop 58.3); Yarra River (YAR; Fert% 43.6 and Pop 347); Patterson River (PAT; Fert% 57.1 and Pop 1003); Lake Wellington (LW; Fert% 33 and Pop
11.6); Lake King (LKN; Fert% 14.7 and Pop 2.5); Tamboon Inlet (TAM; Fert% 1.9 and Pop 0.4); Wingan River (WIN; Fert% 0.5 and Pop 0.09); Mallacoota River (MAL;
Fert% 2.9 and Pop 0.3).
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TABLE 3 | ANOSIM results for two functional N cycling genes with sequences clustered at the zOTU and 88% percent similarity threshold in 11 estuaries in
Victoria, Australia.

nirS nrfA

Global R-value Global R-value

zOTU 88% p-value zOTU 88% p-value

Estuary location 0.978 0.986 0.001 0.934 0.897 0.001

Land use 0.535 0.459 0.001 0.445 0.409 0.001

High and low D15:DNRA15 0.183 0.206 0.001 0.144 0.151 0.001

Global R-values indicate the level of similarity between all sampled sites, with R = 0 indicating strong similarity and R = 1 indicative of a strong dissimilarity. Significant
differences at the p < 0.001 level.

the 11 estuaries (Supplementary Table S1). nirS gene abundances
ranged from 1.58 × 106 up to 6.78 × 108 copies per gram
wet sediment, with lowest copy numbers at the surface in the
agricultural estuary HOP and highest copy numbers at the surface
in the urban estuary YAR (Supplementary Table S1). nrfA gene
abundances ranged from 1.55 × 104 up to 9.29 × 107 copies per
gram wet sediment, with lowest copy numbers at the surface in
the rural area LW and highest copy numbers at the surface in the
urban estuary YAR (Supplementary Table S1).

Functional Community Composition
For comparison, sequences were denoised into zOTUs and
clustered at 88% identity thresholds (see section “Materials
and Methods”). When clustered at 88% sequence similarity,
we reduced the number of nirS zOTUs from 17,000 to 2,506
OTUs and the number of nrfA zOTUs from 37,707 to 13,119
OTUs. No significant differences between T1 and T6 (Monte
Carlo tests > 0.1) were noted when the nirS and nrfA sequences
were clustered at a zOTU level nor at the 88% similarity level.
Because we did not see any significant differences between the
two time points within an estuary, we used both time points in
the further analyses.

For both zOTUs and 88% OTUs analysis of similarities
(ANOSIM) showed a high and significant separation of the
estuaries based on the nirS and nrfA community data (see
Table 3 for the Global R- and p-values). All pairwise comparisons
between the different estuaries for the two N-cycling genes were
significantly different (p < 0.05). ANOSIM analyses between the
four different land uses showed significant differences for the nirS
and nrfA community data (Table 3). The denitrifying community
(nirS) showed the strong dissimilarity between the different
land uses. Again, all pairwise comparisons between the different
land uses were significantly different (p < 0.05). The lowest
ANOSIM values (yet still significant), both for zOTU sequences
and sequences clustered at 88% similarity, were found for the
nirS and nrfA communities between estuaries with high and low
D15:DNRA15 (Table 3). We used a similarity percentage analysis
(SIMPER) to analyze the dissimilarity (%) between the nirS and
nrfA communities for all possible pairwise estuary combinations.
The denitrifying communities (nirS) in the 11 estuaries were on
average 89% different between each other at a zOTU level, and
78% different at the 88% similarity level. SIMPER results for the
nrfA sequences revealed that the DNRA communities in the 11

estuaries were on average 93 and 82% different at the zOTU and
at 88% similarity level, respectively (Supplementary Table S3).

