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A large amount of patient information has been gathered in Electronic Health Records (EHRs) concerning their conditions. An
EHR, as an unstructured text document, serves to maintain health by identifying, treating, and curing illnesses. In this research,
the technical complexities in extracting the clinical text data are removed by using machine learning and natural language
processing techniques, in which an unstructured clinical text data with low data quality is recognized by Halve Progression, which
uses Medical-Fissure Algorithm which provides better data quality and makes diagnosis easier by using a cross-validation
approach. Moreover, to enhance the accuracy in extracting andmapping clinical text data, Clinical Data Progression uses Neg-Seq
Algorithm in which the redundancy in clinical text data is removed. Finally, the extracted clinical text data is stored in the cloud
with a secret key to enhance security. (e proposed technique improves the data quality and provides an efficient data extraction
with high accuracy of 99.6%.

1. Introduction

Clinical data is a standard source of information in most
clinical andmedical studies. Medical information is gathered
either as part of routine hospital treatment or as part of a
systematic clinical research plan. Clinical evidence is divided
into six categories: Administrative reports, claims data,
patient/disease registries, health audits, clinical trial data,
and electronic health records. (e purest type of electronic
clinical data is collected at a treatment institution, hospital,

clinic, or internship at the point of service. (e electronic
medical record (EMR), also known as the electronic health
record (EHR), is normally not accessible to outside re-
searchers. A longitudinal database of electronic health in-
formation about particular patients and communities is
known as an electronic health record (EHR) [1]. EHRs are
often used to track healthcare procedures. EHRs provide a
wealth of knowledge that makes them useful for a variety of
other purposes [2]. Reducing prescription mistakes,
implementing improved coordination and information-
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sharing practices between physicians, lowering healthcare
rates, better control of patients’ medical records, improving
care quality, and contributing to better outcomes are only a
few examples.

An electronic health record is an electronic version of a
patient’s medical records [3] maintained by a health care
professional for some time, and it includes all of the es-
sential statistical healthcare details related to the care
provided to a person by a specific provider, such as profiles,
success notes, complications, prescriptions, important
signs, and medical history [4]. Privacy, secrecy, and con-
fidentiality are all concerns that must be resolved in an
electronic health record system [4]. Even though security
and privacy are closely linked, they are fundamentally
separate. Privacy refers to a person’s ability to choose when,
how, and to what extent personal information is [5, 6]
exchanged or transmitted by others, while confidentiality
refers to the degree to which access to someone’s personal
information is limited and permitted. An individual’s trust
in the safety and confidentiality of their medical history had
a positive impact on their motivation to create an electronic
health record [7]. Patients’ ability to encourage health care
providers to exchange their medical data by using cloud
computing techniques has been [8] limited as a result of
privacy issues. Antivirus tools, chief information security
officers, and cloud computing are other security methods
that are used, but their deployment is [9] budget-
dependent.

Even though the cloud storage infrastructure seems to be
successful, antivirus protection remains a more widely used
security measure. Security concerns have been raised as a
result of IT developments such as hosting health data on
remote servers managed by third-party cloud service pro-
viders [10]. Specific skills for interpreting and collecting
information would be needed as information about the
patient’s condition continues to grow rapidly. Graphics,
icons, free text, and numbers are all examples of data formats
that can be contained in the EHR program [11]. (ere are
two types of data formats: structured and unstructured. [12]
Since the data already has a defined structure, traditional
mathematical or machine learning approaches may be used
to analyze structured data types with little effort. Hospital
notes, surgical history, discharge summaries, radiology re-
ports, diagnostic photographs, and pathology reports are the
unstructured data contained in EHR.

Natural language processing (NLP) refers to a com-
puter’s capacity to comprehend the more recent human
speech words and text. Natural language processing is
gaining popularity in healthcare due to its ability to scan,
review, and translate massive volumes of patient data. In the
healthcare media, NLP will accurately give voice to the
unstructured data of the universe, [13] providing incredible
insight into understanding efficiency, refining processes, and
improving patient outcomes. Natural language processing in
healthcare employs sophisticated engines capable of
scrubbing vast amounts of unstructured health data for
previously ignored or incorrectly written medical condi-
tions. Using [14–16] machine-learned algorithms to inter-
pret medical records in natural language, an illness that

could not have been coded before may be discovered. Al-
gorithms are the building blocks in a machine learning
program and are a series of instructions for completing a set
of tasks. (e algorithms are programmed to learn from data
without the need for human interference. [17] Machine
learning algorithms increase prediction accuracy over time
without the need for scripting. Machine learning applica-
tions can potentially improve the accuracy of treatment
protocols and health outcomes through algorithmic
processes.

