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Summary
Background The survival rate of patients with distant metastasis (DM) of papillary thyroid carcinoma (PTC) is
significantly reduced. It is of great significance to find an effective method for early prediction of the risk of DM for
formulating individualized diagnosis and treatment plans and improving prognosis. Previous studies have significant
limitations, and it is still necessary to develop new models for predicting the risk of DM of PTC. We aimed to develop
and validate interpretable machine learning (ML) models for early prediction of DM in patients with PTC using a
multicenter cohort.

Methods We collected data on patients with PTC who were admitted between June 2013 and May 2023. Data from
1430 patients at Yunnan Cancer Hospital (YCH) served as the training and internal validation set, while data from
434 patients at the First Affiliated Hospital of Kunming Medical University (KMU 1st AH) was used as the external
test set. Nine ML methods such as random forest (RF) were used to construct the model. Model prediction per-
formance was compared using evaluation indicators such as the area under the receiver operating characteristic curve
(AUC). The SHapley Additive exPlanation (SHAP) method was used to rank the feature importance and explain the
final model.

Findings Among the nine ML models, the RF model performed the best. The RF model accurately predicted the
risk of DM in patients with PTC in both the internal validation of the training set [AUC: 0.913, 95% confidence
interval (CI) (0.9075–0.9185)] and the external test set [AUC: 0.8996, 95% CI (0.8483–0.9509)]. The calibration
curve showed high agreement between the predicted and observed risks. In the sensitivity analysis focusing on
DM sites of PTC, the RF model exhibited outstanding performance in predicting “lung-only metastasis” showing
high AUC, specificity, sensitivity, F1 score, and a low Brier score. SHAP analysis identified variables that
contributed to the model predictions. An online calculator based on the RF model was developed and made
available for clinicians at https://predictingdistantmetastasis.shinyapps.io/shiny1/. 11 variables were included in
the final RF model: age of the patient with PTC, whether the tumor size is > 2 cm, whether the tumor size
is ≤ 1 cm, lymphocyte (LYM) count, monocyte (MONO) count, monocyte/lymphocyte ratio (MLR), thyroglobulin
(TG) level, thyroid peroxidase antibody (TPOAb) level, whether the T stage is T1/2, whether the T stage is T3/4,
and whether the N stage is N0.

Interpretation On the basis of large-sample and multicenter data, we developed and validated an explainable ML
model for predicting the risk of DM in patients with PTC. The model helps clinicians to identify high-risk
patients early and provides a basis for individualized patient treatment plans.
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Research in context

Evidence before this study
We searched PubMed for articles published up to April 30,
2023, using the keywords "(thyroid cancer OR thyroid
carcinoma) AND (model) AND (metastasis)," without
language restrictions. Our search yielded 56 articles. After
excluding irrelevant studies, 17 articles were identified as
relevant. Although previous studies have developed models to
predict distant metastasis (DM) in papillary thyroid carcinoma
(PTC), these models have significant limitations, such as
limited variables, the inclusion of hard-to-obtain variables,
and a lack of representativeness in the study populations,
among others. Therefore, there remains a need to develop a
new model predicting DM in patients with PTC.

Added value of this study
The primary objective of this study was to develop and
validate an interpretable machine learning (ML) model to
predict the risk of DM in patients with PTC. A total of 1864
thyroid cancer patients were included, and nine ML
algorithms were used to develop prediction models for risk of
DM of PTC. The Random Forest (RF) model, which included 11
features such as age, tumor size, and T stage, demonstrated
the highest accuracy. In both the internal and external

validation cohorts, the RF model achieved areas under the
receiver operating characteristic curve (AUC) of 0.913 (95% CI
0.9075–0.9185) and 0.8996 (95% CI 0.8483–0.9509),
respectively. Additionally, sensitivity analysis revealed that the
RF model performed exceptionally well in predicting “lung-
only metastasis."

Implications of all the available evidence
This new model is the first PTC DM risk prediction model
developed and validated using a large multicenter dataset
outside of the SEER database. It features readily available
predictive variables, robust performance, interpretability [The
SHapley Additive explanation (SHAP) approach was employed
to provide both a global explanation of the model’s overall
functionality and a local explanation that details how specific
predictions are made for individual PTC cases based on their
personalized data], and ease of clinical use (with a free online
platform available at: https://predictingdistantmetastasis.
shinyapps.io/shiny1/), highlighting its potential for clinical
translation. The goal of this new model is to assist clinicians
in identifying high-risk patients and provide effective support
for the development of individualized diagnostic and
treatment plans, ultimately improving patient outcomes.
Introduction
Thyroid cancer is the most common malignant tumor of
the endocrine system, with papillary thyroid carcinoma
(PTC) accounting for more than 80% of thyroid cancer
cases.1,2 In recent years, PTC has attracted widespread
concern worldwide due to its high incidence.2–4

