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Oleuropein inhibits invasion of squamous 
cell carcinoma of the head and neck 
through TGF‑β1 signaling pathway
Ting Xu* and Xuan Liu 

Abstract 

Background:  Squamous cell carcinoma of the head and neck (SCCHN) is globally the sixth most common cancer. 
TGF-β1 is a key regulator of cell proliferation and differentiation, and it induces the epithelial-mesenchymal transition 
(EMT) by activating Smad2 signaling in SCCHN cells. Previous studies have revealed that oleuropein (OL) can inhibit 
the EMT alterations and migration of cancer cells. The aim of this study was to examine the involvement of TGF-β1 
signaling pathway in SCCHN and the effect of OL on it.

Methods:  Through in vitro experiments at cellular level and in vivo evaluation in mouse xenograft tumor model, with 
morphological and Western blotting assays, we examined the effects of OL on TGF-β1-mediated signaling pathway in 
Tu686, CAL-27 and 686LN-M2 tumor cell lines.

Results:  We found that OL reversed the TGF-β1-induced EMT, and changed the morphology of cells and the expres-
sion levels of epithelial and interstitial markers. Wound-healing and transwell invasion assays indicated that OL 
reversed the TGF-β1-promoted cell migration and invasion dramatically. The effects of OL were also verified in xeno-
graft tumor model of mice, and the findings were identical to the in vitro assays.

Conclusion:  This study demonstrated that OL inhibits the growth and metastasis of SCCHN by interfering with the 
TGF-β1 signaling pathway, and the findings are beneficial for the development of prevention and treatment strategy 
of SCCHN. Due to the low toxicity and less side effects, OL may be of potential value in the inhibition of metastasis of 
SCCHN and improve survival.
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Background
Squamous cell carcinoma of the head and neck (SCCHN) 
is the sixth most common cancer worldwide [1]. Appro-
priately, 550, 000 cases were newly diagnosed each year, 
and 300, 000 deaths were linked to SCCHN. Metasta-
sis is a leading cause to the poor prognosis of the dis-
ease [2]. The underlying mechanisms of metastasis is a 

complicated process, but epithelial-mesenchymal transi-
tion (EMT) was deemed to be one of the main pathways 
leading to tumor invasion and metastasis [3]. EMT is a 
biological process with regard to cell transformation 
from epithelial state to interstitial state and acquisition 
of migration and invasion. Previous studies showed that 
EMT was associated with self-renewal traits, and the 
promotion of tumor initiation, apoptosis and therapeutic 
resistance [4]. Moreover, EMT is related to the activation 
of Smad2/3-dependent signaling pathway mediated by 
TGF-β1 [5].
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TGF-β1 is a key regulator of cell proliferation and 
differentiation, and belongs to the differentiation β 
superfamily cytokines. It can not only activate the phe-
notype transformation of normal fibroblasts, but also 
stimulates mesenchymal original cells [6]. Furthermore, 
TGF-β1-induced EMT is mainly mediated by either 
Smad-dependent or Smad-independent pathways. It 
was reported that TGF-β1 induced the EMT process by 
activating Smad2 signal in SCCHN cell line Tu686 [7]. 
Thus, the activation of anti-EMT pathway, or the inhi-
bition of TGF-β1 signaling, was considered to provide 
a potentially novel target for the treatment of SCCHN.

Oleuropein (OL), a natural antioxidant molecule 
extracted from olive leaves, has been reported to be 
associated with the beneficial effects of the plant on 
human [8–10]. Studies revealed that OL can suppress 
the EMT alterations of peritoneal cells during peri-
toneal dialysis, so as to alleviate the toxicity reaction 
of dialysis [11]. In addition, it was reported that OL 
inhibits the migration through suppression of EMT in 
breast cancer cells [12], and it also inhibits the prolif-
eration of colorectal cancer cell through downregula-
tion of HIF-1α signal [13]. HIF-1α-regulated TGF-β1 
can induce EMT to promote the progression of breast 
cancer [14], and induction of EMT via Wnt/β-catenin 
signaling has been shown to be driven by HIF-1α in 
prostate and hepatocellular carcinoma [15, 16]. In this 
study, we demonstrated that OL inhibits the growth 
and metastasis of SCCHN by interfering with the TGF-
β1 signaling pathway. These results will play a guiding 
role in the prevention and treatment of SCCHN.