(us, the analysis of unstructured data with a novel
solution for data sensitivity, security, quality, and accessi-
bility using machine learning and natural language pro-
cessing should be proposed.(e main goal of this research is
to develop machine learning and natural language pro-
cessing method for recognizing unstructured clinical text
data. Even though several data extraction strategies have
been proposed, recognizing the unstructured clinical text
data remains difficult. (e content of the paper is organized
as follows: Section 1 represents the introduction; Section 2
presents the literature survey of clinical text data; the novel
solutions are presented in Section 3; the implementation
results and its comparison are provided in Section 4; finally,
Section 5 concludes the paper.

2. Literature Survey

Digital Imaging and Communication inMedicine (DICOM)
is considered to be the most commonly used medical image
format among hospitals. Dorgham et al. [18] proposed to
enhance the secure transfer and storage of medical images
on the cloud by using hybrid encryption algorithms. One of
today’s most important priorities is the security of data
processed in cloud data centers. When confidential data,
such as medical images, is uploaded or shared on the cloud,
it must be treated with extreme caution to ensure its reli-
ability. (ey are made up of one or more compact files that
cannot be seen on a screen and saved in a folder. As a result,
the data can be accessed at any time. As a result, preserving
data protection and denying unauthorized access becomes
critical.

Agrwal et al. [19] have used a hybrid integrated Fuzzy
Analytical Hierarchy Process-Technique for Order of
Preference by Similarity to Ideal Solution (Fuzzy AHP-
TOPSIS) method for evaluating various information secu-
rity. It is essential and sufficient to evaluate information
security using an integrated fuzzy MCDMmethodology and
to define various security attributes in a systematic and step-
by-step (tree-based) fashion. (is web application did not
focus on data quality and data based on electronic health
records.

Clinical data synthesis aims at generating realistic data
for healthcare research, system implementation, and
training. It is a promising tool for situations where real-
world data is difficult to obtain or unnecessary. Chen et al.
[20] examined an open-source well-documented synthetic
data generator Synthea, which was composed of key ad-
vancements in this emerging technique. (ey selected a
representative 1.2-million Massachusetts patient cohort
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generated by Synthea. Synthea and other synthetic patient
generators do not use model for treatment anomalies or the
possible results that could emerge from them. So synthetic
data generators consider critical quality measurements in
their logic and model when clinicians can deviate from the
standard to produce a more practical data collection.

In recent years, deep learning techniques have dem-
onstrated superior performance over traditional machine
learning (ML) techniques for various general-domain NLP
tasks. Clinical documents pose unique challenges compared
to general-domain text due to the widespread use of acro-
nyms and nonstandard clinical jargon by healthcare pro-
viders.(e study by Hasan et al. [21] shows that compared to
methods using linear models such as support vector ma-
chines (SVMs) or logistic regression, nonlinear neural
network models have promising outcomes. (e obtained
state-of-the-art outcomes as opposed to the lexicon-,
knowledge-source-, and conventional machine learning-
based systems, demonstrating the usefulness of deep
learning approaches to solve different clinical NLP issues, do
not state the accessibility of unstructured data.

Identifying chronic conditions in the electronic health
record is an important but challenging task. Here, systems
adopt methods that allow for automated “noisy labeling” of
positive and negative controls. Murray et al. [22] combined
a variant of the Easy Ensemble method with the technique
of Learning with Noisy Labels. Each of the individual
models was trained by using all the 583 positive cases and a
random pool of 583 negative patients. All the models in the
ensemble were trained with 1 : 1 class balance and shared
the same positive set. (is is important for conditions such
as systemic lupus erythematosus SLE, for which diagnostic
uncertainty is common, and there is often incomplete
documentation.

Kumar et al. [23] presented an overview of the current
state of healthcare information and a tiered model for
healthcare information management in businesses. (e
report also assesses the numerous elements that play a role
in healthcare information security breaches. AHP-TOPSIS’
hybrid fuzzy-based symmetrical technique. Furthermore,
to examine the impact of the estimated results, the authors
tested the results on Varanasi’s local hospital software. (e
comparison and sensitivity analysis verify the tested out-
comes of the parameters. However, the efficient and ac-
curate extraction of clinical text data is not considered in
this work.

Harnoune et al. [24] presented an end-to-end strategy
for information extraction and analysis from biological,
clinical notes using the Bidirectional Encoder Representa-
tions from Transformers (BERT) model and the Conditional
Random Field (CRF) layer. (ey also constructed a named
entity recognitionmodel capable of recognizing entities such
as drug, strength, duration, frequency, adverse drug re-
sponses, the rationale for taking medicine, method of ad-
ministration, and form. However, the security and authority
of clinical data during storage are not considered in this
work.

