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Abstract

Huntington’s disease (HD) is one of several neurodegenerative disorders caused by expansion of CAG repeats in a coding
gene. Somatic CAG expansion rates in HD vary between organs, and the greatest instability is observed in the brain,
correlating with neuropathology. The fundamental mechanisms of somatic CAG repeat instability are poorly understood,
but locally formed secondary DNA structures generated during replication and/or repair are believed to underlie triplet
repeat expansion. Recent studies in HD mice have demonstrated that mismatch repair (MMR) and base excision repair (BER)
proteins are expansion inducing components in brain tissues. This study was designed to simultaneously investigate the
rates and modes of expansion in different tissues of HD R6/1 mice in order to further understand the expansion mechanisms
in vivo. We demonstrate continuous small expansions in most somatic tissues (exemplified by tail), which bear the signature
of many short, probably single-repeat expansions and contractions occurring over time. In contrast, striatum and cortex
display a dramatic—and apparently irreversible—periodic expansion. Expansion profiles displaying this kind of periodicity in
the expansion process have not previously been reported. These in vivo findings imply that mechanistically distinct
expansion processes occur in different tissues.
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Introduction

Huntington’s disease (HD) is a genetically determined neuro-

degenerative disorder, the onset of which is known to depend upon

the length of glutamine-encoding CAG-repeat sequences lying

within the Huntingtin (HTT) gene [1]. Humans may develop the

disease if they have more than 36 repeats and disease onset usually

starts during mid-life. An inverse relationship has been shown

between CAG repeat length and age of onset in HD [2–5].

Additionally, somatic instability in human cortex has recently been

shown to be a good predictor of disease onset [6]. Children with

108–256 CAG repeats are reported to show disease onset from

one and a half years to six years of age [7].

Trinucleotide repeat (TNR) instability varies between organs in a

variety of neurodegenerative disorders which are caused by expansion

of CAG repeats in a coding gene, with the greatest instability observed

in the brain [8–11]. In HD, striatum tissue shows the most severe

neuropathology, followed by cortex. CAG length expansion is

correlated with neuropathology and probably precedes the onset of

symptoms [12]. The CAG repeat length is unstable in most cell types

of the brain, but neurons tend to show the greatest mutation lengths in

both humans and mice [13–15]. Meanwhile, minimal expansion is

considered to occur in many other somatic tissues.

TNR sequences may form slipped strands during replication or

repair, creating loops or hairpins, which protrude from the DNA

duplex [16].

In the earliest model for repeat expansion the DNA polymerase

forms slip-outs on the nascent strand leading to small-scale repeat

expansion in repetitive sequences [17]. Loops of repeat-containing

DNA are believed to cause either expansions or contractions

during replication, when the slip-out occurs in the nascent or

template strand, respectively [18,19]. Several models have been

suggested to explain TNR expansion during replication, such as

folding of the lagging strand template into a hairpin, stalled

replication forks and the orientation of the TNR in the genome, as

well as the location of the origin of replication, as shown in several

experiments in bacteria, yeast and human cells (Reviewed in [20]).

More recently, a pertinent role of DNA repair proteins in CAG

repeat expansion has been demonstrated in vivo. In particular,

deletion of the mismatch repair (MMR) proteins, Msh2 and Msh3

[21–24] has been shown to abolish age-dependent somatic CAG

repeat expansion in mouse models for HD. MMR has also been

shown to be involved in TNR expansion in mouse models of

myotonic dystrophy (DM1) [25–27]. Furthermore, the age-

dependent expansion of TNR sequences in somatic cells was

shown to be modified by the base excision repair (BER) 8-

oxoguanine DNA glycosylase (Ogg1) in the R6/1 mouse model,

demonstrating that there may be a link between oxidative DNA

damage and TNR instability [13]. The flap endonuclease 1

(FEN1), which removes 59-flaps during replication [28] and is

involved in long-patch BER [29] is also implicated in expansion.

Secondary TNR structures have been shown to inhibit FEN1
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activity [30]. In addition to flap endonuclease activity, the EXO

[31] and GAP activities of FEN1 have been shown to contribute to

the resolution of TNR secondary structures in vitro [32]. Recently,

it was shown that the stoichiometry of BER proteins, such as

Ogg1, polymerase b and FEN1, may contribute to the tissue-

selectivity of somatic HD CAG repeat expansion [33].

Nevertheless, the processes causing this expansion remain

poorly understood, particularly in mammalian systems, although

the formation of secondary DNA structures within the repeat

sequence is thought to underlie the process [34]. Here we present

evidence for two distinct modes of somatic expansion identified by

the analysis of CAG repeat fragments from 103 HD R6/1 mice; a

continuous slight expansion in tail, lung, heart and spleen, and a

dramatic periodic expansion in striatum, and cortex, which we

also compare to the expansions observed in liver. The continuous

expansion process is shown here to conform to a bi-directional,

forward-biased model that represents the occurrence of multiple

short – tending towards unitary – CAG repeat insertions and

deletions, at random moments as the mouse ages. In contrast, the

dramatic expansion seen in brain tissues demonstrates a

periodicity centred around seven repeats, which correlates with

the stochastic insertion of stable TNR segments of consistent

length. Meanwhile liver tissue shows a comparable average

increase in CAG repeat length to striatum, but with a much

weaker inclination to exhibit periodicity, tending more towards a

continuum. This suggests either a much less controlled insertion

length when compared to expansions in striatum, or that liver

tissue undergoes both types of expansion simultaneously. We also

present discursive models for these two expansion mechanisms.

Identification of these two independent modes of expansion, in

particular the tight mechanistic control implicit in the expansions

within neuropathologically relevant tissues, increases our under-

standing of the tissue-dependent progress of HD. This brings us a

step closer to inferring the in vivo mechanisms of the molecular

components involved, by showing that only a limited selection of

the existing models for expansion are able to explain the age-

dependent CAG repeat expansions we observe.