 Materials and methods
Cell culture and treatment
The human SCCHN cell lines, Tu686, 686LN-M2 (M2, 
the corresponding high metastasis potential cell line of 
Tu686) and CAL-27 (Shanghai NuoChen Biotechnol-
ogy Co., Ltd), were cultured in 10% fetal bovine serum 
(FBS) and Dulbecco’s Modified Eagle Medium (DMEM) 
F12 medium (Gibco, Grand Island, NY, USA), 100  IU/
mL penicillin and 100  IU/mL streptomycin at 37 ˚C in 
a humidified atmosphere with 5% CO2. The appropriate 
treatment concentration of TGF-β1 (recombinant human 
TGF-β1, Peprotech, USA) was 10  ng/mL according to 
previous study [7]. OL (CAS no. 10596–60-1, molecular 
weight 540.514, Shanghai Yeyuan Biology) powder, was 
resuspended by precooled sterile PBS, with a final con-
centration of 1  mg/mL (stored at -20 ˚C), and diluted 
with PBS and the appropriate concentration was selected 
by cell viability assay. The morphological changes of cells 
were observed under an inverted fluorescence micro-
scope (Leica DMI3000B, German).

MTT assay
Cell viability was detected with the 3-(4,5-dimethyl-thi-
azol-2-yl)-2,5 diphenyltetrazolium (MTT) assay. Tu686 
and CAL-27 cells (1 × 104 cells per well) were cultured in 
96-well plates. The cells were adhered to the wall on the 
next day and were starved in serum-free medium over-
night. Then the cells were exposed to preset concentra-
tions of OL. After another 24 h, 150 μL of MTT (2 μg/
mL; Sigma-Aldrich) was added for incubation at 37 ˚C. 
Formazan crystals were dissolved in DMSO and the 
absorbance was measured at 570  nm using a Beckman 
Coulter microplate reader.

Apoptosis assay
Cells were inoculated into six-well plates in a density of 
1 × 105 cells/well. The next day, the medium was replaced 
after 5  h of TGF-β1 (10  ng/mL) and/or OL (25  μg/mL) 
treatment. After another 24  h, the cells were collected, 
centrifuged at 200  g and resuspended. Cells were then 
stained by Annexin V-FITC according to the protocol 
of Annexin V-PI apoptosis detection kit (Kaiji Biology, 
Jiangsu). Twenty min later, propid iumiodide (PI) was 
added for another 5 min. Then the cells were analyzed by 
flow cytometry.

Scratch and invasion assay
Tu686 and CAL-27 cells were seeded onto each well of 
the six-well plates (2 × 105 cells per well) and allowed 
to grow to 90% confluence, then they were placed into 
serum-free medium for 24  h. The cells were scratched 
with a 200-µL pipette tip and the non-adherent cells 
were washed off with medium. Cells were then treated 
with PBS, OL (25 μg/mL), TGF-β1 (10 ng/mL), and TGF-
β1 (10 ng/mL) + OL (25 μg/mL). Migration of wounded 
cells was observed and photographed at 0 and 24 h with 
a microscope previously described. Three different areas 
in each assay were chosen to measure the distance of 
migrating cells. For invasion assay, 3 × 104 Tu686 or 
CAL-27 cells in 100 µL of serum-free medium, treated 
with 10  ng/mL TGF-β1, 25  μg/mL OL, or with 10  ng/
mL TGF-βl + 25  μg/mL OL, were seeded in the upper 
chamber of Matrigel coated inserts (8 µm pores; BD Bio-
science). Following incubation for 24  h, the cells which 
penetrated the filters were stained with gentian violet. 
The number of invasive cells was determined by count-
ing all cells attached to the bottom of the inserts under an 
inverted microscope at × 100 magnification. Both assays 
were carried out in triplicate.