In [18], cloud transfer of data was a tedious process [19].
Security should be maintained in clinical data [20] as

sensitive information needs more privacy [21] and data
quality to improve the accessibility [22] of unstructured data.
[23] requires efficient and accurate data extraction and in
[24], there is a need to consider the security and authority in
the clinical text data. Hence, it is understood that the existing
techniques face problems in improving the quality of clinical
text data; the accessibility of unstructured data is not pro-
vided, and it is difficult to maintain data security and au-
thority. Based on an overview of the literature survey, the
problem faced on data security, data quality, accessibility of
unstructured data should be processed, and a new novel
solution had to be implemented based on machine learning
and natural language processing.(e proposed methods will
contribute to all stages of clinical text data extraction,
starting with splitting the clinical text data and ending with
extraction and storage. (e approaches that are already in
use in clinical data extraction are explained above. (e next
section explains the techniques and benefits of the algo-
rithms in the proposed method.

3. Discovery of Knowledge in Clinical Data
Using Machine Learning and Natural
Language Processing in Cloud

(e machine learning approach focuses on advanced
computational techniques to identify data and the natural
language processing methods enabled to process and analyze
textual data written in human languages. Recognition of
clinical text data was a tedious process; existing techniques
have used several methods for structured data but not in
unstructured data, so it could not determine the effective
results and data quality. Using our novel Halve Progression,
we recognize unstructured clinical text data based on ma-
chine learning techniques to split the unstructured clinical
text data according to the disease condition.(e novel Halve
Progression technique utilizes a novel Medical-Fissure al-
gorithm that uses cross-validation based on structured data
and thus, the recognition terms are made to be more effi-
cient. After recognizing text data, extraction of data is re-
quired to obtain extensive knowledge in clinical data. (is
can be processed based on clinical language processing;
existing techniques could not determine the ambiguity, and
mapping with medical terms was not accurate. Our pro-
posed Clinical Data Progression technique uses Neg-Seq
algorithm that uses statistical features and Unified Medical
Language System (UMLS) with unique identification for
mapping. Hence, the resultant data can be used for further
diagnosis activity. Extracted data can be stored in a cloud
platform since it is considered to be best for accessibility and
storage, so an effective cloud framework is required to store
clinical data as it contains vast data and sensitive infor-
mation. Our Cloud Progression uses RS access control that.

It performs validation and authorizes and has a private
key for data sharing. So the clinical text data is stored in the
cloud with security and authority. Hence, as shown in
Figure 1, in our proposed novel method, clinical text data is
recognized, extracted, and stored efficiently by machine
learning techniques and natural language processing in a
cloud environment.
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3.1.Halve Progression. (e clinical text data recognition was
challenging, particularly unstructured clinical text data
recognition, and the prior approach could not identify the
effective outcome because it required many conversion
procedures. A machine learning approach is employed in
this work to detect unstructured clinical text data. Using a
cross-validation approach, the Medical-Fissure Algorithm
divides clinical text data based on illness state.

Halve progression is used to split the clinical text data
towards a more advanced state, thereby increasing the data
quality. Halve progression uses the Medical-Fissure algo-
rithm for the clinical text data categorization. In the
Medical-Fissure algorithm, the original clinical text data,
which contains much clinical information, is divided into
reduced categories of clinical text data according to some
specific condition. Halve Progression based on Medical-
Fissure Algorithm provides the best result with F-score in
cross-validation trials, indicating the need to split the text
data depending on the sick state. For example, the trained
five classifiers are needed to detect arterial hypertension
(AH), myocardial infarction (MI), stroke, diabetes mellitus
(DM), and angina pectoris (AP). For stroke, MI, and AH,
using negation classifiers is critical.(e classifiers for MI and
AH learn context and assist in the discovery of more ex-
amples of these illnesses. (e most important words for
identifying MI, including illness terminology and treatment
options, are included in surgery and medications.

When the negations are recognized, a logistic loss is used
to categorize each phrase in the anamnesis as containing or
not containing negation. Sentences or portions of sentences
with negations are deleted from anamnesis so that these texts
may be utilized to create additional models that solely ad-
dress the patient’s current situations, such as topic modeling.

(e basic goal of the Medical-Fissure Algorithm is to detect
unstructured clinical text data and split it based on a unique sick
state. As shown in Figure 2, First, unstructured clinical data is
used as input, which implies data that does not follow any

conventional format. Second, the Medical-Fissure Method
calculates the count in the clinical text data, and the prerequisite
for this algorithm is that the clinical text data be present in the
input.(ird, using a cross-validation technique, the clinical text
data is separated into distinct illness conditions. Finally, the
filtered clinical text data is the output of this Medical-Fissure
Algorithm. As a result, data quality improves and recognition
words become more efficient. After recognizing text data, data
extraction is required to obtain extensive knowledge in clinical
data; this can be processed using clinical language processing
because ambiguity determination and mapping with medical
terms were not accurate. (e next subsection explains the next
approach, Clinical Data Progression.