Results

Fragment analysis shows tissue-specific modes of
somatic CAG expansion

In order to understand the mechanisms underlying somatic CAG

instability, 42 R6/1 HD exon 1 transgenic mice were sacrificed at

either 10 or 21 weeks of age, whereupon tail, heart, lung, spleen, liver,

cortex and striatum samples were taken for analysis of HD CAG

repeat length. A tail biopsy at 3 weeks of age represents the reference

level of CAG repeats present near birth in all tissues for each mouse

[35] (Figure S3). Thus changes in the CAG composition of tissues in

an individual mouse could be compared over a 7- or 18-week period.

A slight expansion was observed in tail (Figure 1A), whereas cortex

and striatum demonstrated a dramatic and periodic expansion

process, with no significant difference between genders (Figure 1B

and 1C). Liver demonstrated an equally rapid, but apparently more

continuous expansion. Heart, lung and spleen displayed a slight

expansion that was identical to tail (Figure S11). A parallel dataset

from 61 hHD+/2Fen1E160D/E160D mutant mice, in which flap

endonuclease activity of FEN1 is reduced to ,20% [36] was

included in the study. Reduced FEN1 endonuclease activity did not

affect the rate of CAG repeat expansions measured in any tissues,

implying that this mutation did not affect any role FEN1 plays in

expansion. The two datasets were qualitatively and quantitatively

identical with regard to the following analysis in all organs tested and

were therefore combined, such that our analysis covers observations

across two HD genotypes, reinforcing the ubiquity of the results.

Continuous expansion of CAG repeats in tail
Individual fragments from tail fit well to a normal distribution and

are thus described by the mean (m) and standard deviation (s) of the

curves fitted to raw data (Figure 2A, 2B; see Methods). Expansion

within the population of 59 mice (10 week old mice excluded) is

clearly shown (Figure 2C) by the relative difference in m of the 21-

week and 3-week groups. The median expansion found in 59 tails of

21-week mice was 1.97 CAG triplets (Figure 2E). In addition, s of

individual tail data sets is shown to increase from 1.98 triplets at 3-

weeks to 2.87 triplets at 21-weeks (Figure 2D). The increasing s is not

an artefact of PCR errors, as is demonstrated in Figure 3A.

Having made these observations, it is necessary to consider

them in the context of potential models for expansion, in order to

fully investigate their implications and attempt to parameterize the

processes involved. A continuous increase in both mean and

standard deviation can be generally accounted for by multiple

stochastic unitary (single CAG-repeats) extension and contraction

events on the CAG tracts within the sample (Figure 3B). A full

discussion of the potentially applicable models and considerations

is presented as supporting information (Figure S8, Text S1, and

Videos S1, S2, S3, S4, S5, S6, S7, S8) and we confine ourselves

here to a simple application of the most probable hypothesis,

yielding upper estimates for expansion and contraction rates.

Assigning probabilities to non-simultaneous unitary expansions

and contractions, pe and pc respectively, allows the measured

temporal change in the mean (Dt(m)) and variance (Dt(s
2)) of tail

samples to be defined by (1) and (2).

Dt(m)~pe{pc ð1Þ

Dt(s
2)~pezpc{(pe{pc)2 ð2Þ

Using a time interval (Dt) of one day, the measured expansion of

1.97 repeats and the concomitant increase in average standard

Author Summary

Huntington’s disease (HD) is a genetically determined
neurodegenerative disorder identified by the presence of a
mutation for a long series of CAG repeats (.36 repeats) in
the Huntingtin (HTT) gene. Longer repeat sequences cause
disease onset at a younger age. The mutation encodes an
expanded glutamine tract within the huntingtin protein.
This enlarged polyglutamine fragment in the protein leads
to the formation of the huntingtin aggregates that are
observed in HD brains. The stretch of CAG repeats expands
with age in affected brain areas, increasing the length of
the polyglutamine tract, and is believed to amplify the
effect of the disease. Several HD mouse models display
phenotypes relevant to the human disease. We have
investigated the rate and modes of expansion in striatum,
cortex, and tail in transgenic R6/1 mice. Tail was included
as a stable tissue, however we observed a small
continuous expansion of CAG repeats in tail tissues. In
brain tissues, we identified a periodic expansion process
consisting of predominantly seven repeat steps. Our
findings point towards a very controlled molecular
mechanism as the cause of expansion in the most severely
affected tissues, which may provide useful targets that can
be used to inhibit disease development.

Continuous and Periodic Expansion of CAG Repeats
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deviation from 1.98 to 2.87, the values of pe and pc are calculated

to be 0.026 and 0.010 respectively. This gives a maximum

expectation of ,0.036 (pe+pc) events per repeat tract per day.

Periodic expansions in striatum and cortex
In contrast to fragment data from tail, heart, lung and spleen,