Although PTC has biological properties that favor a
good treatment response, with a good long-term prog-
nosis and an average 10-year overall survival rate of
approximately 90%,3 some patients face poor clinical
outcomes due to the development of distant metastasis
(DM).5–9 The most common sites of DM in PTC are the
lungs and bones. Once DM occurs, the overall prognosis
deteriorates significantly, with the 10-year survival rate
dropping to 40%.10 The DM of most PTC are occult,
posing complex treatment and management challenges
for clinicians. Therefore, it is urgent to increase the
understanding of the risk factors and mechanisms of
DM in PTC and to find effective prediction methods to
develop individualized diagnosis and treatment plans
and follow-up strategies.

Although prediction models for the risk of DM in
thyroid cancer have been developed in many studies,
these studies have significant limitations. For example,
most of these studies are based on data from the Sur-
veillance, Epidemiology, and End Results (SEER) data-
base. However, due to the limited variables included in
the SEER database, such as the lack of laboratory data,
the application of the models based on these data in
individualized prediction is limited to some extent.11–18

In some studies, the focus has been on developing
models only for specific thyroid cancer subtypes or for
sex-specific predictions for thyroid cancer, limiting the
applicability of these models.12,14,15 In addition, machine
learning (ML) techniques have not been used in many
studies, or models lack interpretability to fully capture
the complex relationships among variables and to pro-
vide clinically actionable explanations.11,12,14–16 Some
www.thelancet.com Vol 77 November, 2024
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studies are based on The Cancer Genome Atlas (TCGA)
database, and the variables included in the models are
gene mutations associated with DM in PTC, but genetic
testing for these mutations is not commonly performed
in clinical practice, greatly limiting the clinical applica-
tion of the models.19,20 Finally, although some studies
are not based on data from the SEER database, only the
risk factors influencing DM in thyroid cancer were
explored in these studies, and prediction models for
clinical use were not constructed.21–27 Therefore, new
models for predicting the risk of DM in PTC still need to
be developed.

In this study, we aimed to develop and validate an
explainable ML model for the early and accurate pre-
diction of the risk of DM in patients with PTC in a
multicenter cohort. We used the SHapley Additive
exPlanation (SHAP) method to clarify the feature
importance and explain the prediction results of the
model to determine the practical significance of the
model for predicting DM in patients with PTC.
Methods
Study cohort
We collected the data of patients with thyroid cancer
(female or male ≥14 years) who were admitted to
Yunnan Cancer Hospital (YCH) and the First Affiliated
Hospital of Kunming Medical University (KMU 1st AH)
between June 2013 and May 2023. The inclusion criteria
were as follows: (1) patients had received a pathological
diagnosis of PTC and (2) patients had undergone total
thyroidectomy. A total of 1447 patients from YCH and
458 patients from KMU 1st AH met the inclusion
criteria. The exclusion criteria were as follows: (1) pa-
tients with other pathological thyroid cancer types such
as follicular carcinoma or poorly differentiated carci-
noma (n = 10); (2) patients for whom laboratory, imag-
ing, or pathological information was absent (n = 25); and
(3) patients with multiple primary cancers (n = 6).
Finally, data from 1430 patients from YCH were
included as the training set, and data from 434 patients
from KMU 1st AH were included as the test set for
external validation. This study protocol complies with
the guidelines of the Declaration of Helsinki and was
approved by the Ethics Committee of Yunnan Cancer
Hospital (KYCS2023-094, KYCS2024-223). This study
was retrospective and all data were anonymized, so the
requirement for informed consent from patients could
be waived. Study protocol can be found in the
Supplementary material (Supplementary pp. 22–38).