Western blotting
The assay was performed as previously described [17]. 
Briefly, a total of 50  µg proteins were extracted from 
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the cells or tissues of each group. After electrophoresis, 
transmembrane and blocking, the blotted membranes 
were incubated with anti-E-cadherin (ab40772, abcam, 
1:500), anti-Vimentin (ab92547, abcam, 1:500), anti-
Snail (ab216347, abcam, 1:1,000), anti-Smad2 (ab280888, 
abcam, 1:1000), anti-p-Smad2 (3140, Cell Signaling, 
1:500), anti-Smad4 (ab40759, abcam, 1:1000), anti-
MMP9 (3852, Cell Signaling, 1:1000), anti-N-Cadherin 
(ab76011, abcam, 1:1000), anti-HIF-1α (ab1, abcam, 
1:1000), anti-AKT (9271, Cell Signaling, 1:500), anti-p-
AKT (9271, Cell Signaling, 1:500), anti-PHD2 (3293, Cell 
Signaling, 1:1000) antibodies at 4 ˚C overnight. Subse-
quent to being washed, the membranes were incubated 
with HRP-labeled secondary antibodies (Boster Biologi-
cal Engineering, Wuhan) for 1  h at room temperature. 
Bands were visualized by employing the BeyoECL Plus 
Detection system (Beyotime Institute of Biotechnology, 
Jiangsu, China). The intensity of protein fragments was 
quantified with Quantity One software (4.5.0 Basic; Bio-
Rad, Hercules, CA, USA) and represented as the densi-
tometric ratio of the targeted proteins to β-actin. All cell 
protein lysates were assayed in triplicate.

Xenograft tumor experiments
Male, 5 to 7-week-old BALB/c nude mice were pur-
chased from Changzhou Cavens Animal Experiment 
Company and raised in SPF animal experiment center. 
Ten mice were divided into control and OL treatment 
groups. Preparation of cells for transplantation injec-
tion: the M2 cells for control group and OL group were 
treated with PBS and 1200  µg/mL of OL, respectively, 
after incubation for 24  h, the cells were collected. On 
the day of inoculation, tumor cells at 70%-80% conflu-
ence were trypsinized and resuspended in FBS-free cul-
ture medium. A volume of 100 µl single cell suspension 
was injected into the subcutaneous area of mice, and 
whether there were colliculus and redness in the injec-
tion area was observed. After inoculation, they were 
kept in SPF animal room. The lengths and widths of the 
tumors were measured with vernier calipers, and tumor 
volumes were calculated using the following formula: 
tumor volume = length × width2 × 0.5. Two weeks later, 
the mice were sacrificed and the tissues were obtained for 
Western blotting assay. The use of animals in the present 
study was complied with the Guide for the Care and Use 
of Laboratory Animals. This study was approved by the 
Ethics Committee of Wuxi Second People’s Hospital. The 
approval number is (2021) Ethical Review No. (Y-13). All 
methods were reported in accordance with the ARRIVE 
guidelines. The tissue sections were viewed at × 100 
magnification, and images were captured with a digital 
camera.

Statistical analysis
The statistical analysis software package (SPSS 11.5, Inc., 
Chicago, IL, USA) was employed for data analysis. Data 
were expressed as “mean ± SEM”. The Student’s t-test and 
Mann–Whitney U test were used for the statistical analy-
sis of data. Difference at P < 0.05 was considered to indi-
cate a statistical significance.

Results
Selection of suitable dose of OL by MTT assay
The intervention concentration of OL was set to 0, 2.5, 5, 
10, 25, 50, 75, 100, 125, 150, and 200 µg/mL, respectively. 
By analyzing the cell proliferation activity, we found that 
it had no side effects on the proliferation of the Tu686 
cells under the concentration of 25  µg/mL (Fig.  1A; 
n = 6–9 for each group). But OL given at higher doses 
from 50 to 200 µg/mL had comparable inhibitory effect 
on cell proliferation when compared with the control 
(0 µg/mL). Thus, OL at a concentration of 25 µg/mL was 
selected as the using intervention dose in  vitro. Similar 
effects of OL were found in cell proliferation experiment 
with another human SCCHN cell line CAL-27 (Fig.  1B; 
n = 6–9 for each group).