raw data from 10- and 21-week cortex and striatum tissue show a

peak retained at the 3-week repeat level alongside an age-

dependent number of periodically spaced subsequent peaks

(Figure 4A, Figures S1, S2, and S10), to which a series of normal

distributions were fitted (see Methods). Knowing that the relative

areas of overlapping distributions define the proportion of each

mean CAG repeat length present (demonstrated with mixed

samples and serial dilutions of a 21-week striatum sample in

Figures S4 and S5), we infer – on account of the regularity of the

intervals between neighbouring peaks at both 10- and 21-weeks of

age – that expansion involves a proportion of the brain tissue

undergoing insertions of consistent-length CAG repeat fragments

over time. If expansion events inserted CAG fragments of

uncontrolled length, the clarity of subsequent peaks would be

lost. Likewise if different cell-types within one sample expanded at

different rates, one would expect a continuum of peak separations

in the collected accumulated data from many mice, and would

have little reason to expect a consistent periodicity between peaks

at 10-weeks and 21-weeks. This argues for the stochastic step-wise

insertion of CAG fragments with an average length mb2ma

(Figure 4A (10wk and 21wk) and 4B) by a mechanism that may

recur within the same cell. To measure the periodicity seen in

brain tissues, we compiled histograms of all intervals between

identifiable peaks, binned by size, from the individual cortex and

striatum samples of mice aged 10- and 21-weeks (Figure 4C). The

measured intervals are clearly shown to be distributed around a

peak at 7 CAG repeats, with a mean length of 7.14 (s= 1.78 with

a cut-off for doublet measurements set at intervals $12). The

median interval of 7 also confirms that this expansion process is

centred around the insertion of 7-repeat fragments into the CAG

tract, although the width of the starting distribution indicates

insertion of 5 to 9 repeat-fragments (see Figure S9 and Videos S1,

S2, S3, S4, S5, S6, S7, S8 for further discussion). The relative sizes

of peaks in 21-week striatum (see Methods) imply that on average,

a total of ,10,000 7-repeat insertions occurred in each

dramatically expanding striatal sample (on our timescale probably

mainly within neurons; however, glial cells also undergo expansion

and not all neuronal cells are guaranteed to show expansion

[14,15], giving a periodic expansion probability estimate ps of

0.018 events per repeat tract per day. The fact that efficiency of

PCR amplification of longer CAG tracts is reduced, may result in

some measure of underestimation with this value. This is ,70% of

the estimated probability for unitary expansion events in tail,

however the 7-repeat average insertion size renders the resulting

expansion more dramatic in striatum. In contrast, liver data while

showing comparable levels of average expansion to brain tissues,

lacks a clear signature of periodicity (see Figure 1D) tending

towards bimodality, with a more continuously located second

peak. This would imply a much less controlled insertion length

during the expansion process, or possibly a combination of

expansion mechanisms.

Discussion

Having shown data and analysis to define these two distinct

modes of expansion, we place our findings into the context of

Figure 1. Fragment analysis in tail, cortex, striatum, and liver. Representative examples of raw data from CAG-repeat sequences in tail (A),
cortex (B) striatum (C) and liver (D) from individual male and female HD mice, aged 10 and 21 weeks are shown (blue) with the tail biopsy from the
same 3-week old mouse overlaid (red). All traces demonstrate the increase in mean length of repeat sequences with time and the differing rates of
expansion between tissue types. Of particular note is the strong periodicity shown in the older striatum samples. Size standard markers are shown for
118 (solid black arrow) and 138 (open white arrow) CAG repeats respectively.
doi:10.1371/journal.pgen.1001242.g001

Continuous and Periodic Expansion of CAG Repeats
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existing literature, in order to develop reasonable hypothetical

models for these two types of expansion.

The continuous expansion we observe shows a progressive

increase in CAG tract length, which is comparable with the

expansions observed in fibroblasts derived from an adult HD

mouse [37]. In the debate regarding the relative roles of

replication and repair in TNR instability, these results present

an interesting question, since the continuous expansion process

occurs in organs containing dividing cells. A process occurring

with the previously calculated expectation rate of ,0.036 events

per repeat tract per day on the ,360 nucleotide CAG segment of

the 2.5 gigabase mouse genome, would correlate to ,250,000

genome-wide events per cell per day. This is well above the upper

estimate for daily DNA damage events, making it unlikely that

these are the sole initiator of expansions in tail tissue. Several

replication-based models for TNR expansion in dividing cells

[18,19] have been proposed. The potential for replication to be

entirely responsible for this expansion is considered in detail

elsewhere (Figures S7, S8, and Text S1) and is considered to be

unlikely, particularly in light of the fact that lymphoma tissues

(with necessarily higher replication rates) isolated from several

mice showed no increase in TNR instability (Figure S7). Therefore

we infer that other mechanisms must also prevail, and propose

that slipped strand structures [16,38] generated by out of register

rehybridization of CAG repeats [27] during transcription, or

genome maintenance, may spontaneously form unstable loops or

cruciforms which may subsequently stabilize by migrating apart.

Figure 2. Slight continuous expansion measured in tail tissue.
Size standard markers, are placed at 118 (solid black arrow) and 138
(open white arrow) CAG repeats. (A) A representative example of raw
data from the 3-week biopsy (red) and 21-week sample (blue) are
shown for one mouse. (B) Normal distributions are fitted to the data
presented in (A), coloured as previously for 3-week (red) and 21-week
(blue) samples. The resulting means (m) and standard deviations (s) are
used to define the temporal change in repeat distribution within the
sample, clearly demonstrating an increase in the mean number of
repeats between 3 weeks (m3) and 21 weeks of age (m21). Likewise,
broadening of the distribution is evident from the increase in standard
deviation at 3 weeks (s3) to that at 21 weeks (s21). (C) Mean values (m)
for repeat lengths from the 3-week (red) and 21-week (blue) tails
samples of 59 mice are compiled into a histogram, showing the
systematic increase in repeat length with age. (D) Standard deviations
of all 59 tail samples at 3-weeks (red) and 21-weeks (blue) are similarly
compiled, with the histogram showing age dependent peak broaden-
ing. (E) A boxplot of expansions measured in the tails of 59 mice
between 3 and 21 weeks of age shows a median expansion of 1.97 CAG
repeats.
doi:10.1371/journal.pgen.1001242.g002

Figure 3. Age-dependent increase in mean and standard
deviation for tail tissue. (A) Mean versus standard deviation points
are plotted for all 103 mice in the data set, with the data divided into 3-
week (red), 10-week (blue) and 21-week (green) age groups. To
highlight the general trends in the data, the points representing the
middle quartiles (by mean value) for each age group are shown with
solid circles. The 3-week age group is shown with the weak positively-
correlated trend line (red) implying a loose relation between standard
deviation and mean value at a fixed age, which we assume to be caused
by polymerase errors – during PCR of repeat sequences – which
increase with sequence length. This trait is also present in 10-week and
21-week data, with parallel approximate trends shown (dashed) for
emphasis. The standard deviations and means for each age group are,
however, shown to increase systematically with age, along a trend-line
(black arrow) that is completely separate from the PCR-dependent
trend. This demonstrates the independence of the age-dependent
increase in standard deviation and mean from the PCR induced
variation. (B) Monte Carlo simulation of the proposed model
mechanism for expansion is shown with a range of parameters for
expansion and contraction probabilities pe and pc, to illustrate the
change in mean and standard deviation of a distribution from a given
starting point, dependent upon the relative expansion and contraction
probabilities. It is clear from the results that only the combination of
probabilities calculated from tail data can combine to generate the
measured simultaneous change in mean and standard deviation.
doi:10.1371/journal.pgen.1001242.g003

Continuous and Periodic Expansion of CAG Repeats
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Similar small loops can also be formed by polymerase slippage

during replication [17]. We propose that two separate pathways

may repair these loops, leading to single repeat expansions or

contractions (Figure S8). Further research is needed to resolve the

specific origin of this mode of expansion.

