
1Scientific RepoRts | 6:24245 | DOI: 10.1038/srep24245

www.nature.com/scientificreports

Drug target identification using 
network analysis: Taking active 
components in Sini decoction as  
an example
Si Chen1, Hailong Jiang1, Yan Cao1, Yun Wang1, Ziheng Hu2, Zhenyu Zhu1 & Yifeng Chai1

Identifying the molecular targets for the beneficial effects of active small-molecule compounds 
simultaneously is an important and currently unmet challenge. In this study, we firstly proposed 
network analysis by integrating data from network pharmacology and metabolomics to identify targets 
of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 
potential active components in SND against heart failure were predicted by serum pharmacochemistry, 
text mining and similarity match. Then, we employed network pharmacology including text mining and 
molecular docking to identify the potential targets of these components. The key enriched processes, 
pathways and related diseases of these target proteins were analyzed by STRING database. At last, 
network analysis was conducted to identify most possible targets of components in SND. Among the 
25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally 
validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine 
and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells 
and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in 
target identification of a bioactive compound.

Bioactive compounds exert their biological activities through direct physical binding to one or more cellu-
lar proteins1. The detection of drug-target interactions is therefore necessary for the characterization of com-
pound mechanism of action2. There are two fundamentally different approaches to identify molecular targets 
of bioactive molecules: direct and indirect3. The direct approach utilizes affinity chromatography often with 
compound-immobilized beads. Many compounds cannot be modified without loss of binding specificity or affin-
ity4. Moreover, because of above characteristics, this approach is only suitable to identify targets of one drug 
once and cannot afford target identification of many compounds simultaneously, such as active components in 
herbs. With the indirect approach, such as system biology approaches, including proteomics, transcriptomics 
and metabolomics, are the major tools for target identification and have an unbiased attitude towards all active 
compounds5. A proteomic or transcriptomics approach for identification of binding proteins for a given small 
molecule or compounds in herbs involves comparison of the protein expression profiles for a given cell or tissue 
in the presence or absence of the given molecule(s). These two methods have been proved successful in target 
identification of both many compounds and one drug6–9. Whereas metabolomics has been mainly developed to 
identify drug(s)-affected pathways10,11, the “readout”, such as proteins in the pathway, is often far downstream 
from the drug targets. Therefore using metabolomics for target identification run into the bottleneck.

As bioactive molecules exert their effects through direct physical association with one or more cellular pro-
teins1, these target proteins will then act on related proteins, above proteins eventually affect the content of related 
metabolites. With the advent of the era of big data, now there are large amounts of data about known and pre-
dicted protein interactions12. Once we use network pharmacology to predict potential targets of active compo-
nents in Traditional Chinese Medicine (TCM) formula13, a component-target protein-related protein-metabolite 
network can be constructed with the combination of network pharmacology and metabolomics. As a combi-
nation of approaches is most likely to bear fruit, the combination of network pharmacology and metabolomics 
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called network analysis could increase the degree of accuracy of target identification of network pharmacology. 
In addition, metabolomics and network pharmacology employed global profiling methods for the comprehensive 
analysis of altered metabolites and target proteins, providing insights into the global state of entire organisms, 
which are well coincident with the integrity and systemic feature of TCM formula. Thus apart from target identi-
fication of a bioactive compound, this network analysis method is more beneficial in identifying unknown targets 
of active compounds in TCM formula simultaneously in an unbiased fashion.

Here, we introduce a new, potentially widely applicable and accurate drug target identification strategy based 
on network analysis to identify the interactions of active components in TCM formula and target proteins. Our 
previous studies have confirmed that SND, composed of three medicinal plants: Aconitum carmichaelii, Zingiber 
officinale and Glycyrrhiza uralensis, can treat heart failure14. Metabolomics researches have also been conducted 
to demonstrate its effectiveness14,15. Chemome16, serum pharmacochemistry16 and xenobiotic metabolome17 of 
SND were also characterized. Thus in this study, we took SND as an example to test the potential of network anal-
ysis in target identification. Active components in SND against heart failure were identified by serum pharma-
cochemistry, text mining and similarity match. Their potential targets were then identified by network analysis. 
At last, the most possible target was validated experimentally to demonstrate the potential of network analysis. 
Above results will be helpful to investigate the action mechanisms of SND and promote the development of 
Chinese Drug modernization. More importantly, network analysis will not only conferred a unique advantage 
to identify targets of active compounds in TCM formula simultaneously, but also provided a new method for the 
target identification of a bioactive compound. Detailed procedures can be seen in Fig. 1.

Results
The rationality of components in SND in absorption and metabolism. Results considering the 
known metabolism of components in SND have been concluded in Supplementary Table S1. Total flavones 
(H) and total saponins (Z) were major active components in Glycyrrhiza uralensis. From Table S1, we can con-
clude that many flavones and saponins in Glycyrrhiza uralensis were known CYP450 inhibitor, while alkaloids 
in Aconitum carmichaelii are mostly not. Conclusions can be made that Glycyrrhiza uralensis can inhibit the 
metabolism of alkaloids and improve their bioavailability. Researchers also demonstrated that Glycyrrhiza 
uralensis can improve bioavailability of diester diterpenoid alkaloids in Aconitum carmichaelli, which coincided 
with results above. And researchers found that Aconitum carmichaelli can also improve the bioavailability of gly-
cyrrhizic acid which is a major component in Glycyrrhiza uralensis18, so we can conclude that the combination of 
Aconitum carmichaelli and Glycyrrhiza uralensis can enhance efficacy of each medicinal materials. In addition, 

Figure 1. The flowchart of network analysis approach. 
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Zingiber officinale could promote the elimination of diester diterpenoid alkaloids and enhance the absorption of 
monoester diterpenoid alkaloids19. As diester alkaloids are the chief toxic components in Aconitum carmichaelli. 
The results might be helpful in explaining the mechanism of combination of Aconitum carmichaelli−  Zingiber 
officinale to decrease toxicity and increase efficacy. Researchers also proved that compared with Aconitum 
Carmichaeli, the bioavailability of three monoester-diterpenoid alkaloids increased in SND20. And compared 
with Aconitum Carmichaeli, the bioavailability of hypaconitine,i.e. diester diterpenoid alkaloids decreased in 
SND. The SND formula can decrease toxicity and increase efficacy. The information above demonstrated the 
rationality of components of SND in Absorption and metabolism.