Environmental Drivers
Correspondence analyses (CCA) were used to explore
associations between denitrifying (nirS) and DNRA (nrfA)
community compositions and 24 multiple explanatory variables
(Figure 2 and Supplementary Figure S4). Overall, regardless of
sequence similarity resolution, the same suit of environmental
parameters [dissolved pore water Fe2+, NH+4 , and PO3−

4 ,
organic C, acid volatile sulfide (AVS) and bacterial biomass]
showed significant correlations (p < 0.05) with the nirS and
nrfA community composition. Organic C and DNRA rates
revealed both a positive relationship across the two N-cycling
communities, whereas dissolved pore water Fe2+ showed a
significant and positive effect on estuarine communities with
high D15:DNRA15 rates (Figure 2). In detail, the denitrifying
communities from five estuaries [the pristine estuary WIN,
the agricultural area CUR, the urban sites WER and PAT,
and the rural site LKN] were associated with high dissolved
pore water Fe2+ and high D15:DNRA15 ratios [a proxy for
high N removal]. The communities from four estuaries (the
pristine sites MAL and TAM, and the rural sites LW and
AIR) were associated with high dissolved pore water PO3−

4
concentrations and those from the remaining two estuaries [the
agricultural site HOP, and the urban site YAR] were associated
with high organic C loading and associated higher DNRA rates.
CCA analyses for the DNRA communities showed similar
results where both the agricultural site HOP, and the urban
site YAR were associated with a high organic C loading and
higher DNRA rates.

Network Analyses
The high degree of community dissimilarity, both at the 88% and
the zOTU thresholds, between all 11 estuaries suggested that the
microbial communities were shaped by their local environment.
Microbiome networks based on nirS and nrfA sequences
clustered at the 88% similarity and zOTU thresholds were
constructed to provide insights into the microbial community
structures for N removal and retention in the urban, agricultural
and pristine estuaries. Note, we did not include the rural
sites in these analyses as the environmental parameters showed
tenfold changes across the three rural sites, the environmental
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FIGURE 2 | Canonical correspondence analysis (CCA) for the nirS gene using OTUs at the 88% similarity (A) and zOTU threshold (B) and for the nrfA gene using
OTUs at the 88% similarity (C) and zOTU threshold (D). Amplicon data were Hellinger transformed to decrease the contribution of abundant species and
environmental parameters were standardized with the ‘standardize’ function using decostand from the Vegan Package (Oksanen et al., 2007). Significant (p < 0.05)
environmental parameters were derived using the envfit function in Vegan and overlaid as vectors. Environmental parameters from all six depths were: sediment
ascorbate-extractible Fe2+ concentrations (Fe.asc in µM); Ascorbate extractible (bound) PO3−

4 (P.asc in µM); Porosity (Poro); NH+4 in pore water (A in µM); Organic
carbon (C in µM); Filterable reactive phosphorus in pore water (P in µM), Acid volatile sulfide (AVS in µM). Colors represent land uses and gray dots are the OTUs.

parameters on the other hand for the urban, agricultural
and pristine sites were all in the same order of magnitude
for each land use.

The networks based on nirS sequences (both at the 88%
and zOTU thresholds) showed the highest network modularities
in the pristine estuaries, indicating that the networks have
dense connections between OTUs within a cluster and sparse
connections between clusters. Network modularity decreased
with increasing disturbance (increasing human population and
anthropogenic pressure), with the urban estuaries showing the
lowest network modularities (Figure 3). Keystone OTUs in the
nirS networks were defined by hub scores > than 0, where a
high hub score (max hub score = 1) reflects a significantly larger
number of links between OTUs. The urban areas had a higher
number of OTUs with a hub score > 0.5 compared to the other
two land uses (127 OTUs and 191 zOTUs with a hub score > 0.5).
The agricultural and pristine estuaries showed a similar number
of OTUs with a hub score >0.5 (32 OTUs and 91 zOTUs with
a hub score > 0.5 for the agricultural sites and 20 OTUs and
90 zOTUS with a hub score >0.5 for the pristine estuaries; see
Supplementary Figure S5).