3.2. Clinical Data Progression. (e Halve Progression im-
proves data quality, but the mapping and extraction of medical
words are ineffective. Clinical Data Progression employs the
Neg-Seq Algorithm, which is pretrained using statistical
characteristics, which include the size, provenance, collection
methods, and annotation of the clinical text data. Statistical
characteristics accurately collect data, conduct appropriate
analyses, and effectively increase the efficiency of data ex-
traction.(eNeg-Seq Algorithm uses statistical features for the
extraction of clinical text data. By using statistical features, the
clinical text data is extracted based on medical terms. For
example, if a medical term related to heart is taken means the
features are extracted based on the information related to the
heart, such as heart operation, heart diseases, treatments taken
by the heart patients, medicines for heart diseases, etc. UMLS
with unique identifiers is utilized for mapping. It is essential to
eliminate any additional brackets, points, commas, colons,
semicolons, dashes, hyphens, parentheses, apostrophes, quo-
tation marks, and so on from the medical transcript. Neg-Seq
Algorithm is mainly used to remove the redundant data
present in the reduced categories of clinical text data obtained
from Halve Progression technique. Since Neg-Seq Algorithm

Halve Progression

Medical Fissure 
Algorithm performs 

cross validation

Clinical Data 
Progression Cloud Progression

RS access control with 
delegate server

Neg-Seq Algorithm 
pretrained with 

statistical features

Unstructured Data

Figure 1: Proposed framework.
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uses statistical features, it can detect redundant data and even
redundant punctuations and thereby makes the redundant
features absent in the reduced categories of clinical text data.

(e Neg-Seq Algorithm is syntactically nonredundant;
however, it can create semantically redundant patterns in
reality. For pairings of patterns like (a b −b c) and (a −b b c),
redundancy exists, and it is easy to avoid creating both
effectively. To overcome this problem, the method describes
the negative datasets as a collection of negative items before
composing the final dataset with new items.

Mapping medical terms with Unified Medical Language
System (UMLS) involves the following steps:

(1) Create a class model for your development domain
(2) Use the model to identify persistent classes
(3) Assume that each persistent class in the model maps

to one relational table
(4) For each class hierarchy, choose an appropriate

inheritance technique
(5) Add a unique ID (OID) for each class or choose an

appropriate primary key
(6) Map basic data types to table columns for each class
(7) Map complicated characteristics (association, ag-

gregation) to Pk, FK pairs for each class
(8) Keep an eye out for the strong and weak aggregation

types
(9) Map Pk, FK pairs identifying the role ends

according to the specified key for associated classes
(10) Classify relationship roles according to their

cardinality

By using UMLS with unique identification, the major
issues in mapping the clinical text data are solved and it
makes the mapping more accurate.

(e Neg-Seq Algorithm, as shown in Figure 3, improves
the extraction and mapping methods by using the result of
Halve Progression, which is the categorized clinical text data,
as input and removing the unwanted punctuations that are
repeated in the input; thus, this algorithm aims to remove
redundancy in the clinical text data. (e redundancy is then
eliminated from every row and column. Finally, precise data
is obtained. As a result, the extracted data can be used for
further diagnostic purposes.

Extracted data can be stored in a cloud platform because
it is the best option for accessibility and storage; however, an
effective cloud framework is required to store clinical data
because it contains a large amount of data and private in-
formation. (e next subsection explains the next approach,
Cloud Progression.

3.3. Cloud Progression. (e data collected from the Clinical
Data Progression is kept in the cloud, which should keep
critical information secure. (e clinical text data is saved in
the cloud to improve security and authority. For storage,
cloud advancement uses a framework as a service. Storage as

Input: unstructured clinical text data
Output: filtered categories of clinical text data
Step 1: start
Step 2: take the Unstructured clinical text data as input.
Step 3: calculate the word count in the clinical text data.
Sent_count� sent_count + len (sentences)
Step 4: assign a condition in which the clinical text data should be present in the clinical text data list.
Step 5: split the clinical text data according to the disease condition.
Categories� clinicaldata.groupby (clinicaldata [‘medical_specialty’])
Step 6: finally get the filtered categories of clinical text data.
Step 7: end

ALGORITHM 1: Medical-Fissure Algorithm.

Start

Calculate the word count in 
clinical text data

Split the clinical text data
according to the disease 

condition

Reduced categories of clinical 
text data

Stop

Read the unstructured 
clinical text data

Figure 2: Flowchart for halve progression.
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a service refers to the practice of storing data on public cloud
storage facilities. However, it needs to improve privacy;
therefore, it is required to employ RS (Recommended
Standard) access control, in which a delegate server per-
forms validation and grants authorization. (e delegate
server acts as an intermediary and stores the security key for
data exchange. (e main objective of RS access control is
identification, authorization, authentication, confidentiality,
integrity, availability, and accountability.