Fig. 1  Effect of OL on proliferation of Tu686 and CAL-27 cells. A MTT 
assay was performed in Tu686 cells to determine non-toxic dose 
range. Cells untreated or treated with increasing doses of OL (range 
from 2.5-200 µg/mL) for 24 h. Cell proliferation was expressed as fold 
change with respect to untreated control cells (0 µg/mL). *p <0.05 vs. 
untreated cells. B MTT assay with CAL-27 cells using increasing doses 
of OL (range from 2.5-200 µg/mL) for 24 h. Cell proliferation was 
expressed as fold change to untreated cells. *p <0.05 vs. untreated 
cells
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OL promotes apoptosis of Tu686 and CAL‑27 cells
The number of Q2 + Q3 cells was obtained from 
Apoptosis FACS data and utilized for the evaluation 

Fig. 2  Effect of OL on apoptosis of Tu686 and CAL-27 cells. A Flow 
cytometry apoptosis diagrams for different treatment groups with 
Tu686 (left lane) and CAL-27 (right lane) cells. The dose of 25 µg/mL 
of OL was selected for flow cytometry. The cells treated with PBS, 
25 µg/mL OL, 10 ng/mL TGF-β1, and 10 ng/mL TGF-β1 + 25 µg/
mL OL, were named control, OL, TGF-β1, and TGF-β1 + OL groups, 
respectively. B Comparison column chart of the apoptosis ratio of 
the four groups with Tu686 cells. Total apoptosis ratio (including early 
and late) was detected for each group. *p <0.05 vs. control or TGF-β1 
group (tests were repeated for 3 times)

Fig. 3  OL reversed the EMT and migration of Tu686 and CAL-27 cells 
induced by TGF-β1. A Morphological changes shown in OL and/or 
TGF-β1-treated Tu686 (up lane) and CAL-27 (down lane) cells. The 
cells were treated with PBS, 25 µg/mL OL, 10 ng/mL TGF-β1, and 10 
ng/mL TGF-β1 + 25 µg/mL OL for 72 h, respectively. EMT changes 
were observed under microscope, ×100. B-C Wound-healing scratch 
assay photos and the statistical result for each group of Tu686 cells 
under the different treatments (at 24 h). The column chart shows the 
cell migration of each group of Tu686 cells at 24 h after treatment. *p 
<0.05 vs. control, and **p <0.05 vs. TGF-β1 group (tests were repeated 
for 3 times)
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of Tu686 cell apoptosis. After TGF-β1 intervention, 
the number of apoptotic cells decreased slightly with-
out statistically significant difference compared with 
the control group. After adding both TGF-β1 and OL 
for intervention, the apoptosis ratio of Tu686 cells 
increased significantly when compared with that of 
the control and TGF-β1 alone group (P < 0.05), while 
OL alone had no significant influence on apoptosis 
ratio (Fig. 2A (left lane) and 2B; n = 6 for each group). 
Moreover, intervention with OL and TGF-β1 on CAL-
27 cells for apoptosis assay was also conducted, and 
the results showed similar trends with the Tu686 cells 

but without obvious significance (Fig.  2A, down lane; 
n = 3 for each group).

OL reverses TGF‑β1‑induced EMT of Tu686 and CAL‑27 cells
It was observed under the microscope that after treat-
ment with 25  µg/mL of OL alone there was no obvi-
ous morphological change, but after the addition of 
10  ng/mL of TGF-β1, both the Tu686 and CAL-27 
cells showed obvious changes of EMT. The connec-
tion between the epithelium was loose and the anten-
nae were extended, showing characteristic changes 
of EMT [18]. Nevertheless, after the addition of OL 

Fig. 4  OL reversed the migration and invasion of Tu686 and CAL-27 cells induced by TGF-β1. A Wound-healing scratch assay photos were taken for 
each group of CAL-27 cells under the different treatments (at 0 h and 24 h). B Transwell assay photos were taken for each group of Tu686 (up lane) 
and CAL-27 (down lane) cells at 24 h after treatment. C Statistical column chart shows the cell invasive ability of each treatment group of Tu686 cells 
at 24 h after treatment. *p <0.05 vs. control, and **p <0.05 vs. TGF-β1 group (tests were repeated for 3 times)
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following TGF-β1, the antennae of stromal like cells 
became shorter and the cell arrangement was closer 
than that of the cells treated with TGF-β1 alone 
(Fig. 3A).