Compound families and chemical space properties of active components in SND. To give an 
overview of the compound families in SND, chemical clustering was conducted (Supplementary Fig. S1A). The 
areas of overlap may show that active components in SND and anti- heart failure drugs are physicochemical 
property similar, resulting in similar pharmacological actions against heart failure21. In addition, the active com-
ponents are also clustered in three independent areas (region B, C and D), indicating that the active components 
may be structurally or pharmacologically different in three herbs.

The physicochemical characteristics of a compound are important for its drug likeness. Comparing the phys-
icochemical characteristics of active components in SND with FDA-approved oral drugs will provide insight 
into the drug likeness of these components. Here, seven physicochemical characteristics of active components in 
SND were compared with approved orally administered drugs (Supplementary Fig. S1B–H). The overall shapes 
of the distributions of these characteristics are similar between active components in SND and approved oral 
drugs, which indicates that many ingredients in herbs have drug potential. The proportion of compounds with 
more than 10 rotatable bonds in SND is more than in approved drugs (Supplementary Fig. S1G), which means 
the structures of ingredients in SND are more flexible. There are statistically significant differences between drug 
and herb of all variables in the aspect of distribution by Kolmogorov-Smirnov test in Supplementary Table S2. As 
all variables in both drug and herb do not follow normal distributions, we conducted wilcoxon test to evaluate 
the difference of all variables in drug and herb. The results showed that there are significant differences between 
drug and herb of all variables in the aspect of median except for Polar Surface Area in Supplementary Table S2. To 
make a conclusion, physiological characteristics of active components in SND are special while compared with 
approved oral drugs in the median and distribution.

Prediction analysis of pharmacological mechanism based on network pharmacology. We con-
structed the component-target network (Fig. 2A) based on text mining and docking. This network had 109 nodes 
and 556 edges, in which red circles and hexagons correspond to active components and target proteins, respec-
tively. Many targets in the middle of Fig. 2A are targeted by components in three medicinal herbs, which meant 
that these targets are main potential targets. According to the data from CHEMBL, BindingDB and PubMed data-
base, 13 out of 61 potential targets were validated to be exact targets of active components in SND (Supplementary 
Table S3), which proved the reliability of molecular docking and text mining.

The STRING database (version 10.0) (http://string-db.org/) was used to elucidate biological processes, 
Cellular components, molecular functions and pathways of target proteins. And we only choose meaningful path-
ways, biological processes, Cellular components and molecular functions with a p value <  0.05 as key pathways, 
processes, components and functions. Functional classification of target proteins is detailed in Fig. 2B. Molecular 
function of the target proteins is classified to two categories: binding and receptor activity (Fig. 2B). The bind-
ing activities that appeared are mainly associated with receptor binding and enzyme binding. And the receptor 

Figure 2. (A) The Component-Target network. The red circles represent the 48 active components in SND, S, J, 
H and Z refers to alkaloids, gingerols, flavones and saponins in Aconitum carmichaelii, Zingiber officinale and 
Glycyrrhiza uralensis. The blue hexagons represent the gene names of targets of the three herbs found by text 
mining, while the green hexagons are the targets found by dock. The yellow hexagons represent the gene names 
of targets found both by text mining and dock. Targets in the center of network represent the common targets 
of three herbs, and targets in the curve of S, J or H and Z represent the targets of each kind of active components 
respectively. (B) The enrichment analysis in biological processes, cellular components and molecular functions 
of 61 identified target proteins by STRING database.

http://string-db.org/
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activity is adrenergic receptor activity. According to the classification of cellular component, the proteins are 
located in cytoplasmic part, extracellular region and membrane region. The biological processes that the target 
proteins are involved can be summarized in Fig. 2B. The results firstly demonstrated that SND exerted its protec-
tive effects by regulation of blood circulation22, response to oxidative stress23,24, regulation of apoptotic process25 
and inflammatory response26, which coincided with previous researches. In addition, the results also indicated 
that active components in SND could also exert anti- heart failure effect through regulation of blood pressure, 
regulation of vasodilation, regulation of muscle contraction, regulation of heart contraction, blood coagulation 
and regulation of angiogenesis. Although large amounts of references showed that the above six processes were 
closely related to heart failure27–32, further experiments are needed to identify the relationship between SND and 
these six biological processes.