The modularities of the microbiome networks for the nrfA
sequence data at 88% similarity did not reveal stark differences
between the urban, agricultural and pristine sites (modularities
of 0.49; 0.48; and 0.45 for the urban, agricultural and pristine,
respectively; Figure 4). At the zOTU threshold the lowest
modularity was noted in the agricultural sites (0.49), whereas
both the urban (0.59) and agricultural sites (0.53) revealed to have
similar modularities. The urban areas had again a higher number
of OTUs with a hub score > 0.5 (127 OTUs and 243 zOTUs,
respectively). The agricultural areas and the pristine estuaries
showed a relative similar number of OTUs with a hub score
>0.5 (80 OTUs and 176 zOTUs with a hub score > 0.5 for the
agricultural areas and 73 OTUs and 166 zOTUS for the pristine
estuaries; see Supplementary Figure S6).

Modeling DNRA and Denitrification
Rates
In order to test whether 16S rRNA gene and functional N gene
abundances could improve model prediction of denitrification
rates, DNRA rates and the ratio of D15:DNRA15, we included
qPCR data for 16S rRNA gene (bacterial biomass), and the
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FIGURE 3 | Microbiome networks based on nirS sequences clustered at the 88% similarity threshold (Top) and the zOTU threshold (Bottom) across Urban,
Agricultural, and Pristine land uses. Networks were constructed on the OTUs which contributed >1%. For the networks using sequences clustered at the 88%
similarity threshold this meant 259 nodes for the urban estuaries, 151 nodes for the agricultural sites and 213 nodes for the pristine sites. For the networks using
zOTU sequences this meant 464 nodes for the urban estuaries, 256 nodes for the agricultural sites and 434 nodes for the pristine sites. Only positive
co-occurrences with a Pearson correlation R2 > 0.6 are shown. The Benjamin–Hochberg procedure was used as the multiple testing correction method and only
correlations with a corrected p < 0.05 are shown. P-values of the final network are computed from both 100 permutation and 100 bootstrap distributions, and
p-values were merged with the Brown method (Brown, 1975). Each circle is a nirS OTU (node). Clusters are shown in different colors. Hubs (centrality vectors) are
nodes in the network which have a significantly larger number of links compared to the other nodes in the network and are identified by a larger circle diameter.
Network modularity for the microbiomes are shown in bold on the left-hand side of the networks. Image credits for the Urban, Agricultural, and Pristine photos: Eric
Raes, Gregory Heath, and Willem van Aken, respectively.

nirS and nrfA gene abundance data from the T6 time points
to the set of predictor variables used by Kessler et al. (2018)
(see Supplementary Table S1 for the predictor variables used
in the models). For some models we noted slightly higher R2

compared to the regression models from Kessler et al. (2018).
However, if we use an a priori BIC factor [in this case the lowest
BIC factor from the model runs by Kessler et al. (2018)], we
did not see any improvements compared to the models from
Kessler et al. (2018). For this data set, neither the inclusion of
16S, nirS, and nrfA qPCR data, nor different ratios of these genes

improved the model estimating the ratio of denitrification to
DNRA (Supplementary Table S4).