OL attenuates the enhanced migration and invasion 
of Tu686 and CAL‑27 cells induced by TGF‑β1
As shown in Fig. 3B-C (n = 3–6 for each group), stimu-
lation with a dose of 10 ng/mL of TGF-β1 could greatly 
enhance the migration ability of Tu686 cells. However, 
after treatment with OL (25  µg/mL) for 24  h, it was 
observed that the enhancement of migration induced 
by TGF-β1 was significantly inhibited. In addition, 
similar phenomena could be observed in CAL-27 cell 
line (Fig.  4A). Results of the invasion ability assays also 
showed that TGF-β1 stimulation enhanced the invasion 
behavior of Tu686 and CAL-27 cells, which was attenu-
ated by OL treatment (Fig.  4B-C; n = 3–6 for Tu686 
groups).

OL affects the expression of EMT‑related proteins
After treatment with TGF-β1, the expression level of 
E-cadherin was significantly downregulated, and the 
levels of Vimentin, Snail and MMP9 were significantly 
increased. After the treatment with both TGF-β1 and 
OL, the decreased level of E-cadherin was significantly 

reversed, while the expression levels of Snail and MMP9 
were significantly decreased compared with the TGF-β1 
alone group (Fig. 5A-B).

OL affects the classical TGF‑β1‑Smad2 and HIF‑1α‑related 
signaling pathways stimulated by TGF‑β1
The phosphorylation level of Smad2 was significantly 
increased after the intervention of TGF-β1 (10  ng/
mL), while this increase was significantly inhibited by 
the treatment of OL (25 µg/mL) (Fig. 5C). After adding 
OL (25  µg/mL), the increased level of HIF-1α induced 
by TGF-β1 (10  ng/mL) was significantly attenuated 
(Fig. 5D). The phosphorylation level of AKT was signifi-
cantly increased after the intervention of TGF-β1, and 
it was significantly inhibited after the addition of OL. 
Moreover, the expression level of PDH2 significantly 
decreased after treatment with TGF-β1, while OL treat-
ment partly reversed it (Fig. 5E).

Effect observation of OL and TGF‑β1 on Tu686 and CAL‑27 
cell lines
Representative images showing the effects of treat-
ment with OL alone on the EMT-related proteins, the 
classical TGF-β1-Smad2 signaling protein, and HIF-
1α-related signaling pathways in Tu686 cells, were pre-
sented in Fig.  6 (left part). In addition, representative 

Fig. 5  OL changed the levels of EMT-associated proteins and signaling pathways involved in TGF-β1-mediated invasion and metastasis in Tu686 
cells. A Western blotting assay results about the E-cadherin and Vimentin expression in different groups (control, TGF-β1 and TGF-β1 + OL groups). 
B Western blotting results of Snail and MMP9 in different groups. Western blotting results showing that C TGF-β1 and OL affected the classical 
Smad2 signaling pathway, D HIF-1α expression, and E pVHL-dependent pathway and PI3K/AKT signaling proteins
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images showing the influences of OL and TGF-β1 on 
the EMT-related proteins, the TGF-β1-Smad2 sign-
aling, and the HIF-1α-related signaling pathways in 
CAL-27 cell line, were presented in Fig. 6 (right part). 
As shown here, OL alone had no obvious influence on 
the level of the detected proteins, and similar effects of 
OL and TGF-β1 treatment on these EMT-related and 

TGF-β1-associated signaling proteins in CAL-27 cells 
were also observed.

OL inhibits the growth of SCCHN tumor in vivo
The xenograft tumor-bearing mice injected with high 
metastasis cell line M2 cells, which were treated with 
PBS or OL (1200  µg/mL), were used for tumor growth 

Fig. 6  Effects of OL and TGF-β1 on EMT-related and TGF-β1-associated signaling proteins in Tu686 and CAL-27 cells. Left part, with representative 
result showing the influence of OL alone on the EMT-related and TGF-β1-associated signaling proteins in Tu686 cells. Right part, representative 
images showing influence of OL and TGF-β1 treatment on the EMT and TGF-β1 signaling-associated pathway proteins in CAL-27 cells
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observation for 14  days after transplantation. We found 
that the volume of xenograft tumors in the OL treatment 
group was significantly smaller when compared with that 
of the control group (Fig. 7A-B).

OL alters the expression of EMT and metastasis‑associated 
proteins in xenograft tumor model
The expression levels of E-cadherin and PHD2 were sig-
nificantly increased in the xenograft tumor tissues from 
mice injected with M2 cells and treated with OL, when 
compared with the results from the control group. The 
expression levels of N-cadherin, Vimentin, Snail, MMP9 
and HIF-1α were significantly decreased in the xenograft 
tumor tissues from mouse model injected with M2 cells 
treated with OL, when compared with those of the con-
trol group (Fig. 8A-H).