A hypothesis for periodic expansion is also presented (Figure

S9). The previously calculated periodic expansion probability ps of

0.018 events per repeat tract per day would correlate to ,100,000

genome-wide events per cell per day. This lies in the vicinity of

upper estimates for accumulated oxidative DNA damage [39]. It is

therefore possible that DNA damage contributes as catalyst for

periodic expansions in brain tissues. However, oxidative damage is

not sufficient to trigger somatic instability [33]. Of particular

interest here, are the potential molecular components that could

repeatedly generate a regularly sized repeat insertion that is

dominantly seven repeats in length. We have therefore chosen to

briefly review the relevant literature in search of further insight.

Theory suggests that CAG flaps ranging from 4 to 16 triplet

repeats in length can form thermodynamically unstable hairpin

structures with an even number of repeats [40]. However, under

physiological conditions, 6 triplet repeats have been shown to form

hairpins irreversibly [41,42]. This implies that a progressively

generated triplet repeat flap can stabilise into a 6-repeat hairpin at

the free end that could be cleaved by FEN1 causing no net

expansion [43] (Figure S9). However, the presence of metastable

intermediates during flap generation may allow the flap length to

Figure 4. Periodic expansions in striatum and cortex. (A) Fragment analysis curves from 3-week tail, 10- and 21-week striatum are shown
sequentially, with fitted normal distributions (black) overlaid. The sum of all fits (red) demonstrates the curve-fit accuracy. Mean values (ma etc) for
each fitted peak are shown. Mean ma coincides with the mean of the corresponding 3-week tail at all ages. This 21-week striatum sample is best-fit by
six consecutive normal distributions. Periodicity is clear from the regularity of the intervals between consecutive means. (B) Multiple peaks fitted to
another 21-week striatum dataset are shown, with the areas under each fitted distribution (Aa .. Ad), the mean values and the separations between
the four peaks (S1 .. S3). The area of a peak represents the proportion of tissue containing the measured mean number of repeats, thus separation
values represent a step-wise expansion from the previous mean. The age-dependent propagation of peaks with higher means, as seen in (A), is due
to the stochastic insertion of short repeat sequences, of consistent length, into the CAG tracts of individual cells, which, over time, generates the
observed periodicity. For analysis purposes, the sum of all areas (Aa,b,c,d) was rescaled to 10,000 (the approximate number of cells forming a sample),
allowing the number and length of insertion events to be estimated. (C) A histogram of insertion lengths for all expansion events measured in 69
separate striatum samples is shown (blue). Both mean and median values of the distribution point to a dominant insertion length of seven CAG
repeats. The separate contributions from 10-week (green) and 21-week (red) data are also shown. Inset figure shows a similar result for cortex, with
the insertion length distributed at 7 repeats, despite the smaller number of insertion events observed in total.
doi:10.1371/journal.pgen.1001242.g004

Continuous and Periodic Expansion of CAG Repeats
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increase beyond 6 repeats before a stable structure is formed,

thereby producing a hairpin with an overhanging CAG at the 59-

end. This free CAG repeat can hybridise back to the DNA duplex,

and it has been shown by Liu et al. [31] that such hybridisation

facilitates bubble formation followed by ligation and expansion. In

a few instances, two or even three free CAG repeats in the 59-end

of the hairpin would produce a periodicity of eight or nine CAG

repeat steps. In addition, the size of the hairpin could vary with a

few repeats. However, this occurs more rarely, as observed in

Figure 4C. After gap filling and ligation, a loop of excess CAG

repeats in one strand would be produced (Figure S9) that can be

recognized by the MMR complex Msh2-Msh3 with high affinity

[44]. This binding might further stabilize the CAG loop and

additionally explain why Msh2-Msh3 is necessary for large

expansions to occur in striatum [21–24], although the role of

MMR in causing TNR expansion is not understood. Moreover,

Msh2-Msh3 function ceases due to impaired ATPase activity on

loops exceeding 16 nucleotides in lengths [45] - probably due to

the presence of ANA mispaired bases in the loop [22] - which may

explain why the MMR system fails to repair longer extraneous

CAG loops. Subsequently, a nick generated on the strand opposite

to the loop could result in faulty repair of the CTG strand along

the CAG slip-out, causing expansion by a repair process

independent of MMR [46] (Figure S9). Thus, oxidative damage

on the CTG strand could result in base excision repair (BER) and

Ogg1 moderated expansion, which is also in concordance with the

proposed ‘toxic oxidation cycle’ by Kovtun et al., 2007 [13]. We

therefore propose that a coincidental cooperation can occur

between MMR and BER in cases where a long CAG flap is able to

stabilize itself, which can form the basis of the consistent periodic

insertion we observe.

It should be pointed out that it is possible that other stabilized

structures, such as loop-outs or a stabilizing interaction with one of

the many proteins and complexes that are in contact with the

DNA may also serve to cause the observed periodicity. The

majority of the potentially applicable models are covered in the

literature [13,24,27,34]. Further work is necessary to resolve this

completely.

Cell proliferation in neurons and glial cells has been observed in

the subependymal layer adjacent to the caudate nucleus in human

HD brains [47]. However, polymerase slippage usually forms

small expansions [17], and the repetitive uniformity of the periodic

expansion makes it unlikely that polymerase slippage is responsible

for the dramatic expansions seen in cortex and striatum.

Furthermore, the lack of periodically spaced peaks containing

fewer repeats than the mice were born with – as would be

expected from a bi-directional process - means that 7-repeat

hairpin-based contraction events occur either at a negligible rate in

comparison to expansions, or do not occur at all. During the 18

week period, tail-type expansion events are not evident in striatum

since they would obfuscate latter periodic peaks (Figure S6).