Spearman correlations between the 16S, the nirS and the nrfA
rRNA gene abundances, the denitrification and DNRA rates and
the physico-chemical parameters revealed similar results to the
regression and the CCA analyses (Supplementary Figure S7).
The nrfA rRNA gene abundances showed significant and positive
correlations with Fe2+, Fe.asc, NH+4 concentrations in the
sediment, overlying water NOx concentrations, percentage of
catchment area fertilized, and the total copy numbers of bacteria.
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FIGURE 4 | Microbiome networks based on nrfA sequences clustered at the 88% similarity threshold (Top) and the zOTU threshold (Bottom) across Urban,
Agricultural, and Pristine land uses. Networks were constructed on the OTUs which contributed >1%. For the networks using sequences clustered at the 88%
similarity threshold this meant 441 nodes for the urban estuaries, 309 nodes for the agricultural sites and 433 nodes for the pristine sites. For the networks using
zOTU sequences this meant 525 nodes for the urban estuaries, 349 nodes for the agricultural sites and 484 nodes for the pristine sites. Only positive
co-occurrences with a Pearson correlation R2 > 0.6 are shown. The Benjamin–Hochberg procedure was used as the multiple testing correction method and only
correlations with a corrected p < 0.05 are shown. P-values of the final network are computed from both 100 permutation and 100 bootstrap distributions, and
p-values were merged with the Brown method (Brown, 1975). Each circle is a nrfA OTU (node). Clusters are shown in different colors. Hubs (centrality vectors) are
nodes in the network which have a significantly larger number of links compared to the other nodes in the network and are identified by a larger circle diameter.
Network modularity for the microbiomes are shown in bold on the left-hand side of the networks. Image credits for the Urban, Agricultural, and Pristine photos: Eric
Raes, Gregory Heath, and Willem van Aken, respectively.

Neither the nrfA rRNA gene abundances nor the nirS rRNA gene
abundances were significantly correlated with their respective
rates. The 16S rRNA gene abundances were significantly and
positively correlated with NH+4 concentrations in the sediment
(Supplementary Figure S7).

DISCUSSION

Understanding the capacity of estuaries to process added
N is essential to environmental agencies guiding sustainable
development. The fate of N, whether it is removed (via
denitrification or anammox) or recycled (via DNRA), becomes,

therefore, an important proxy for environmental managers who
evaluate the status of estuarine health (Piehler and Smyth, 2011).
Direct rate measurements to quantify N removal or N retention
are laborious and expensive, making production of data at the
resolution required by modelers and decision makers difficult.
In this manuscript we tested whether data from functional N
genes from 11 temperate estuaries could be used as potential
indicators for N removal and retention processes. To provide
qualitative and quantitative indicators of microbial nitrogen
cycling, we sequenced the nirS (shuttling NO−3 to a gaseous form
via denitrification) and the nrfA genes [shuttling NO−3 to NH+4
via DNRA; Francis et al. (2013)] and, we measured the bacterial
biomass and the nirS and nrfA gene copy numbers. The ratio of
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denitrification/DNRA can be interpreted as net N removal flux.
Previously, Kessler et al. (2018) suggested that N removal via
anammox was negligible in these samples, hence we refer to N
removal in the further discussion as denitrification.

Environmental Parameters
Our first hypothesis proposed that the environmental parameters
previously correlated with denitrification and DNRA rates would
be correlated with their respective community compositions. In
order to see whether differences in sequence resolution impacted
the correlations of the environmental parameters we utilized
both zOTUs and the 88% OTUs for comparison. zOTUs provide
higher resolution, which may improve the ability to detect
biogeographical patterns, such as strain-specific preferences for
environmental parameters (Callahan et al., 2017). On the other
hand, clustering at 88% similarity reduces the data complexity
and may reveal whether ecological trends hold up at a coarser
level, as shown by Bowen et al. (2013) and Lee and Francis
(2017) for the nirS gene. Regardless of resolution, our data
showed that the microbial communities catalyzing N removal
and N recycling processes were statistically distinct in each of
the 11 estuaries. At a zOTU level there were little differences in
the Global R-values (the measure for the dissimilarity between
estuaries) based on nirS and nrfA gene data. In contrast,
while the nrfA data clustered at 88% similarity maintained a
relative high alpha diversity compared to the nirS data, the nrfA
community showed overall lower Global R-values compared to
the nirS data.