Clinical features and data processing
The data for variables evaluated in this study were ob-
tained from the patients’ hospitalization electronic
medical records (EMRs), including basic patient infor-
mation, TNM stage (American Joint Committee on
Cancer (AJCC) 8th edition), laboratory indicators (within
www.thelancet.com Vol 77 November, 2024
one month before surgery), and postoperative patho-
logical information. The basic patient information ob-
tained included age, sex, and body mass index (BMI).
Regarding TNM stage, T stage and N stage information
was obtained. The tumor pathological information ob-
tained included benign thyroid diseases, multifocality,
invasion of adjacent tissues, and tumor size. Laboratory
indicators obtained included white blood cell (WBC)
count, red blood cell (RBC) count, platelet (PLT) count,
hemoglobin (HGB) level, lymphocyte (LYM) count,
monocyte (MONO) count, neutrophil (NE) count,
eosinophil (EOS) count, basophil (BASO) count, glucose
(GLU) level, alkaline phosphatase (ALP) level, thyro-
globulin (TG) level, thyroid-stimulating hormone (TSH)
level, thyroglobulin antibody (TGAb) level, and thyroid
peroxidase antibody (TPOAb) level. Based on data pre-
processing, the following inflammation-related factors
were included: the PLT-to-LYM ratio (PLR), MONO-to-
LYM ratio (MLR), EOS-to-LYM ratio (ELR), BASO-to-
LYM ratio (BLR), NE-to-LYM ratio (NLR) and the sys-
temic immune-inflammation index (SII; where SII =
PLT count × NE count/LYM count). The above predic-
tive factors were all derived from objective data in the
EMRs.

Assessment of study outcomes
The clinical diagnostic criteria for DM in PTC included
the following: (1) abnormalities found on an iodine-131
whole-body scan; (2) elevated serum TG levels, with
supporting evidence from computed tomography (CT),
single photon emission CT (SPECT)/CT, or positron
emission tomography (PET)/CT; or (3) pathological
confirmation of the disease as metastatic PTC after
needle biopsy or surgical resection.28,29 The imaging re-
sults were independently evaluated by two senior radi-
ologists, who were blinded to any information about the
predictors. In cases of disagreement, a third radiologist,
also blinded, was consulted, and the final decision was
reached through consensus.

Data preprocessing
The data outliers for continuous variables were checked
using box plots. A data outlier was defined as a value
higher than the upper quartile plus 1.5 times the
interquartile range or lower than the lower quartile
minus 1.5 times the interquartile range. Each data
outlier was replaced by one of the two limits to make it
closer to the distribution of the main data
(Supplementary Fig. S1). Missing variables in the
training and test sets are shown in Supplementary
Fig. S2. The ‘mice’ package was used for multiple
imputation of missing variables (Supplementary pp.3,
Supplementary Tables S1 and S2). Additionally, we
conducted a sensitivity analysis of various imputation
methods for missing values (Supplementary Fig. S3 and
Tables S3 and S4 and pp.5). All laboratory indicators
retained their continuity and were not classified. The
3
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categorical predictors were predetermined before model
construction. Data for categorical variables were pro-
cessed using the one-hot encoding method. To avoid
data leakage, the above data preprocessing was per-
formed separately on the training set and test set.

Selection of variables
In this study, we used the recursive feature elimination
(RFE) method for variable selection to improve model
prediction performance and increase model stability.
RFE is a mainstream feature selection method for ML in
which unimportant features are removed to eventually
obtain the best feature combination, thus achieving
optimal model performance.30,31 Throughout the RFE
process, we used 10 rounds of 10-fold cross-validation to
evaluate the model performance, ensuring the robust-
ness of the variable selection process and the general-
ization ability of the model.

Model development and validation
Nine ML models, including logistic regression (LR),
decision tree (DT), random forest (RF), K-nearest
neighbor (KNN), support vector machine (SVM), naive
bayes (NB), extreme gradient boosting (XGB), stochastic
gradient boosting (SGBT), and neural network (NNET)
were used to predict the risk of DM in PTC. To optimize
the prediction models, the final hyperparameters for
each model were obtained on the optimal feature subset
based on 10 rounds of 10-fold cross-validation combined
with the default hyperparameter grid search of the
“caret” package (Supplementary Table S5). Finally, the
models were refitted on the training set with the optimal
feature subset and the final hyperparameters (based on
10 rounds of 10-fold internal cross-validation).

Model performance comparison
The reliability of the models was evaluated with several
commonly used evaluation indicators, including the area
under the receiver operating characteristic (ROC) curve
(AUC), sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), accuracy, F1
score, and Brier score. We used the Hosmer–
Lemeshow test to assess the consistency between the
model-predicted probabilities and the observed out-
comes. Logarithmic Loss (Log–Loss) was used to
calculate the difference between the actual labels and
the predicted probabilities to measure the accuracy of
the predictions. In addition, calibration curves were
used to reflect the match between the predicted prob-
abilities and the actual results. The DeLong test was
employed to determine whether there was a significant
difference in the AUC values of different models. De-
cision curve analysis (DCA) was used to evaluate the
net benefit of the models at different thresholds. We
selected the best prediction model on the basis of the
performance of the above evaluation indicators in the
training set and the test set.
Model explanation
Explaining ML models is challenging. The SHAP
method is a game theory-based technique that ranks the
importance of input features and explains the results of
the prediction model, overcoming the “black box”
problem. The SHAP method provides local and global
explanations by calculating the contribution of each
feature to the prediction results, thus increasing the
model transparency and interpretability.32

Network calculator
To facilitate model application in a clinical setting, the
final prediction model was integrated into a Shiny
application-based web platform. When the values of the
relevant features in the final model are provided, this
application returns the probability of DM in patients
with PTC.