Figure 4 shows the cloud progression using cryptogra-
phy for cloud storage. Cloud cryptography uses encryption
techniques to protect data that will be utilized or stored
there. It enables users to use shared cloud services simply
and safely since all data held by cloud providers is encrypted.
Cloud cryptography secures sensitive data without slowing
down information flow. (e encryption method encrypts
data on the client-side before sending it to the cloud for
storage. Plaintext will be converted to ciphertext, preventing
data theft fromman-in-the-middle attacks.(at is, even if an
attacker intercepts the data, he will be unable to read it or
derive any useful information from it. (is secret key is used
for both encryption and decryption algorithms.

(e private key is taken as <j, k> and the clinical text data
is taken as ‘t’ and the ciphertext that is the encrypted clinical
text data is taken as ‘q’

To determine the ciphertext ‘q’ the below formula is
used:

q � t
jmodk. (1)

To determine the clinical text data ‘t’ the below formula is
used:

t � q
jmodk, (2)

where

q: encrypted clinical text data
t: original clinical text data
<j, k>: secret key

Decryption is the process of restoring data to its original
unencrypted state after it has been rendered unreadable via
encryption. Users receive encryption keys from cloud
storage providers, which encrypt data. When data must be
decrypted, these keys are utilized to do it safely. (e hidden
data is decrypted and made readable again. Figure 5 shows a
flowchart for cloud encryption and decryption algorithm.

As a result, clinical text data is securely and authorita-
tively kept in the cloud. (is enables machine learning and
natural language processing techniques to detect, retrieve,
and save the clinical text data in the cloud environment
efficiently. Overall, the Discovery of Knowledge in Clinical
Data Using Machine Learning and Natural Language Pro-
cessing includes n major techniques. (e first is Halve

Start

Remove the unwanted symbols 
in the clinical text data

Determine the similarity by 
checking each row and 

column

Remove the redundancy by 
considering the similar rows and 

columns only once

Stop

Read the filtered categories 
of clinical text data

If 
similarity > 0

Yes

No

Figure 3: Flowchart for Neg-Seq algorithm.

Input: filtered categories of clinical text data
Output: clinical text data without redundancy
Step 1: start
Step 2: take the filtered categories of clinical text data as the input.
Data� filtered_categories [[‘transcription’, ‘medical_specialty’]]
Step 3: remove unwanted punctuations which are repeated in the input.
REPLACE_BY_SPACE_RE� re.compile (‘[/(){}\[\]\|@,; ]’)
Step 4: find similarities by checking each row and column of the clinical text data
Step 5: if two or more rows or columns are similar, then remove the redundancy by considering the rows or columns only once.
Step 6: thus, the data is extracted without any redundancy and the extracted data is more accurate.
Step 7: end

ALGORITHM 2: Neg-Seq Algorithm.
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Progression, which uses a Medical Fissure algorithm to split
clinical data based on diseased conditions, making diagnosis
easier and improving data quality. Second, Clinical Data
Progression employs the Neg-Seq Algorithm, which is
pretrained using statistical characteristics to extract relevant
data while also increasing the significance of the mapping.
(ird, Cloud Progression is used to securely store data on
the cloud. (us Discovery of Knowledge in clinical data
using machine learning and natural language processing
provides authorization and validation to clinical text data.
(e next section explains the results obtain from the Dis-
covery of knowledge in clinical data using machine learning
and natural language processing in the cloud and discusses it
in detail.

4. Results and Discussion

(is segment provides a detailed description of the imple-
mentation results and the performance of the proposed
system and a comparison section to ensure that the proposed
system performs valuable.

4.1. Experimental Setup. (is work has been implemented in
the working platform of python with the following system
specification and the simulation results are discussed below.

Platform: Python
OS: Windows 7
Processor: 64 bit Intel processor
RAM: 8GB RAM
Dataset: Medical Transcription (MTSamples) Dataset

4.1.1. Dataset Description. (eMTSamples dataset contains
5,000 sample medical transcription reports from various
specialties. (e dataset includes 40 medical specialties, in-
cluding ‘Surgery’, ‘Consult - History and Phy’, and ‘Car-
diovascular/Pulmonary’. Each specialization has a set of
sample reports ranging from 6 to 1103 [25–27]. (e medical

Start

Import the data from 
original clinical text data

Encrypt the clinical 
text data using Cloud 
Encryption Algorithm

Encrypted clinical text data

Stop

Original clinical text data

Import the data from 
encrypted clinical text data

Decrypt the clinical 
text data using Cloud 
Decryption Algorithm

Original clinical text data

Figure 5: Flowchart for cloud encryption and decryption
algorithm.

Clinical text data Encryption Encrypted clinical 
text data

Secret key

Clinical text data Decryption Encrypted clinical 
text data

Secret key

Cloud

Figure 4: Cloud Progression using cryptography for cloud storage.
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history, diagnosis, medicines, treatment plans, vaccination
dates, allergies, radiological pictures, and laboratory and test
results of a patient are all kept in this dataset. By using the
proposed method, these 40 categories are often divided into
21 categories (hence 1000 samples are considered for ex-
perimentation) based upon some specified conditions, that
is, by splitting the clinical text data according to the disease
condition using the proposed halve progression technique.