To find the relations between target proteins and the important pathway further, we constructed the 
target-pathway network (Fig. 3A) based on the data extracted from STRING. There were several target proteins 
in one pathway and one target protein always existed in many pathways. Logically, the role of one pathway which 
contain many target proteins that interacted with drug molecules is more vital than the role of one target protein 
that interacted with drug molecules in many pathways, which is because that the impact of one target protein on 
the whole pathway maybe little, and the impact of a pathway which contained many target proteins interacted 
with the drugs on the body could be huge. Therefore, we tried to find the most important pathways through 
analyzing the target –pathway network. The pathways related with target proteins can be summarized in Fig. 3A. 
These results firstly demonstrated that SND exerted its protective effects against heart failure primarily by regulat-
ing above 15 pathways. Previous studies have demonstrated that SND exerted its cardiotonic effect by regulation 
of TNF signaling pathway33, Hypertrophic cardiomyopathy (HCM)22, PI3K-Akt signaling pathway34 and Dilated 
cardiomyopathy23,35. Although large amounts of references showed that heart failure was closely related to HIF-1 
signaling pathway36, Calcium signaling pathway37, cGMP-PKG signaling pathway38, mTOR signaling pathway39, 
Renin-angiotensin system40, ErbB signaling pathway41, AMPK signaling pathway42, VEGF signaling pathway43, 
Vascular smooth muscle contraction44, Adrenergic signaling in cardiomyocytes45 and Estrogen signaling path-
way46, further experiments are still needed to identify the relationship between SND and these 11 pathways. In 
order to further explore the possible mechanism of active components in SND, we classified the targets protein 
into three parts according their degree in drug-target network: high degree (20–41), middle degree (10–19) and 
low degree (1–9). Then the p value of every relevant pathway was calculated in the three parts (Supplementary 
Table S4). We only considered pathways with a p value <  0.05. Lower p values represent that pathways have higher 
amounts of proteins involved in, and were meaningful in the global pathways. Comparing the results of three 
parts we found that high degree and low degree targets are mainly related with HIF-1 signaling pathway and 
Calcium signaling pathway, whereas middle degree targets are primarily bound up with Dilated cardiomyopathy 
and TNF signaling pathway.

In summary, SND exerted its protective effects mainly by regulating 10 biological processes and 15 pathways. 
In addition, references have demonstrated that SND can cure heart failure by regulation of blood circulation, 
response to oxidative stress, apoptotic process, inflammatory response, TNF signaling pathway, Hypertrophic 
cardiomyopathy, PI3K-Akt signaling pathway and Dilated cardiomyopathy. Another six biological processes and 
11 pathways which heart failure involves in, such as regulation of vasodilation, regulation of muscle contraction, 
HIF-1 signaling pathway, Calcium signaling pathway and so on, are also identified to be regulated by SND to exert 
its anti- heart failure effects and needed to be verified by experiments. The multiple active components in SND 
can target the multiple proteins in the biological network to regulate and restore the network equilibrium, thereby 
controlling the occurrence and development of heart failure.

Construction and analysis of target protein-disease networks. Then we analyzed the category of the 
targets related diseases, the results were listed in Fig. 3B. We found that cancer, immune diseases, cardiovascular 
diseases, endocrine and metabolic diseases and infectious diseases were the main disease category. Though the 
proportion of cardiovascular diseases is not high, there were large amounts of experimental results reported that 
the SND can cure some cardiovascular diseases, such as heart failure14, myocardial infarction47, etc. Fig. 3B also 

Figure 3. (A) The Target-Pathway network by STRING database. (B) The enrichment analysis of diseases of 
these target proteins by STRING database.
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indicated that SND can cure some liver diseases, such as non-alcoholic fatty liver disease and hepatitis B, which is 
in accordance with previous researches48. In addition, researches demonstrated that herbs in SND can cure type 
2 diabetes mellitus49 and rheumatoid arthritis50. But the experimental reports of cancer and parasitic infectious 
diseases were seldom, it may be due to the complex mechanism of those diseases and the different ratio of the 
ingredients in SND.

Network analysis for identification of targets of active components in SND. To reduce the num-
ber of candidate targets and identify more potential targets based on targets identified from network pharmacol-
ogy, a component –protein – metabolite interaction network (CPMI) was established through the integration of 
NATPI and MPPI, as shown in Fig. 4. This network consists of chemical components, target proteins, pathway 
proteins, and biomarkers, including 130 nodes and 375 edges. The components acting on target proteins would 
cause the up- or down- regulation of related metabolic enzymes in pathway, thereby resulting in the changes in 
concentration of biomarkers. The interactions between target proteins and pathway proteins were obtained from 
STRING with a high confidence (> 0.8). We consider the active components as the initial node and the metabo-
lites as the terminal node. As shown in Fig. 4, 48 components interacted with 25 target proteins. These proteins 
can be related to 13 biomarkers through 44 pathway proteins. In this network, 25 target proteins could be more 
likely to be the true targets of active components in SND compared to 61 target proteins identified from network 
pharmacology. This deduction has been proved by references. The detailed evidence is that a total of 61 putative 
target proteins were identified by network pharmacology, only 13 target proteins were validated by reference. 
While among 26 target proteins identified by network analysis, nine target proteins are in agreement with existing 
research results. Target proteins of active components validated by references were summarized in supplementary 
data (Supplementary Table S3).

Then we took Angiotensin II Receptor (Type 1) (AGTR1), TNF-α  and Heme oxygenase 1 (HMOX1) as an 
example to explain the potential synergistic mechanism of active components in SND for curing heart failure 
(Fig. 4). Researches showed that in the heart, apoptosis and skeletal muscle atrophy can be triggered by angi-
otensin II51. And many authors have suggested that AGTR1 stimulation brought about apoptosis and skeletal 
muscle atrophy51. In contrast, an AGTR1 blocker can block apoptosis and skeletal muscle atrophy to cure heart 
failure52. As AGTR1 has been identified and validated to be a target of active components in SND (Fig. 4), we 
can deduce that these components prevent apoptosis and skeletal muscle atrophy to cure heart failure through 
blocking AGTR1.