Importantly, the same physico-chemical factors (C,
PO3−

4 , Fe2+, AVS, NH+4 , and porosity) that correlated
most strongly with N community composition (this study)
are those that correlate most strongly with direct rate
measurements of denitrification and DNRA and net N removal
[denitrification:DNRA; Kessler et al. (2018)]. These findings
were similar for both clustering thresholds. This suggests a
connection between physico-chemical factors, N community
composition, and biogeochemical rates: a requirement for the
use of genetic information as a proxy for rates or relative rates.
The emergence of shared environmental drivers between N
community composition and the relevant biogeochemical rates
is compelling in a sample set such as this one; single samples
collected from disparate estuaries with widely varying inputs of
nutrients and organic C.

The findings that the nirS denitrifying communities could be
roughly divided into three groups based on to organic C loading,
PO3−

4 , and Fe2+ are somewhat consistent with those of Lisa et al.
(2017), who reported that porewater Fe2+, NOx concentrations
and sediment organics (they did not measure PO3−

4 ) were
the physico-chemical factors most strongly correlated with the
composition of the nirS denitrifying microbial communities in
a shallow temperate estuary. On a global scale, the analyses
from Jones and Hallin (2010) report that the relatedness of nirS
communities were negatively correlated with NH+4 . Our results
are also consistent with the findings of Graf et al. (2014) who
showed that nirS denitrifying communities are strongly shaped
by their habitat.

DNRA rates were positively correlated with organic C loading,
which has been shown previously to control the partitioning
of denitrification and DNRA (Wiegner and Seitzinger, 2004;
Rahman et al., 2019). The regression models from Kessler et al.
(2018) also revealed that organic C loading was a major predictor
for DNRA rates. These results complement the findings from a
number of studies which highlight that microbes exhibit substrate
preferences for the size and age of OM (Findlay et al., 2003; Ding
et al., 2015; Wang et al., 2015). The authors from these studies
indicate that the quantity and more importantly, the quality of
OM is important in structuring niche partitioning and microbial
diversity gradients. The quality of OM and the links between
microbial community structure and their associated N fluxes
should be investigated more intensively in this and other systems
(Bending et al., 2002).

Functional Communities and Networks
Our second hypothesis suggested that based on the functional
genes catalyzing nitrite reduction during denitrification and
DNRA pathways we could differentiate between estuaries with
a low and high N removal capacity. When we compared
the beta-diversity of the denitrifying communities between
estuaries with low and high N removal capacity the ANOSIM
R values were the lowest (yet still significant) compared to
the different land uses and at a per estuary basis comparison.
These results indicated that in this data set, the information
from functional N-cycling genes at a community level did not
provide us with enough information to differentiate between
estuaries that signaled high or low N removal. These conclusions
remained across the two different similarity thresholds, zOTUs
and 88% similarity.

Co-occurrence network analyses (Brodland, 2015) were
used to explore the structure of the denitrifying and DNRA
communities across a gradient of anthropogenic pressure
(Sabater et al., 2007; Qu et al., 2017). We tested the hypothesis
that networks analysis would show greater niche partitioning,
exhibited as a greater number of modular components in
the network, in the pristine sites compared to urban sites
(De Menezes et al., 2015; Lurgi et al., 2019). The underlying
argument was that human disturbance would create a more
uniform environment in the urban sites (resulting in a lower
modularity and smaller niche partitioning) compared to the
pristine sites. We postulated that a greater number of modular
components (greater niche partitioning) in the pristine sites
could reveal different life strategies across species. Our network
analyses for the nirS sequences showed that the modularity
for the denitrifying communities in the urban sites was
considerably lower compared to the pristine sites. In the urban
sites the majority of the denitrifying OTUs were clumped
and linked, suggesting a high similarity in the environmental
responses between these OTUs (and their lifestyles). These
results suggest that most of the denitrifying species in the
urban sites are selected by environmental parameters (high
anthropogenic pressures such as nutrient loadings). Overall our
data show that the anthropogenically impacted sites, based on
the nirS network topology, resulted in a more homogeneous
denitrifying community.
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Qu et al. (2017) showed that anthropogenic inputs resulted
in a decrease of functional genes in general compared to a
more pristine site, suggesting high functional gene redundancy
in more urban areas. In our data set, for the functional
nirS gene we suggest a functional redundancy in the life
strategies of the denitrifying organisms in the urban sites.
An open question, however, in this dataset and for microbial
ecology in general is why there remains such a high alpha
diversity within the same function? The pristine sites, with a
greater environmental complexity, structured the denitrifying
community in a more diverse manner (a higher degree of
niche partitioning). The pristine sites will be subjected to
natural environmental fluctuations, which could lead to the
coexistence of denitrifying species with contrasting nutrient
affinities (Martens-Habbena et al., 2009) and denitrifying species
with different life styles which can thrive under a range of nutrient
concentrations (Bowen et al., 2011). In addition, we suggest that
in the pristine sites both environment and biotic interactions are
more important for the denitrifying network structure, whereas
in the urban sites the continuous input of nutrients shaped the
nirS denitrifying community to a more uniform structure.