4.2. Results Obtained from Each Methodology. (e clinical
text data used as input and the obtained results from various
techniques are explained in a detailed manner.

(e MTSamplesdataset contains 40 classes that are
unstructured, whereas some classes do not have any useful
information for knowledge discovery from clinical data,
which are not considered as a training samples. In order to
exclude those uninformative classes, the halve progression
technique is employed in the proposed framework. (e
resulted classes from 40 are 21, along with a number of
records from the given 5000 record samples.(e resulting 21
classes with the record count are graphically represented in
Figure 6 and are statistically represented in Table 1. (e
records contained in those 21 classes are utilized for further
processing.

4.3. Performance Metrics of the Proposed Method. (e per-
formance of the proposed methodology and the obtained
clinical text data are detected by the following equation.

4.3.1. Accuracy. (e accuracy of the clinical text data is
calculated using

accuracy �
TP + TN

TP + TN + FP + FN
􏼢 􏼣∗ 100. (3)

TP: true positive value
TN: true negative value
FP: false positive value
FN: false negative value

Figure 7 represents the overall accuracy of the proposed
system; from the graph, it is clear that the proposed system
gives high accuracy with 99.6% of resultant clinical text data.
(e accuracy of the proposed system is increased to 99.6% by

using Clinical Data Progression Approach since this ap-
proach extracts the data with statistical features, which is
interpreted in Table 2.

4.3.2. Specificity. Specificity is derived from the equation:

specificity �
true negative

true negative + false positive
. (4)

Table 3 and Figure 8 clearly explain the specificity of the
proposed model, and the specificity of the proposed model is
about 98.6%. (e highest of about 98.6% specificity is
attained overall by the proposed methodology. (e speci-
ficity of the proposed model is increased to 98.6% by using
Halve Progression approach since the quality of data is
maintained by using this approach.

4.3.3. Sensitivity. Sensitivity is deduced using the formula

sensitivity �
true positive

true positive + false negative
. (5)

(e sensitivity of the proposed is determined as 98.68%,
which is illustrated in Figure 9 and Table 4. (e sensitivity is
overall between 97.2 and 98.68 percent.(e sensitivity of the
proposed system is determined by using Halve Progression
approach since the recognition and division of data makes
the clinical text data more sensitive.

4.3.4. F1 Score. F1 Score is defined as follows:

F1 �
2 ×(precision∗ recall)

precision + recall
, (6)

where

recall �
TP

TP + FN
,

precision �
TP

TP + FP
.

(7)

Table 5 and Figure 10 clearly show the F1 Score of the
suggested model, which is about 97.6 percent. As the
number of samples increases, the specificity of the model
also increases. Overall, the suggested technique achieves a
high level of F1-score of around 97.6 percent. (e F1-score

Step 1: start
Step 2: generate the secret key <j,k>.
Step 3: encrypt the clinical text data. (e encrypted data is given by
q � tjmodk

Step 4: store the encrypted data in the cloud.
Step 5: cloud user decrypts the encrypted data by determining the original clinical text data,
t � qjmodk.

Step 6: original clinical text data is obtained.
Step 7: stop

ALGORITHM 3: Cloud Encryption Algorithm and Decryption Algorithm.
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of the proposed system is determined by using the Clinical
Data Progression approach in which unique identification is
required.

4.3.5. Precision. (e closeness of two ormoremeasurements
to each other is known as precision.(e formula is presented
as follows:

Precision �
TP

TP + FP
, (8)

where

TP: true positive
FP: false positive

Figure 11 represents the overall precision of the pro-
posed system; from the graph, it is clear that the proposed
system gives high precision with 98.6% of resultant clinical
text data, which is listed in Table 6. (e precision of the
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General Medicine

Surgery

SOAP/Chart/Progress Notes
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Psychiatry/Pschology
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Ophthalmology
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Neurosurgery
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Figure 6: Halve progression output as reduced categories.

Table 1: Statistical representation of halve progression output as
reduced categories.

Medical speciality Statistical count
Cardiovascular/Pulmonary 371
Neurology 223
Urology 156
General medicine 259
Surgery 1088
SOAP/Chart/Progress notes 166
Radiology 273
Psychiatry/Pschology 53
Pediatrics-neonatal 70
Pain management 61
Orthopedic 355
Ophthalmology 83
Obstetrics/Gynecology 155
Neurosurgery 94
Nephrology 81
Hematology-oncology 90
Gastroenterology 224
ENT-otolaryngology 96
Emergency room reports 75
Discharge summary 108
Consult- history and phy 516
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Figure 7: Overall accuracy of the proposed system.
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proposed method is increased to 98.6% by using the Clinical
Data Progression approach since the mapping is done with
the help of UMLs.