Discussion
Previous studies have shown that OL demonstrated anti-
cancer effects in various types of tumors [19]. The prog-
nosis is commonly poor when metastasis occurred in 
SCCHN patients. For those elder or advanced patients 
with metastasis, who have missed appropriate oppor-
tunity for surgery, radiotherapy and chemotherapy are 
deemed to be the most optimal treatment approach. 
Therefore, it is of particular importance to develop novel 
agents with favorable anticancer effect and tolerable 
toxicity and side effects. As a natural compound, OL 
shows low toxicity to human body, thus the prognosis of 
patients may be significantly improved when it could be 
applied for adjuvant chemotherapy in the future. How-
ever, the effect of OL on SCCHN has not been reported 
yet. In this study, a suitable non-toxic dose range of OL 
was screened through MTT test. The results were similar 

to the peritoneal dialysis test conducted by Lupinac-
cis et al. [11]. After treatment with 25 µg/mL of OL, the 
apoptosis rate of Tu686 cells was significantly increased, 
which indicated that OL may effectively induce apopto-
sis of SCCHN cells in vitro, and this finding is consistent 
with the antitumor effect of OL in other tumors.

Inhibition of metastasis is considered to be in the top 
priority to improve the prognosis of SCCHN. TGF-β1 can 
induce EMT alterations in Tu686 cells and promote cell 
invasion in  vitro [7]. When OL intervention was added 
in this study, we observed that the change of morphology 
of Tu686 cells was reversed, with morphological changes 
similar to MET. Morphologically, cells in TGF-β1 + OL 
group were similar with that of the control group, and 
this finding was consistent with the report of Lupinaccis 
et al. [11]. This indicates that the effect of OL on reversing 
EMT is stable either in the process of promoting fibrosis 
or tumor metastasis. Scratch and Transwell assays veri-
fied that OL could reverse TGF-β1-induced migration 
and invasion of Tu686 cells. When the EMT process is 
activated, the expression of epithelial cell marker protein 
E-cadherin decreases, whereas the expression of intersti-
tial cell marker proteins such as N-cadherin and Vimen-
tin increases [20]. Many transcription factors, especially 
the Snail family, mediate the process of EMT. MMP9, one 
of the matrix metalloproteinases and most commonly 
involved in the EMT of SCCHN, can promote tumor 
invasion and metastasis by degrading extracellular matrix 
(ECM). At present, several studies were conducted about 
the inhibitory effects on tumor invasion and metastasis of 
OL or its related compounds in breast cancer, colon can-
cer and melanoma [12, 21, 22]. Among them, OL inhib-
its invasion by regulating EMT in MCF-7 cells of breast 
cancer. Our study showed that when OL was added, 

Fig. 7  OL inhibited the growth of SCCHN xenograft tumor. M2 cells were treated with PBS (control group) and 1200 µg/mL OL (OL group) for 24 
h, then the cells were subcutaneously injected into the submaxillary area of 7-week-old male nude mice (n = 5 for each group). A The xenograft 
tumor volumes were measured every two days and the growth curve was compiled (*p <0.05, **p <0.01 vs. control group). B The mice were 
sacrificed on the fourteenth day after transplantation, and the photos of the isolated xenograft tumors of the twogroups were taken
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Fig. 8  OL altered expression of EMT-associated proteins and HIF-1α pathway proteins in xenograft tumor. M2 cells were subcutaneously injected 
into submaxillary area of 7-week-old male nude mice (n = 5). After two weeks, the mice were sacrificed and the tumor tissue proteins were 
extracted for E-cadherin, N-cadherin, Vimentin, Snail, MMP9, HIF-1α and PHD2 analysis. A Representative Western blotting results of tumor tissue 
from 10 mice (n = 5 for each group) for the expression levels of the target proteins. The column diagrams show the expression levels of E-cadherin 
B, N-cadherin C, Vimentin D, Snail E, MMP9 F, HIF-1α G and PHD2 H of the two groups (**p <0.01 vs. control)
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TGF-β1-induced changes of E-cadherin, Vimentin, Snail 
and MMP-9 were partially reversed, which further con-
firmed that OL could inhibit the invasion and migration 
of Tu686 cells in vitro.