Evidence shows that TNF-α  is capable of modulating cardiovascular functions through a variety of mech-
anisms such as inducing left ventricular dysfunction, left ventricular remodeling, abnormalities in myocardial 
metabolism, cachexia, uncoupling of β -receptor from adenylate cyclase and triggering platelet activation53. 
Further, TNF-α  is involved in the production of other inflammatory cytokines like IL-6 and IL-1 which enhance 
TNF-α -induced myocardial depression and cytotoxicity53. Moreover, TNF-α  triggers apoptosis in cardiomyo-
cytes through activation of neutral sphingomyelinase pathway and apoptosis may be a major reason for progres-
sive cardiac dysfunction in human heart failure53. If TNF-α  is a detrimental factor or mediator for myocardial 
failure, inhibition of TNF-α  either in blood or in TNF-α  receptors may be an effective treatment for heart fail-
ure. However, clinical trials of TNF-α  antagonists for curing heart failure failed. Reasons can be concluded as 
the following: Firstly, protective effect of NF-κ B had been reported in reovirus-infected myocarditis, complete 
inhibition of TNF-α  may lose the benefit of NF-κ B activation54; Secondly, tumor necrosis factor-alpha confers 
cardioprotection, complete inhibition of TNF- α  may be a detrimental factor for failing hearts55. A conclusion 
can be made that TNF- α  antagonists can be an effective treatment for heart failure, whereas complete inhibition 
of TNF-α  may be a detrimental factor for failing hearts56. Because of the moderate activity of small molecules, we 
can deduce that these molecules may prevent apoptosis, left ventricular dysfunction, left ventricular remodeling 
and so on to cure heart failure through targeting TNF-α . As TNF-α  has been identified to be a target of active 
components in SND, these components may confer cardioprotection by targeting TNF-α .

Figure 4. Component – protein–metabolite network. The active components, target proteins, pathway 
proteins and metabolites are represented by the red circles, blue hexagons, green round rectangles, and yellow 
diamonds, respectively. GATM represented by a purple round rectangle is both target protein and pathway 
protein. The interactions between active components and proteins, between proteins and proteins and between 
proteins and metabolites are linked by edges, respectively.
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HMOX1 is an inducible stress-response protein that imparts antioxidant and anti-apoptotic effects57. HMOX1 
induction in the failing heart is an important cardioprotective adaptation that opposes pathological left ventricu-
lar remodeling, and this effect is mediated, at least in part, by carbon monoxide (CO)-dependent inhibition of 
mitochondrial permeability transition and apoptosis58. Augmentation of HMOX1 or its product, CO, may repre-
sent a novel therapeutic strategy for ameliorating heart failure58. As HMOX1 was identified to be a target of active 
components of SND, these components may treat heart failure through opposing pathological left ventricular 
remodeling caused by HMOX1 induction.

To make a conclusion, active components in SND exert their effects against heart failure by AGTR1, TNF-α  
and HMOX1 simultaneously. The detailed mechanism is that these components can prevent apoptosis, skeletal 
muscle atrophy, left ventricular dysfunction, pulmonary oedema, left ventricular remodeling and so on to cure 
heart failure through targeting above three targets.

Experimental target validation. TNF-α  was firstly validated experimentally for three reasons. First, 
TNF-α  was found both by dock and text mining in the middle of Fig. 2A. Second, TNF-α  was in the center of 
target protein–target protein interaction networks (supplementary Fig. S2). And there is ample literature support 
for the important role of TNF-α  in heart failure59,60. Last but not least, our above pathway enrichment analysis of 
target proteins and previous researches both demonstrated that SND exerted its cardiotonic effect by regulation of 
TNF signaling pathway33, Apoptosis35, Hypertrophic cardiomyopathy (HCM)22 and Dilated cardiomyopathy23,35, 
and TNF existed in above four pathways simultaneously. Thus we inferred that TNF could be the main targets of 
active components in SND.

Total alkaloids, total gingerols, total flavones and total saponins are the main active components of each 
single-herb of SND responsible for curing cardiovascular diseases respectively15. Total alkaloids can traditionally 
be divided into three major types: diester diterpenoid alkaloids, monoester diterpenoid alkaloids and alkylola-
mine diterpenoid alkaloids61. Aconitine, hypaconitine and mesaconitine are representative components of diester 
diterpenoid alkaloids from Chinese pharmacopoeia. Higenamine, hypaconine, mesaconine and talatisamine are 
major reported active components of alkylolamine diterpenoid alkaloids. Talatisamine is found and validated to 
be an anti-heart failure compound in our previous study62. Glycyrrhizic acid and quercetin is major components 
of total saponins and total flavones respectively. 6-Gingerol is a representative component of total gingerols. 
Because of the representation of above ten compounds, we choose them to test the interaction between active 
components in SND and TNF-α .

Active components in SND inhibits TNF-α–mediated cytotoxicity on L929 cells. We began our 
validation of interaction between active components in SND and TNF-α  using TNF-α -mediated L929 cytotox-
icity assay. Results showed that SND, hypaconitine, mesaconitine, higenamine and quercetin are effective small 
molecule inhibitors of TNF-α . As shown in Fig. 5, SND inhibits TNF-α -mediated cytotoxicity on L929 cells 
dose-dependently within the range of 0.39–12.5 mg/ml. In addition, hypaconitine, mesaconitine, higenamine and 
quercetin inhibit TNF-α -mediated cytotoxicity on L929 cells dose-dependently within the range of 6.75–200 μM. 
Whereas, aconitine, 6-gingerol and glycyrrhizic acid are not effective small molecule inhibitors of TNF-α .