The nrfA network topology did not reveal strong differences
in the modularities compared to the nirS networks. The larger
alpha diversity for the nrfA gene might be at the base of the
similarities between the different modularities. The fact that the
nirS gene provide us with insights into N removal (Francis et al.,
2013; Zheng et al., 2015), along with the distinctive differences in
the modularities, the number of keystone OTUs in the microbial
networks between the urban and pristine sites suggest that the
nirS gene could be a likely gene candidate to understand the
mechanisms by which these denitrifying communities form and
respond to anthropogenic pressures.

Regression Models
Our third hypothesis suggested that the linear regression models
from Kessler et al. (2018) would improve when we integrate
bacterial biomass and functional N gene copy data. Kessler
et al. (2018) investigated the key controls over the relative rates
of N removal via denitrification and DNRA presented in this
study. The authors found that when nitrate was limiting, when
sediments were highly reducing and when large concentrations
of dissolved Fe2+ were present, estuaries would be driven toward
being N recycling rather than N removing. When we integrated
molecular data including 16S, nirS, and nrfA abundances and
their ratios with the best predictor variables from Kessler et al.
(2018), we noted slight improvements in the regression models.
However, if we use an a priori factor [in this case the lowest
BIC factor from the model runs by Kessler et al. (2018)], we did
not see any improvements compared to the models from Kessler
et al. (2018), Zhang et al. (2018) also used multiple regression
models to predict benthic N-loss activities with environmental
factors and functional microbial gene-based data and reported
that the gene abundances from their study were poorly correlated
with N losses. Overall they found that chlorophyll a in the
bottom waters and sediment organic C content were still the best
predictors. Zhang et al. (2018), however, noted that the ratios
of different functional genes increased the predictive powers of
the regression models for total N loss. Again, in our study, we

did not see an overall improvement when we added the ratios
of different functional genes. Attard et al. (2011) also noted that
denitrification rates in particular and N-cycling rates in general
(Graham et al., 2014) were primarily controlled by abiotic soil
parameters and that microbial community structure or functional
composition did not improve the predictive capacities of their
models. Integrating microbial trait data into (ecosystem) models
remains a challenge (Treseder et al., 2012; Zhang et al., 2018),
yet a number of studies highlight promising results in predicting
elemental fluxes when microbial traits, including microbial
biomass, were explicitly considered (Graham et al., 2016; Louca
et al., 2016; Pommier et al., 2018; Yu and Zhuang, 2019). The
latter encourage further research to investigate how the added
value of microbial data may increase our ability to predict
ecosystem processes. Our data suggest that the microbiomes,
which are shaped by their environments in a predictable way,
play a key role on the controls of the individual N removal rates
in the 11 estuaries. It is clear that further research is required to
explore how the bacterial community composition can be used in
providing qualitative and quantitative information on the fate of
nitrogen in estuaries.
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