Therefore, the two expansion mechanisms seem to be either

entirely independent – not occurring simultaneously in the same

cell – or that if they do share common elements, they progress

along mutually exclusive pathways. However, it is important to

notice that both expansion mechanisms must be dependent on

proteins from the MMR complex, since expansions are eliminated

in all tissues in either Msh2 or Msh3 nulls in HD [21–24], and also

in DM1 [25,26]. To date, we have not managed to define the

individual cell types that are specific to these expansion

mechanisms. It will be of great interest to compare the expansions

observed in animal models to those in cultured HD mouse

fibroblasts, as a way of identifying the cell specificity of these

modes of expansion.

The liver may be particularly interesting in this regard, since

this tissue potentially exhibits a mix of both types of expansion

mechanisms. This could be attributed to different modes of

expansion occurring in different cell types. Indeed, instability of

the DM1 CTGNCAG repeat is known to occur in liver hepatocytes

with high DNA ploidy [48].

The question also arises as to why FEN1 did not influence CAG

repeat expansion in the organs tested. One might expect a

difference, since a recent in vitro study has shown that FEN1,

together with long-patch BER of long repeat sequences by

polymerase b, promotes expansion by facilitating the ligation of

hairpins formed by strand slippage [49]. However, FEN1 flap

activity has shown to be circumstantial, with much lower activity

in the striatum than in the cerebellum of R6/1 mice [33]. In yeast

the capture of flap structures by FEN1, rather than the

endonuclease activity, is the most important function of FEN1 in

preventing TNR expansion [50]. EXO- and GAP activity of

FEN1 are also involved in in vitro triplet repeat expansion in yeast

[32], and these activities are probably not influenced by the

Fen1E160D/E160D mutation. Therefore, it seems that the 20%

endonuclease activity [36] of the Fen1E160D/E160D mutation does

not affect the rate of CAG repeat expansions. In concordance with

our finding Fen1 did not control instability of (CTG)n*(CAG)n
repeats in a knock-in mouse model for DM1 [51].

It is worth considering briefly why this periodicity has not been

described before, since there are numerous potential reasons. One

possibility could be that the mice used in the present study exhibit

more instability due to environmental factors [52] or genetic

background [53]. Perhaps the periodic signal becomes more

disperse in older mice used elsewhere; degrading the quality of the

data, and that the age-range, as well as the relatively long starting

CAG lengths, of our samples is optimal for observing this

periodicity. Another possibility is simply that later versions of the

GeneMapper system are more sensitive, in comparison to the

GeneScan method applied in some older studies, allowing us to see

more detail. While periodicity has not featured in other studies of

similar tissues and disease models, it is difficult to state

unequivocally that it was unobservable in their data. The small

volume of data presented in articles, uncertainty over the precise

PCR conditions used and the simple fact that periodicity was not

the focus of these investigations can be sufficient cause for this

phenomenon to have been previously overlooked. There is some

variability among replicate striatum samples as shown in Figure

S10. This could be explained by sampling error or polymerase

slippage in early PCR cycles. Sampling error is however unlikely

to be the reason behind the periodicity as explained in Figure S12

and Text S2.

So far, we have only studied periodicity in the R6/1 mouse

model and without specific studies of other HD CAG mice models

the generality of our data is unknown. Yet, the R6/1 transgenic

mouse is a widely accepted and commonly used model for human

HD that exhibits a progressive neurological phenotype that

exhibits many of the features of HD [54]. HD CAG repeat

instability has shown to be similar in humans and mice, with the

longest expansion lengths occurring in striatum, followed by

cortex, and little expansion in cerebellum and most other tissues

[8,14,35]. In addition, the HD CAG repeat length appears to be

expand most in neuronal cells rather than glial cells in both species

[14,15]. Due to the long starting CAG repeat length in the

transgenic mouse, the model may be most relevant as a model for

juvenile HD. Given the stated similarities, there are grounds to

suspect that the mechanisms of expansion are identical in mice

and humans, only occurring at an accelerated pace in the mouse

on account of the long repeat tract. In this case, the mouse model

Continuous and Periodic Expansion of CAG Repeats
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would function as a good model for human cases with mid-life age

of onset as well. However, periodicity has not previously been

reported in HD patients. A possible explanation could be that the

repeat length in the R6/1 mouse is longer than the repeat length

that has been analyzed in any HD human tissue with regard to

somatic instability. The genomic localization of the randomly

integrated HD gene fragment in R6/1 mice might modulate the

CAG stability. Furthermore, CAG instability in HD patient brain

cannot be analyzed at an early time-point that would allow for a

direct comparison to the R6/1 data.

Importantly, CAG repeat expansion in human cortex is

associated with an earlier age of disease onset, in addition to the

role of the constitutional CAG repeat length [6]. This implies that

there are disease modifiers that influence somatic instability, and

conversely, factors that determine somatic instability which may

modify disease pathogenesis. It is therefore critical to understand

the mechanism of the different expansion processes and the factors

involved.

To summarize, we present two different mechanisms of somatic

CAG repeat expansion; a continuous bi-directional expansion in

tail, lung, heart and spleen tissues, and a dramatic periodic

expansion centred around 7-repeat insertions in striatum and

cortex. Further experiments are needed to determine whether the

7-repeat step-size is independent of CAG tract length and species

and it remains to be shown whether these two models can explain

the expansions observed in other brain tissues and organs, as well

as in humans. Nevertheless, these results provide significant new

insights into in vivo expansion mechanisms, which may also be

relevant to other triplet repeat disorders.

Methods

Ethics statement
All animal experiments have been approved by the local and

national animal - and are carried out according to the regulation

by FELASA (Federation of European Laboratory Animal Science

Associations).