Active components in SND directly binds to TNF-α. We next investigated whether active components 
in SND targeted TNF-α  with SPR analysis. As shown in Fig. 6F, SND (8.75–140 mg/ml) could bring about a 
concentration-dependent resonance change when flowing through the sensor chip coated with TNF-α , indicat-
ing the direct binding of active components in SND to TNF-α . In addition, hypaconitine, mesaconitine, hige-
namine and quercetin (6.25–400 μM) also brought about a concentration-dependent resonance change when 
flowing through the sensor chip coated with TNF-α , indicating the direct binding of hypaconitine, mesaconitine, 
higenamine and quercetin to TNF-α  (Fig. 6). The equilibrium dissociation constant (KD) was calculated to be 
53 μM, 57.5 μM, 67 μM and 35 μM. These results are consistent with results of TNF-α –mediated cytotoxicity on 
L929 cells, which demonstrated that SND, hypaconitine, mesaconitine,higenamine and quercetin are effective 
small molecule inhibitors of TNF-α . This provided us with a set of leads against TNF-α  belonged to diterpenoid 
alkaloids.

The protective effect of active components in SND on DOX-induced injury of cardiomyo-
cytes. We then investigated whether these small molecule inhibitors of TNF-α  have cardiotonic effect. As 
shown in Fig. 7, SND, aconitine, hypaconitine, mesaconitine and higenamine (6.25–200 μM) alone had a slight 
promoting proliferation but there were no significant differences from the control group (p >  0.05). Whereas 
quercetin alone had a promoting proliferation and there are significant differences from the control group 
(p <  0.05). To analyze the effects of SND, aconitine, hypaconitine, mesaconitine, higenamine and quercetin 
(6.25–200 μM) on DOX-induced cytotoxicity in H9C2 cells, cell viability was examined after incubation with 
these compounds in the presence of DOX (2 μM). Above compounds pretreatments all provided good protective 
effects on DOX-mediated cell death in a dose-dependent manner (p <  0.05, compared to DOX group) (Fig. 7). 
These results confirmed the cardioprotective effect and noncytotoxicity of these six compounds in vitro.

In conclusion, we verified the direct inhibition of SND, hypaconitine, mesaconitine, higenamine and quercetin 
on TNF-α  in molecular and cellular level, and examined the protective effect of SND, hypaconitine, mesaconitine, 
higenamine and quercetin on DOX-induced injury in cardiomyocytes. In addition, although aconitine, 6-gingrol 
and glycyrrhizic acid are not effective small molecule inhibitors of TNF-α , they have been demonstrated to have 
anti-heart-failure activity63,64. We can draw the conclusion that there existed other target proteins of active com-
ponents in SND, which coincided with the synergistic effect theory of multi-components and multi-targets of 
traditional Chinese medicine formula.
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Discussion
In principle, Network analysis has the potential to allow the target identification of both bioactive compounds in 
medicinal herbs simultaneously and an active compound resulting from phenotypic screens. Although network 
pharmacology and metabolomics have been applied to target identification before65,66, the combination of them 
for target identification is novel. Furthermore, because the global profiling characteristics of metabolomics and 
network pharmacology are well coincident with the integrity and systemic feature of TCM formula, the main 
advantage of our network analysis method is identifying unknown targets of active compounds in TCM formula 
simultaneously in an unbiased fashion, which will promote the clarification of mechanism of TCM formula. We 
have established here that network analysis is a potentially applicable and accurate drug target identification 
strategy.

A key requirement for the success of network analysis is that active compounds must have clear efficacy in 
the therapy of detailed diseases. In addition, there must exist many known targets of the disease. Network anal-
ysis is complementary to existing chemical genetic assays for drug target identification. Although in some cases 
chemical genetic assays can identify a list of genes as targets, which could be a mixture of true direct targets and 
proteins involved in the same or parallel biological pathway(s), the network analysis discussed here might be able 
to identify the targets interacting directly with treated diseases. The combined methods together can provide a 
common ground for target elucidation, validation, and characterization, and contribute to our understanding of 
biological pathways and networks affected by bioactive compounds.

Figure 5. Active components in SND inhibited TNF-α-mediated cytotoxicity on L929 cells. L929 cells 
were treated for 18 h with 10 ng/ml of TNF-α  and 1 mg/ml of Actinomycin D (D) in the presence of indicated 
concentrations of active components. TNF-α -mediated cytotoxicity on L929 cells were measured with CCK8 
assay. Data were obtained from three independent experiments performed in triplicate and presented as means 
(± SD). *p <  0.05 vs. TNF-α  (T) only, #p <  0.05 vs. Actinomycin D (D) only. Necrostatin-1 (20 μM) is used as a 
positive drug.
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Ultimately, the identification of low abundance, weakly bound targets or membrane proteins is a challenge in 
target identification1. Examples we show in this study demonstrate that our network analysis can address these 
factors and can identify targets in an unbiased way. Network analysis is applicable to characterization of chemical 
probes resulting from phenotypic screens and can potentially provide useful information regarding drug mech-
anism of action in a systematic, hypothesis generating way. In principle, its applicability extends beyond small 
compounds, to include any monitor the interaction of other ligands, such as peptides or even antibodies, with 
proteins.