4.3.6. Recall. Recall is defined as the ability of the model to
accurately predict the output.(e formula of recall is defined
as follows:

Recall �
TP

TP + FN
, (9)

where

TP: true positive
FN: false negative

From Figure 12 and Table 7, it is observed that the recalls
of the proposed system are about 98.64%. Hence, the recalls
increase with the increase in the number of samples. (e

recall of the proposed system is determined by using the
Cloud Progression approach.(is approach stores the entire
clinical text data in the cloud with an encryption process.
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Figure 8: Overall specificity of the proposed system.
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Figure 9: Overall sensitivity of the proposed system.

Table 2: Accuracy of the proposed system.

No. of samples Accuracy
100 97.2
200 97.3
300 97.5
400 97.8
500 98
600 98.2
700 98.3
800 98.4
900 98.5
1000 98.6

Table 3: Specificity of the proposed system.

No. of samples Specificity
100 97.146
200 97.27
300 97.457
400 97.757
500 98
600 98.134
700 98.2
800 98.365
900 98.544
1000 98.6

Table 4: Sensitivity of the proposed system.

No. of samples Sensitivity
100 97.2
200 97.4
300 97.7
400 97.9
500 98
600 98.14
700 98.24
800 98.322
900 98.566
1000 98.68

Table 5: F1-score of the proposed system.

No. of samples F1-score
100 96.2
200 96.3
300 96.5
400 96.8
500 97
600 97.2
700 97.3
800 97.4
900 97.5
1000 97.6
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Figure 10: F1-score of the proposed system.
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(is section describes the resultant performance of the
proposed system.(e next section describes a comparison of
various performances of the previous research with the
performance of the proposed method.

4.4. ComparisonResults of the ProposedMethod. (is section
describes various performances of the proposed method,
comparing with the results of previous methodologies and
depicting their results based on various metrics.

(e accuracy of clinical text data is compared with the
accuracy of the various previously proposed techniques.
From Table 8 and Figure 13, it is clear that the stack accuracy
of the proposed output achieves 97.9% which is 16% higher
than the existing output when compared with Support
Vector Machine (SVM) [27], Näıve Bayes (NB) [28],
K-Nearest Neighbor (KNN) [29], XGBoost [30], Random
forest [31], AdaBoost [32] and CatBoost [33].

(e precision of clinical text data is compared with the
precision of the various previously proposed techniques.
From Table 9 and Figure 14, it is clear that the stack precision
of the proposed output achieves 98.9% which is 11% higher
than the existing output when compared with SVM [27], NB
[28], KNN [29], XGBoost [30], Random forest [31], Ada-
Boost [32], and CatBoost [33].

(e recalls of clinical text data are compared with the
recalls of the various previously proposed techniques. From
Table 10 and Figure 15, it is clear that the stack recalls of the
proposed output achieve 98.7%, which is 12% higher than
the existing output when compared with SVM [27], NB [28],
KNN [29], XGBoost [30], Random forest [31], AdaBoost
[32], and CatBoost [33].

(e F1-score of clinical text data is compared with the F1-
score of the various previously proposed techniques. From
Table 11 and Figure 16, it is clear that the stack F1-score of the
proposed output achieves 98.7%, which is 14%higher than the
existing output when compared with SVM [27], NB [28],
KNN [29], XGBoost [30], Random forest [31], AdaBoost [32],
and CatBoost [33].

(e performance in terms of accuracy and F1-score in
HoC Dataset is compared with various previously proposed
techniques. From Table 12 and Figure 17, it is clear that the
stack accuracy of the proposed output achieves 97.7%, which
is 17% higher than the existing output when compared with
Random forest [31], AdaBoost [32], and CatBoost [33], and
the F1-score of the proposed output achieves 98% which is
1% higher than the existing output when compared with
Random forest [31], AdaBoost [32], and CatBoost [33].

(e performance in terms of accuracy and F1-score in
the ChemProt Dataset is compared with various previously
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Figure 11: Overall precision of the proposed system.
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Figure 12: Recall of the proposed system.

Table 6: Precision of the proposed system.

No. of samples Precision
100 97.1
200 97.2
300 97.4
400 97.7
500 98
600 98.1
700 98.2
800 98.3
900 98.5
1000 98.6

Table 7: Recall of proposed system.

No. of samples Recall
100 97.22
200 97.33
300 97.54
400 97.85
500 98
600 98.25
700 98.33
800 98.44
900 98.53
1000 98.64
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proposed techniques. From Table 13 and Figure 18, it is clear
that the stack accuracy of the proposed output achieves
97.8%, which is 19% higher than the existing output when
compared with Random forest [31], AdaBoost [32], and
CatBoost [33] and the F1-score of the proposed output
achieves 98% which is 16% higher than the existing output
when compared with Random forest [31], AdaBoost [32],
and CatBoost [33].