We further detected the classical signal pathway 
involved in TGF-β1-induced EMT, Smad2/3 signal path-
way. The phosphorylation level of Smad2 decreased sig-
nificantly in TGF-β1 + OL group when compared with 
that of the TGF-β1 group. A previous study showed that 
OL inhibits the proliferation of colorectal cancer cells 
through downregulation of HIF-1α [13]. Our previous 
study also revealed that HIF-1α played an important 
regulatory role in OL-enhanced radiosensitivity of naso-
pharyngeal carcinoma [23]. HIF-1α, the principal regula-
tor of hypoxia, mediates a variety of biological processes 
in tumor cells, including EMT [24]. In this study, TGF-β1 
significantly increased HIF-1α expression in Tu686 cells, 
whereas the HIF-1α level was decreased by OL. There are 
multiple signaling pathways involved in HIF-1α regula-
tion, including oxygen-dependent and oxygen-independ-
ent pathways. In this study, we detected the activation 
levels of PHD2 and AKT/pAKT which are involved in 
pVHL-dependent pathway and growth factor signaling 
pathway, respectively. The results showed that TGF-β1 
significantly decreased PHD2 expression and OL par-
tially reversed it. As we know, PHDs is an upstream regu-
lator of HIF-1α, and its expression can be downregulated 
by hypoxia and consequently the degradation of HIF-1α 
is reduced [25]. In this study, TGF-β1 intervention alone 
rather than hypoxic environment can also affect the 
expression of PHD2, and this result was similar to a study 

reported in 2013, which suggests that TGF-β1 decreases 
PHD2 expression via a Smad-dependent signaling path-
way, thereby leading to HIF-1α accumulation and EMT 
in renal tubular cells [26]. Those demonstrated that PHDs 
can act through oxygen-independent pathway. Mean-
while, OL is able to reverse TGF-β1/PHD2/HIF-1α sign-
aling pathway. PI3K/AKT signal is involved in the growth 
factor signaling pathways. We found that TGF-β1 sig-
nificantly increased the phosphorylation of AKT, which 
was effectively inhibited by OL. These findings suggest 
that OL can regulate the process of EMT by regulating 
the expression of HIF-1α. There are some complicated 
cross-talks between TGF-β1 signal, HIF-1α signal and 
PI3K/AKT signal, which need further investigation. The 
schematic diagram of OL intervention in TGF-β1 signal-
ing pathway is shown in Fig. 9.

In order to further clarify the effect of OL on SCCHN, 
subcutaneous xenograft model of SCCHN cancer cells 
in nude mice was established. Advanced metastatic 
SCCHN cell line M2 was applied in this study. The 
tumor volume in OL group (mice injected with cells 
pretreated with OL) was smaller than that of the con-
trol group, indicating that OL has significant antitumor 
effect in vivo. In the verification of metastatic capacity 
of tumor cells, proteins in tumor tissues were extracted 
to detect the expression of EMT-related proteins. OL 
can significantly enhance the expression of epithe-
lial cell marker E-cadherin, and reduce the expres-
sion of interstitial cell markers Vimentin, N-cadherin, 
and EMT-related transcription factor snail, indicat-
ing that OL effectively intervened the process of EMT 

Fig. 9  Schematic diagram showing the signaling pathways involved in the inhibitory effect of OL on EMT of SCCHN
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in  vivo. The change of MMP9 suggests that OL could 
inhibit the invasion and metastasis of SCCHN tumor 
cells. In addition, we also detected the levels of HIF-1α 
and PHD2 in tissues of these two groups. OL signifi-
cantly decreased the level of HIF-1α, but increased 
the expression of PHD2, showing the expression level 
of HIF-1α was negatively correlated with PHD2. These 
findings show that HIF-1α signaling may be involved in 
the inhibitory effect of OL on tumor metastasis in vivo.

In conclusion, this study preliminarily clarified that OL 
can inhibit the process of EMT, invasion and metastasis of 
SCCHN cells in vitro and in vivo. The findings of this study 
provide a basis for the application of the natural compound 
OL in the treatment of SCCHN in the future. The compre-
hensive mechanisms involved need to be further investigated.
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