Network pharmacology-based approach is to use computational methods to find putative binding proteins for 
a given compound. Reverse docking is one main computational approach. This approach is to dock a compound 
with a known biological activity into the binding sites of three-dimensional (3D) structures of a given protein. 
However, reverse docking still has certain limitations. The major one is that the protein entries in the protein 
structure databases, like the PDB, are not enough for covering all the protein information of disease-related 
genomes. The second one is that this approach has not considered the flexibility of proteins during docking simu-
lation, and this aspect will produce negative false. Another limitation is that the scoring function for reverse dock-
ing is not accurate enough, which will produce positive false67. Our tendency to overcome these shortages in this 
study is to integrate this method with text mining and metabolomics. The integration of these methods is called 
network analysis. In summary, the applicability of network analysis is currently limited to active compounds with 
known diseases, and to complex diseases with multiple targets. In addition, because of the limitation of detection 
in analytical tools such as LC/MS, GC/MS and so on, not all metabolite biomarkers with changed content can be 
detected, which could be the reason why only nine out of 13 target proteins exist in network analysis.

In this study, serum pharmacochemistry, text mining and similarity match were firstly used to identify 48 
potential anti- heart failure components in SND. And 61 potential targets of these components were identified by 
network pharmacology. Biological process and pathway enrichment analysis of these targets demonstrated that 
SND could exert cardiotonic effect by regulating 10 biological processes and 15 pathways. Among them, four 
biological processes and four pathways had been validated to be regulated by SND to exert its effect in previous 
researches. Based on results of network pharmacology, network analysis was further conducted to identify more 
potential targets of active components in SND, which leaded to a decrease in the number of targets from 61 to 26. 
Previous researches demonstrated that nine out of 26 targets had been verified by references, while only 13 out 
of 61 targets were verified by references. And among the targets predicted by network analysis, TNF-α  was firstly 

Figure 6. SPR analysis showed that quercetin, hypaconitine, mesaconitine, higenamine and SND directly 
bound to TNF-α. (A) The sensorgrams indicate the direct binding of quercetin to TNF-α  immobilized on 
a CM5 sensor chip. The kinetic measurements were performed in triplicate using a set of serial dilutions as 
shown. (B–E) Standard curves and KD of quercetin, hypaconitine, mesaconitine and higenamine. (F) The 
sensorgrams indicate the direct binding of SND to TNF-α  immobilized on a CM5 sensor chip. The kinetic 
measurements were performed in triplicate using a set of serial dilutions as shown. Data in (A–F) were 
representatives of three independent experiments.
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experimentally validated to be the targets of active components in SND in molecular and cellular level. Above 
results indicated that network analysis is precise in target identification. This method will be helpful to investigate 
the mechanisms of TCM formula and promote the development of Chinese Drug modernization.

Materials and Methods
Analyzing the absorption and metabolism of components in SND. SND is composed of three 
medicinal plants: Aconitum carmichaelii, Zingiber officinale and Glycyrrhiza uralensis. Extensive studies have 
shown that total alkaloid (S), total gingerols (J), total flavones (H) and total saponins (Z) are the main active 
components of each single-herb of SND responsible for curing cardiovascular diseases respectively15,16. Thus 43 
alkaloids (S), 64 gingerols ( J), 60 flavones (H) and 29 saponins (Z) of SND were collected as the potential main 
active components in our previous study15. And the chemical information of these components (structure, canon-
ical name, and CID number) employed for computational analysis have also been collected. In order to evaluate 
the rationality of SND in absorption and metabolism, we firstly searched the public available database admetSAR 

Figure 7. The active components in SND protected Rat cardiac H9C2 cell line from DOX-induced cell 
death. Cells were incubated with active components in SND (6.25–100 μM) in DMEM supplemented with 
0.5% fetal bovine serum at 37 °C for 2 h followed by incubation with or without DOX (2 μM) for another 24 h. 
Cell viability was determined by CCK8 assay. Results were expressed as percentages of control group. Data 
are shown as mean ±  SD from three independent experiments. ###p <  0.001 DOX group versus control group, 
*p <  0.05, **p <  0.01, ***p <  0.001 treatment group versus DOX group.
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(http://lmmd.ecust.edu.cn:8000/) using similarity search. Results considering the known absorption and metab-
olism of 196 components were found.

Construction of a chemical database of anti-heart failure components in SND. We identified 
anti-heart failure components database of SND following the three steps. Firstly, our previous studies have ana-
lyzed the components and metabolites of SND in plasma and urine using UPLC/Q-TOF-MS16,17. It’s generally 
accepted that compounds from herbal medicines that appear in vivo have a chance to exert their effects68, thus we 
added the prototype compounds and their metabolite in vivo into the previous constructed chemical database of 
SND15. To make a conclusion, we have collected 196 in vitro components and 112 in vivo components in SND. The 
detailed information on these in vivo components is described in the supplementary data (Table S5). Secondly, as 
the main components of three herbs in SND have been isolated and tested for different kinds of activity during 
the past years63,69, text mining can dig out most of the primary active components. We filtered active components 
from the article databases (Chinese Pharmacopoeia 2010 edition, web of science, http://www.wanfangdata.com.
cn/, http://www.cnki.net/, and www.ncbi.nlm.nih.gov/pubmed/) based on above in vivo and in vitro components; 
Due to the limitation of UPLC/Q-TOF-MS method in detecting trace substances in biological sample, some  
in vivo components in SND cannot be identified in our previous papers. Thus, both the in vivo and in vitro com-
ponents were taken into consideration in the process of text mining. Thirdly, for unreported components in SND 
with potential anti-heart failure activity, drug similarity search tool in Therapeutic Targets Database (TTD, http://
xin.cz3.nus.edu.sg/group/cjttd/ttd.asp) was used to screen the similar drugs of these components through the 
structural similarity comparison. TTD provides comprehensive information about efficient targets and the cor-
responding approved, clinical trial, and investigative drugs. All information provided in TTD is fully referenced. 
We only selected the drugs with high similarity score (≥ 0.85) in comparison with the structures of components 
in SND in order to get a more accurate results. The therapeutic targets of these similar drugs were also collected 
as predicted effector molecules of SND. If the targets are associated with heart failure, the related components will 
be considered as potential active ingredients. In total, we obtained 48 active components of SND. The detailed 
information on these active components is described in Table 1.