Animals and tissues
B6CBA-Tg(HDexon1)61pb/J mice of the R6/1 line [54] with

,119 CAG repeats in exon 1 of the HTT gene, were purchased

from The Jackson Laboratories and either interbred or crossed

with C57BL/6J Fen1E160D/E160D mice [36]. The mice were fed Rat

and Mouse No.3 breeding diet (Special Diet Services) and tap

water ad libitum. At 3 weeks of age the mice were anesthetized by

i.p. injection of a combination of Midazolam (Dormicum

‘‘Roche’’) and Fentanyl/Fluanisone (Hypnorm) solutions, and tail

biopsies were taken. DNA from tail biopsies of the first two

generations were lysed as described [36] and DNA isolated using

standard NaCl precipitation or phenol/chloroform procedure. At

10 and 21 weeks of age the mice were sacrificed by cervical

dislocation. The organs were harvested, frozen on dry ice and

stored at 270uC. During dissection of striatum we lost 9 samples.

DNA from all tissues and tails from the F2 and F3 generation was

isolated according to the DNeasy Blood & Tissue kit (Qiagen

GmbH, Germany).

Genotyping
DNA from tail biopsies of 3-week old mice were used for

genotyping. HD mice were genotyped with forward 59-cggctgagg-

cagcagcggctgt-39 and reverse 59-gcagcagcagcagcaacagccgc-

caccgcc-39 PCR primers [54] according to the Advantage GC 2

PCR Kit & Polymerase Mix (Clontech, CA). The Fen1+/+ and/or

Fen1E160D/E160D knock-in allele was genotyped as described [36].

Sizing of CAG repeats
CAG repeats were sized by PCR with primers 59-FAM-

atgaaggccttcgagtccctcaagtccttc-39 and 59-ggcggctgaggaagctgagga-

39 according to [54] with slight modifications. Approximately 75ng

of genomic DNA (this approximates to DNA extracts from

,10,000 cells) was amplified with AmpliTaq Gold DNA

polymerase with PCR Buffer II, 1.25 mM MgCl2 (Applied

Biosystems, CA), and 2.5 mM dNTPs (GE Healthcare). The

cycling conditions were 94uC for 10 min, 35 cycles of 94uC for

30 sec, 64uC for 30 sec, 72uC for 2 min, and a final extension at

72uC for 10 min. The FAM-labeled PCR products were mixed

with GeneScan - 600 LIZ Size Standard and HiDi Formamide

(Applied Biosystems) and run on an ABI 3730 Genetic Analyzer

(Applied Biosystems). Sizing of the PCR fragments was performed

by using the GeneMapper Software Version 3.7 (Applied

Biosystems).

Data analysis
All raw data was processed through a masked Nelder-Mead

simplex fitting method, optimising free parameters of standard

deviation, mean and amplitude to fit consecutive normal

distributions sufficient to account for $98% of the total area of

the raw data set. In the case of tail data, only a single normal

distribution was required. These optimised parameters were

returned as the means (m), and standard deviations (s), which

were used to define the TNR lengths present in each data set.

CAG repeat tracts were flanked by sequences 86 bp in length as

verified by sequencing. Thus, the mean number of CAG triplets

(mt) present in a fragment analysis sample with a measured mean

(mm) is defined by mt = (mm286)/3. When analysing the periodicity

present in striatum and cortex data, standard frequency analysis

methods are not suitable, therefore our peak fitting method was

used to fit consecutive normal distributions to the raw data

(Figure 4A). We were unable to perform fitting analysis on 25

striatum samples due to the quality of the PCR product. The

means (ma, mb etc) and relative areas (Aa, Ab etc) of each peak were

calculated (Figure 4B). The intervals between neighbouring means

(S1, S2 etc) were also recorded at both 10 and 21 weeks. The area

(A) of each peak was used to estimate the number of cells

containing triplet repeats that had expanded with a step size

defined by the separation interval (S). The average area of the first

peak in all 21-week data (Aa from Figure 4B) was used to estimate

the proportion of non-expanding cells in the striatum as 54%

(s= 15.9), implying that approximately 45% of each striatum

sample underwent periodic expansions within the first 21 weeks.

By comparison, the proportion of dramatic expanding tissue

observed in cortex samples was ,20%. Previous work has shown

that the dramatic expansion observed in the striatum of adult

mouse brain tissue largely occur in the neuronal cells [15,14],

although slower expansion can be observed in glial cells and we

used this to approximate the level of expansion in neuronal cells in

combination with an estimate of the average number of expansion

events that were measured in 21-week mice.

Supporting Information

Figure S1 Further examples of curve-fits to raw data from

striatum. We present a further set of raw fragment analysis curves

paired immediately below with the corresponding normal

distribution curve-fits to samples from 21-week striatum samples,

in order to confirm the prevalence of the periodicity seen in the

data. Individual normal distribution fits are shown in magenta,

with the sum of all fitted curves shown in cyan.

Found at: doi:10.1371/journal.pgen.1001242.s001 (1.49 MB PDF)
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Figure S2 Further examples of curve-fits to raw data from

cortex. We present a further set of raw fragment analysis curves

paired immediately below with the corresponding normal

distribution curve-fits to samples from 21-week cortex samples,

in order to confirm the prevalence of the periodicity seen in the

data. Individual normal distribution fits are shown in magenta,

with the sum of all fitted curves shown in cyan.

Found at: doi:10.1371/journal.pgen.1001242.s002 (0.49 MB PDF)

Figure S3 Comparison of 6-week striatum with 3-week tail. In

order to further confirm that expansion peaks in striatum tissue

develop with time and that the 3-week tail sample is a legitimate

representation of the condition of a given 3-week organ sample, we

present the results from a single mouse which was sacrificed at 6

weeks of age. Here we show the results from the 3-week tail sample

(A), to be compared with the striatum sample at 6-weeks with a

mean of 122 repeats (B) and cortex with a main peak at 120

repeats and a small peak at 126 repeats (C). The striatum sample

shows a mean slightly higher than the 3-week tail mean. However,

the limitations of the analysis technique mean that the distribution

could be similar to that shown for cortex, with two peaks which are

bundled together by the curve-fitting algorithm. To maintain the

unbiased nature of the analysis, it is necessary to admit the

uncertainly and refrain from attempting guided curve-fitting.