(e performance in terms of precision and recall in the
ChemProt dataset is compared with various previously
proposed techniques. From Table 14 and Figure 19, it is clear
that the precision of the proposed output achieves 97.85%,
which is 22% higher than the existing output when com-
pared with Random forest [31], AdaBoost [32] and CatBoost
[33], and the recall of the proposed output achieves 98.8%
which is 17% higher than the existing output when com-
pared with Random forest [31], AdaBoost [32] and CatBoost
[33].

(e performance in terms of precision and recall in the
HoC Dataset is compared with various previously proposed
techniques. From Table 15 and Figure 20, it is clear that the
precision of the proposed output achieves 97.71%, which is
12% higher than the existing output when compared with
Random forest [31], AdaBoost [32] and CatBoost [33], and the
recall of the proposed output achieves 98.5%, which is 1%
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Figure 13: Accuracy comparison.
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Figure 14: Precision comparison.

Table 8: Accuracy comparison.

Methodologies Accuracy
SVM 82.17
NB 81.08
KNN 64.9
XGBoost 82.87
Random forest 81.4
AdaBoost 78.1
CatBoost 81
Proposed 97.9

Table 9: Precision comparison.

Methodologies Precision
SVM 81.17
NB 82.08
KNN 63.9
XGBoost 84.87
Random forest 85.4
AdaBoost 76.1
CatBoost 87
Proposed 98.9

Table 10: Recall comparison.

Methodologies Recall
SVM 82.17
NB 83.08
KNN 66.9
XGBoost 84.67
Random forest 85.8
AdaBoost 73.1
CatBoost 86
Proposed 98.7
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Figure 15: Recall comparison.
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Table 11: F1-score comparison.

Methodologies F1-score
SVM 80.17
NB 81.08
KNN 76.9
XGBoost 83.87
Random forest 83.8
AdaBoost 73.1
CatBoost 85
Proposed 98.7
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Figure 16: F1-score comparison.

Table 12: Accuracy and F1-score comparison in HoC Dataset.

HoC dataset Methodologies Accuracy F1-score
Random forest 80.82 85.31

AdaBoost 77.56 81.32
CatBoost 80.45 97.34
Proposed 97.7 98
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Figure 17: Performance in terms of accuracy and F1-score
comparison in HoC Dataset.

Table 13: Accuracy and F1-score comparison in ChemProt
Dataset.

ChemProt dataset Methodologies Accuracy F1-score
Random forest 74.82 80.22

AdaBoost 72.88 76.40
CatBoost 76.78 82.01
Proposed 97.8 98

AdaBoost CatBoost ProposedRandom forest
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Figure 18: Performance in terms of accuracy and F1-score
comparison in ChemProt dataset.
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higher than the existing output when compared with Random
forest [31], AdaBoost [32], and CatBoost [33]. (us, the
proposed method functions are proved to have the best per-
formance by comparing with results of previous research.

5. Conclusion

(e technical complexities in extracting the clinical text data
are removed by using machine learning and natural lan-
guage processing techniques. Halve Progression, Clinical

Data Progression, and Cloud Progression provide a solution
for major issues like difficulty in diagnosis, reduced data
quality, difficulty in extraction and mapping, and risk in
security by using Medical-Fissure Algorithm to split the
clinical text data and Neg-Seq Algorithm to remove re-
dundancy and usage of the secret key to provide better
security.(e clinical text data is extracted with high accuracy
of 99.6%. (e results of the proposed method are compared
with other existing techniques and the proposed method
outperforms all the other existing techniques. To further

Table 14: Precision and recall comparison in ChemProt Dataset.

ChemProt dataset Methodologies Precision Recall
Random forest 74.87 80.72

AdaBoost 72.48 76.10
CatBoost 76.68 81.01
Proposed 97.85 98.8
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Figure 19: Performance in terms of precision and recall comparison in ChemProt Dataset.

Table 15: Precision and Recall comparison in HoC Dataset.

HoC dataset Methodologies Precision Recall
Random forest 81.82 84.31

AdaBoost 77.56 82.32
CatBoost 85.45 97.64
Proposed 97.71 98.5
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Figure 20: Performance in terms of precision and recall comparison in HoC Dataset.
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improve the quality and accuracy of data extraction, the
relation extraction using Transformer based models in
clinical text data can be developed for knowledge discovery.
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pervised document classification integrating web scraping,
one-class SVM and LDA topic modelling,” Journal of Applied
Statistics, 2021.

[32] X.-A. Bi, X. Hu, H. Wu, and Y. Wang, “Multimodal data
analysis of Alzheimer’s disease based on clustering evolu-
tionary random forest,” IEEE Journal of Biomedical and
Health Informatics, vol. 24, no. 10, pp. 2973–2983, 2020.

[33] A. Samat, E. Li, P. Du, S. Liu, Z. Miao, and W. Zhang,
“CatBoost for RS image classification with pseudo label
support from neighbor patches-based clustering,” IEEE
Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.

16 Computational Intelligence and Neuroscience