Chemical space mapping and analysis. In order to investigate whether active anti-heart failure com-
ponents in SND and anti-heart failure drugs had similar physicochemical properties, the physicochemical 
properties of 48 active components and 71 drugs collected in drugbank using the keywords “heart failure” were 
calculated using commercial software Discovery Studio 2.5 (http://www.accelrys.com). The properties included 
molecular weight, the number of aromatic rings, the number of hydrogen bond donors, the molecular polar sur-
face area, the number of rotatable bonds, ALogP, the number of hydrogen bond acceptors. Distribution of these 
compounds in the chemical space was visualized via principal component analysis using SIMCA-P V 13.0 (demo, 
Umetrics, Sweden). In addition, as physicochemical characteristics of a compound are also important for its drug 
likeness. Comparing the physicochemical characteristics of active components in SND with FDA-approved oral 
drugs will provide insight into the drug likeness of these ingredients. We collected 105 approved oral drugs from 
drugbank, and the same seven properties were calculated in the same way as above descriptions.

Target identification. There are two methods for identification of potential targets of active components in 
SND as follows. First, true targets of 71 FDA-approved anti-heart failure drugs were retrieved from DrugBank 
database in 2015. And proteins associated with heart failure were also considered as potential targets of heart 
failure by searching OMIM ((http://www.ncbi.nlm.nih.gov/omim/), UniProtKB (http://www.uniprot.org/), TTD 
and GeneCards (http://www.genecards.org/) databases in 2015 using the following search terms: heart failure, 
cardiac failure, cardiac dysfunction, cardiac insufficiency, cardiomyopathy, ventricular dysfunction, chronic heart 
failure, congestive heart failure, heart insufficiency and heart decompensation. And we have deleted the false pos-
itives that are not related with heart failure during the process of text mining. The quality control statistics on the 
performance of text mining were shown in Supplementary Table S6. Molecular docking between active compo-
nents and heart failure related target proteins was conducted using libdock in Discovery Studio 2.5 or Autodock 
vina70. All the protein structures were directly downloaded from the RCSB protein data bank (www.pdb.org) 
with their resolutions being carefully checked. The co-crystallized molecules binding with target proteins were 
regarded as positive drug. The dock scores of positive drugs with corresponding proteins were defined as cutoff 
value. If the dock score of a component with relavant protein is higher than the cutoff value, this protein was then 
considered as a potential target protein of this component. Second, the targets of components were searched 
in Herbal Ingredients’ Target (http://lifecenter.sgst.cn/hit/), TargetHunter Database (http:// www. cbligand. org/ 
TargetHunter), TCMID (http://www.megabionet.org/tcmid/) and CHEMBL (https://www.ebi.ac.uk/chembl/) by 
the structure of components. The potential targets of components gained by above method were further searched 
in TTD, PharmGkb (www.pharmgkb.org) and DrugBank (http://www.drugbank.ca/). We only retain targets 
which have relationships with heart failure. As a result, an active component–target protein interaction network 
(CTPI) can be constructed with the results from above two methods and displayed by Cytoscape 3.0 71. A compo-
nent and a related potential target protein can be linked with an edge.

Pathway enrichment analysis of metabolite biomarkers and network construction. A compre-
hensive tool suite for metabolomics data analysis MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/) was used 
to enrich the pathway of metabolite biomarkers from previous study. The proteins in the enrichment pathways 
(p <  0.05) were extended to their nearest neighbors, and subsequently, a metabolite–pathway protein interaction 
network (MPPI) was constructed by Cytoscape 3.0.

Network Analysis. According to the collected candidate genes and proteins related to heart failure, a pro-
tein–protein interaction network (PPI) was built by Cytoscape 3.0. Subsequently, PPI combined with CTPI was 
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used to establish a new active component – target protein interaction network (NATPI). NATPI combined with 
MPPI was then used to establish a component – protein–metabolite interaction network (CPMI). Above process 
called network analysis can identify targets which can connect components with different metabolites regulated 
by these components, detailed procedures can be seen in Fig. 1. With the combination of metabolomics and net-
work pharmacology, obviously target proteins identified by network analysis will be more precise than network 