Irrespective of this, the small disparity between the 6-week

striatum and 3-week tail mean values supports our stated

assumption that the near-birth repeat level in all organs is well

approximated by the level measured in a 3-week tail biopsy.

Found at: doi:10.1371/journal.pgen.1001242.s003 (0.24 MB PDF)

Figure S4 Proportions present in samples with mixed popula-

tions. Our ability to estimate the proportions present in samples

with mixed populations of repeat lengths was tested, as shown

below. Two separate samples containing 120 and 129 repeats were

mixed in a variety of ratios, and then processed by fragment

analysis. The spectra were analyzed as described in the paper and

the fitted curves are shown below. The results show that the

technique is more than adequate for the estimation of sample

distributions, particularly when applied to an entire data set.

Found at: doi:10.1371/journal.pgen.1001242.s004 (0.27 MB PDF)

Figure S5 Striatum samples separated by repeat length after

three consecutive 106 dilutions. To clarify that individual

fragment analysis samples from striatum are composed of DNA,

we decided to perform a limited set of serial dilutions on a single

21-week striatum sample and then proceed with fragment analysis,

in order to see whether the original sample could be divided up

into individual peaks, thereby further validating our multiple

curve-fitting analysis method. A) Fragments from an original

sample showing separable peaks (black below) were subjected to 3

successive 106 dilutions. This resulted in a group of samples in

which there was a finite chance that fragments of only one, or a

few, different lengths would exist, compared to the original sample.

Several of these samples were then amplified by PCR and the

peaks from three separate samples are shown here (blue, green and

red), with clearly discernable means that correlate with the peaks

shown in the original data. These results show that where

individual length fragments are separated out by dilution, their

means align well with the peaks that are visible in the original data,

reinforcing the conclusion that striatum samples contain TNR

tracts which have expanded periodically by multiples of ,7

insertions. While a small pool PCR (spPCR) technique has been

used to show that the fragment analysis curve resembles the

distribution of individual fragment lengths measured in small pools

(Gonitel et al. DNA instability in postmitotic neurons. ProcNatlA-

cadSci USA (2008) vol. 105 (9) pp. 3467–72 Figure S10), the

resolution of fragment lengths detected is too low to detect the

periodicity we show here. We show that individual peaks that align

with the peaks found in the original samples at 10 weeks (B) and 21

weeks (C) can be found at a range of dilutions. What is notable

here is that the standard deviation of these peaks appears to be

fairly independent of the dilution level. At the highest dilutions, the

expectation is that the PCR amplification occurs from a single

fragment, while lower dilutions would be expected to start with a

greater number of fragments. The consistency of standard

deviations suggests a high similarity between all fragments in the

less dilute samples. A credible high-resolution spPCR approach

would unfortunately require in the region of thousands of samples

before it improved upon the results from the existing fragment

analysis technique.

Found at: doi:10.1371/journal.pgen.1001242.s005 (1.14 MB PDF)

Figure S6 Simulation of periodic expansion with and without

slipped-strand expansion. Here we present the results of three

simulations of 7-repeat periodic expansion in a population of

20,000 cells, with varying levels of simultaneous slipped-strand

expansion and contraction as observed in tail. In all cases the

probability of a 7-repeat step, a unitary expansion and a unitary

contraction are shown. In the first case (A), no slipped strand

expansion and contraction are allowed, leaving clearly defined

peaks throughout the data, similar to those observed in real

striatum data. (B) is simulated with approximately a quarter of the

level of slipped strand expansion and contraction, which renders

the peaks indistinguishable. In (C) with the measured levels of

expansion and contraction in tail, the distribution becomes utterly

uninformative. This is the basis for our argument that slipped-

strand and periodic expansions do not occur simultaneously in

striatum.

Found at: doi:10.1371/journal.pgen.1001242.s006 (0.11 MB PDF)

Figure S7 Increased replication does not increase expansion rate

in spleen. Proliferating cell nuclear antigen staining of frozen

spleen sections from HD mice with Fen1 mutation (lymphoma)

and without Fen1 mutation (normal spleen) are shown (A).

Histograms of expansion levels in 21-week spleen samples

presenting lymphomas from HD mice with Fen1 mutation (blue)

and normal spleens from HD mice (red), show no significant

difference (B). Increased replication in lymphoma tissues does not

affect the rate of CAG repeat expansion. The continuous

expansion in spleen therefore appears to be independent of

replication.

Found at: doi:10.1371/journal.pgen.1001242.s007 (1.78 MB PDF)

Figure S8 Increased replication does not increase expansion rate

in spleen. (A) A proposed model mechanism for the slight

expansions measured in CAG tracts of tail tissue is shown. Since

this expansion is the result of a multitude of small expansion and

contraction events within individual cells, we present a model that

accounts for both processes by alternate processing of migrated

loop-outs formed as slipped-strand structures within the repeat

sequence. Initiated by a bubble, loop-out, or cruciform structure,

the loops on opposite strands may migrate apart, rather than

resolving back into a duplex formation. Should a loop be

processed as an error by either of the alternate mechanisms

shown, a single contraction or expansion event can occur.

Removal of a loop structure on either strand causes a single

repeat contraction, while nicking and gap-filling on the strand

opposite to a loop results in a single repeat expansion. A slight bias

favouring expansion over contraction will result in the overall

population expansion measured in tissue samples. (B) Explanation

of simulations videos: All videos show the starting 3-week

distribution (blue) and the daily progress of the distribution under

Continuous and Periodic Expansion of CAG Repeats
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the given expansion mechanism, up to 21-weeks (red). Addition-

ally, for extra clarity, inset on the right is a matrix of 10,000 points

coloured by the number of repeats in each individual cell, to

represent the actual number of repeats in each cell. Meanwhile,

inset on the left is a histogram of the probabilities for expansion

and contraction for each CAG repeat insert length, which have

been chosen for the simulation.