No Name Formula Serial number

1 14-Acetyltalatizaminea C26H41NO6 S14

2 6-Gingerola C17H26O4 J54

3 Daidzeina C15H10O4 H60

4 Formononetina C16H12O4 H34

5 Fuzilinea C24H39NO7 S9

6 Gancaonin La C20H18O6 H41

7 Glycycoumarina C21H20O6 H54

8 Glycyrrhizina C42H62O16 Z16

9 Hetisinea C20H27NO3 S42

10 Hypaconinea C24H39NO8 S8

11 Hypaconitinea C33H45NO10 S26

12 Isoliquiritigenina C15H12O4 H29

13 Licochalcone Da C21H22O5 H58

14 Licoisoflavonea C20H18O6 H59

15 Liquiritigenina C15H12O4 H20

16 Mesaconinea C24H39NO9 S3

17 Neolinea C24H39NO6 S10

18 Talatisaminea C24H39NO5 S12

19 Glycyrrhetic acida C30H46O4 Z29

20 Aconitinea C34H47NO11 S25

21 Mesaconitinea C33H45NO11 S21

22 Davidigeninb C15H14O4 H56

23 4-Shogaolc C15H20O3 J32

24 8-Gingerolc C19H30O4 J56

25 8-Paradolc C19H30O3 J24

26 8-Shogaolc C19H28O3 J37

27 10-Gingerolc C21H34O4 J58

28 10-Shogaolc C21H32O3 J39

29 1-Dehydro-10-gingerdionec C21H30O4 J15

30 1-Dehydro-6-gingerdionec C18H26O3 J13

31 6-Paradolc C17H26O3 J22

32 6-Shogaolc C17H24O3 J35

33 Beiwutininec C23H37NO10 S43

34 Coryneinec C11H18NO2 S32

35 Echinatinc C16H14O4 H28

36 Fuzinosidec C15H28O13 S40

37 Glabridinc C20H20O4 H47

38 Glycyrrhizic acidc C42H62O16 Z1

39 Higenaminec C16H17NO3 S39

40 Licochalcone Ac C21H22O4 H26

41 Licochalcone Bc C16H14O5 H27

42 Licochalcone Cc C21H22O4 H57

43 Neolininec C23H37NO6 S41

44 Pinocembrinc C15H12O4 H19

45 Quercetinc C15H10O7 H11

46 Rutinc C27H30O16 H10

47 Salsolinolc C10H13NO2 S31

48 Songoraminec C22H29NO3 S38

Table 1.  Potential active components in SND. aIn vivo components of sini decoction and have cardiotonic 
activity by text mining. bIn vivo components of sini decoction and have cardiotonic activity through structural 
similarity comparison. cIn vitro components of sini decoction and have cardiotonic activity by text mining.
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pharmacology alone. To facilitate scientific interpretation of identified potential targets, several analyses were per-
formed. First, based on the potential targets, gene ontology (GO) enrichment analysis and pathway enrichment 
analysis were utilized to identify related molecular functions, involved biological processes, cellular components 
and pathways by STRING. Second, enrichment of target related diseases was also conducted by STRING.

Experiments for verification. Aconitine, Hypaconitine, Mesaconitine, Higenamine, Hypaconine, 
Mesaconine, Talatisamine, Glycyrrhizic acid, Quercetin and 6-Gingerol (purity 99%) were purchased from 
Shanghai standard Corporation (http://naturestandard.cn.alibaba.com). The structures of above chemicals were 
unambiguously identified by 1H NMR and MS spectra, and their purity were over 99% determined by HPLC-UV. 
Recombinant mouse TNF-α  were purchased from Sigma (St.Louis, MO, USA). Actinomycin D was purchased 
from Sigma (St.Louis, MO, USA). Necrostatin-1 was purchased from Selleck Chemicals (Houston, USA). L929 
mouse fibroblast cell line and Rat cardiac H9C2 cell line were obtained from Cell Bank of the Chinese Academy 
of Sciences (Shanghai, China). Dulbecco minimal essential medium (DMEM) was purchased from Invitrogen 
Corporation (Grand Island, NE, USA) and supplemented with 10% fetal calf serum (FBS) obtained from Gibco 
Co. (Rockville, MD, USA). Dimethyl sulfoxide (DMSO), penicillin streptomycin, and trypsin were purchased 
from Gibco Co. All experiments were repeated three times.

Assay for TNF-α mediated L929 cytotoxicity. TNF-α  mediated L929 cytotoxicity was copied as 
described previously72. Different amounts of aconitine, hypaconitine, mesaconitine, higenamine, hypaconine, 
mesaconine, talatisamine, glycyrrhizic acid, quercetin and 6-gingerol (12.5–200 μM) were mixed with 10 ng/ml 
TNF-α  and 1 μg/ml Actinomycin D applied to the cells. Necrostatin-1 (20 μM) was used as a positive drug. After 
18 h incubation, cell viability was assessed by microscope examination and CCK8 assay. The optical density (OD) 
was measured at 450 nm in a microplate reader (SynergyTM 4, BioTek, USA). The percentage inhibition of cyto-
toxicity was calculated using the following formula: (ODactinomycinD+TNF-a+components −  ODactinomycinD+TNF-α)/(ODacti

nomycinD −  ODactinomycinD+TNF-α) ×  100.

Surface plasmon resonance (SPR) analysis. SPR measurements were performed on a BIAcore T200 
instrument (GE Healthcare, Little Chalfont, Buckinghamshire, United Kingdom) at 25 °C using PBS with 5% 
DMSO as running buffer with a constant flow rate of 30 ml/min. 100 mg/ml TNF-α  in 10 mM sodium acetate 
buffer (pH 5.0) was covalently immobilized onto the CM5 sensor chip (GE Healthcare) using standard primary 
amine coupling procedure. Gradient concentrations of components (6.25–400 μM) dissolved in the running 
buffer were injected into the channel for 60 s, followed by disassociation for 120 s. The data were analyzed with the 
BIAevaluation 3.0 software (BIAcore) using a 1:1 binding model.

Assay for Doxorubicin (DOX) mediated H9C2 cytotoxicity. DOX mediated H9C2 cytotoxicity was 
also copied as described previously73. Cells were incubated with aconitine, hypaconitine, mesaconitine, higenam-
ine, hypaconine, mesaconine, glycyrrhizic acid, quercetin and 6-gingerol (6.25–100 μM) in DMEM supplemented 
with 0.5% fetal bovine serum at 37 °C for 2 h followed by incubation with or without DOX (2 μM) for another 
24 h. Cell viability then was tested by CCK-8 (Beyotime Biotechnology, Jiangsu, China).

Data analysis. All quantitative values are given as means (± SD). Statistical analysis was performed using 
one-way analysis of variance (ANOVA) test, followed by Dunnett’s multiple comparison post hoc test. p <  0.05 
was considered to be statistically significant.
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