Found at: doi:10.1371/journal.pgen.1001242.s008 (2.11 MB PDF)

Figure S9 Hypothetical hairpin-based model for periodic

expansion. There are several potential models that could explain

a periodic expansion mechanism with an average expansion length

of 7 repeats. All of these require some inherent stabilisation of a

loop of DNA, whether it be self-hybridizing, or in coordination

with a protein or complex which interacts with DNA. In the

following model we propose a means by which a hairpin can be

stabilized around an average of 7 repeats in length. The hairpin

formation should be considered as a Markov chain of transitions

between states, whereby the mean/most-stable state is gives a 7-

repeat hairpin and other lengths are distributed around this mean.

A proposed pathway for periodic expansion by the step-wise

insertion of 7-repeat hairpins is shown. After a preliminary strand

break the CAG triplets are displaced from the DNA duplex and

initially form an unordered flap. As the flap length increases, the

flap alternates between metastable folded and disordered states.

Continued strand displacement increases the overall length of the

flap up to and beyond, 6 repeats. At this point, depending upon

the instantaneous state of flap folding, there are effectively two

possible folding pathways. The first pathway is shown to the left

(blue background), whereby the first six repeats of the flap fold

stably into a hairpin, which is eventually recognised as an

erroneous structure and correctly repaired. There is no resulting

expansion. A finitely probable alternative pathway is shown to the

right. A stable 6-repeat hairpin is formed from CAG triplets 2 to 7

of the flap, leaving a single CAG repeat on the 5-end of the

hairpin. The overhanging CAG triplet may hybridize with an

unpaired CTG on the complementary strand, temporarily

stabilizing the hairpin on the duplex. The stabilizing flap facilitates

gap-filling repair and ligation of the CAG loop to the duplex

DNA. Subsequent repair of a nick or a lesion along the CTG

strand causes the extra CAG repeats to be spliced into the

sequence, generating a single 7-repeat expansion event. Inevitably

there will be more or less stable - and consequently likely - flap

conformations with lengths greater or less than 7 repeats, but a

mean-length or most probable length of 7-repeats would produce

the observed expansions. While this may not be the only means of

inserting a longer stabilized repeat sequence into the original

sequence, the essential length-dependent stability of loopout

structures which may also function as the basis for expansion

would be related to the stability of the hairpins illustrated here.

Found at: doi:10.1371/journal.pgen.1001242.s009 (0.54 MB PDF)

Figure S10 Replicate PCR, striatum samples from the same

mouse. In order to further confirm the periodicity we observe in

our striatum samples, we have performed replicate PCR on 9

samples from the same mouse, which we show below. As is clear

from the figures, periodicity is a consistent feature of the samples,

although the size and mean position of the peaks show some

variation between replicate samples. The variability between peak

heights could be attributable to sampling error during the PCR

preparation or one-repeat expansion or contraction early in the

PCR cycles as described in Text S1 and Figure S12. While we

begin with 75ng of template DNA, we are unable to verify that all

of this is finally accessible for amplification. The variability

between peak positions could result from technical as well as

biological factors. It remains clear however that a general

periodicity is present in repeat samples and that the general trend

of the periodicity within the data is calculable when considered

over many samples.

Found at: doi:10.1371/journal.pgen.1001242.s010 (1.35 MB PDF)

Figure S11 Examples of data from Heart, Spleen and Lung,

matching the pattern shown in tail data. In order to confirm our

statement in the manuscript that Heart (A), Spleen (B) and Lung

(C) data all show similar monomodal distributions to Tail data, we

have included examples of curves from these three tissue types.

Found at: doi:10.1371/journal.pgen.1001242.s011 (0.81 MB PDF)

Figure S12 PCR of repeat sequences and the observation of

periodicity. (A) Simulated error-prone PCR from a single

molecule. Starting with a single 119 repeat template, and plotting

all PCR products (coloured by length) on equal sized areas, we can

see the development of length variability in the population shown.

See Text S1 for full discussion and implications. (B) Analysis of the

efficiency of PCR on HD versus Neil1. See Text S1 for full

discussion and implications. Quantifying the amount of product

(using Kodak Molecular Imaging software) returned the raw data

results shown for 10ng of 500bp standard, Neil1 and HD. (C) Brief

illustration of the relative amounts of PCR product dependent

upon both first cycle and general PCR efficiencies. (D) Periodicity

visible in samples amplified from 250ng genomic DNA. As an

additional element, to demonstrate that periodicity can also be

observed in samples amplified from a significantly larger sample of

genomic DNA, we present two examples from one striatum

sample, where 250ng of genomic DNA has been amplified and

where periodicity is also observable.

Found at: doi:10.1371/journal.pgen.1001242.s012 (1.97 MB PDF)

Text S1 A deeper discussion of model parameters and

estimations.

Found at: doi:10.1371/journal.pgen.1001242.s013 (0.03 MB

DOC)

Text S2 PCR of repeat sequences and the observation of

periodicity.

Found at: doi:10.1371/journal.pgen.1001242.s014 (0.03 MB

DOC)

Video S1 CAG expansion/contraction 1.

Found at: doi:10.1371/journal.pgen.1001242.s015 (1.42 MB

MOV)

Video S2 CAG expansion/contraction 1 2 3.

Found at: doi:10.1371/journal.pgen.1001242.s016 (1.42 MB

MOV)

Video S3 CAG expansion/contraction 3.

Found at: doi:10.1371/journal.pgen.1001242.s017 (1.38 MB

MOV)

Video S4 CAG expansion 4 5 6 7 8 9 10.

Found at: doi:10.1371/journal.pgen.1001242.s018 (1.44 MB

MOV)

Video S5 CAG expansion/contraction 5.

Found at: doi:10.1371/journal.pgen.1001242.s019 (1.39 MB

MOV)

Video S6 CAG expansion/contraction 5 6 7 8 9.

Found at: doi:10.1371/journal.pgen.1001242.s020 (1.40 MB

MOV)

Video S7 CAG expansion/contraction equal probability 5 6 7 8

9 10.
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Found at: doi:10.1371/journal.pgen.1001242.s021 (1.62 MB

MOV)

Video S8 CAG expansion/contraction 7.

Found at: doi:10.1371/journal.pgen.1001242.s022 (1.31 MB

MOV)
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