Statistics
These ML models were developed using R version 4.3.1
and the “caret” (Version: 6.0.94) package. “caret” is a
comprehensive package that provides a unified interface
for various ML algorithms. The models were con-
structed by using the train function and the corre-
sponding method parameters, i.e., LR (method = "glm”),
DT (method = "rpart”), RF (method = "ranger”), SVM
(method = "svmRadial”), KNN (method = "knn”), NB
(method = "naive_bayes”), XGB (method = "xgbTree”),
SGBT (method = "gbm”), and NNET (method = "nnet”).
The discrimination performance was evaluated using
the ROC curve analysis, and the AUC and its bias-
corrected 95% confidence interval (CI) using 1000-fold
bootstrap were reported.33 The Brier score (ranging
from 0 to 1) was used to calculate the difference between
the estimated risk and the observed risk, with a value
closer to 0 indicating better calibration, thus assessing
model calibration. In addition, the calibration perfor-
mance of the clinical prediction models was evaluated
by the Hosmer–Lemeshow test, with P-values higher
than 0.05 usually indicating a good fit between the
model the actual data.34 The performance of two pre-
diction models was evaluated by comparing their AUC
values using DeLong’s test.35 Integrated discrimination
improvement (IDI) and net reclassification improve-
ment (NRI) were used to evaluate the prediction per-
formance improvement of a new model over the
baseline model.36 DCA was conducted to show the net
benefit of using a model at different thresholds to assess
the clinical value of the model.37

Continuous variables with normal distribution are
presented as mean ± standard deviation and were
compared with the t-test. Continuous variables with
skewed distributions are presented as medians with
interquartile ranges and compared with the Mann–
Whitney U test or the Kruskal–Wallis H test. Categori-
cal variables are presented as numbers with percentages
and compared with the chi-square test. Independent
www.thelancet.com Vol 77 November, 2024
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risk factors for the entire cohort (training set + test set)
were determined by univariable and multivariable lo-
gistic regression analyses. The dose–response relation-
ship between independent risk factors and DM was
evaluated using a restricted cubic spline (RCS) function.
A two-tailed P-value < 0.05 was considered statistically
significant.

Role of the funding source
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report.
Results
Baseline clinical information
Among the 1430 patients from YCH (the training set),
207 patients (14%) developed DM, including 157 with
lung metastasis, 23 with bone metastasis, 26 with bone
and lung metastasis, and 1 with bone and liver metas-
tasis. Among the 434 patients from KMU 1st AH (the
test set), 47 patients (11%) developed DM, including 42
with lung metastasis, 3 with lung and bone metastasis, 1
with bone metastasis, and 1 with bone-brain metastasis.
The demographic and clinicopathological characteristics
of all patients are shown in Table 1. The distributions of
data for most variables were comparable between the
training set and the test set (most P-values were higher
than 0.05). In addition, there were significant differ-
ences in multiple clinicopathological features between
the group without DM (M0) and the group with DM
(M1). For example, M1 patients were more likely to be
male (30% vs. 22%), older (48.5 vs. 44 years), have a
larger tumor diameter (>2 cm: 46% vs. 7.5%), and have
a higher MONO count (0.39 vs. 0.31) than M0 patients.
In addition, the PLR and MLR in the M1 group were
significantly higher than those in the M0 group (PLR:
136.03 vs. 120.11, MLR: 0.21 vs. 0.15), while the TPOAb
level in the M1 group was significantly lower than that
in the M0 group (5.83 vs. 13.72), with P-values all
<0.001. Details of the study design are shown in Fig. 1.

Independent risk factors
We explored the independent risk factors for DM in pa-
tients with PTC based on the entire cohort. Using uni-
variate logistic regression analysis, 22 potential risk factors
associated with DM (P < 0.05) were identified. After
multivariate logistic regression analysis, 11 factors inde-
pendently associated with the risk of DM in PTC were
finally identified, namely, age, BMI, benign thyroid dis-
ease, tumor size, RBC count, MONO count, PLR, TG level,
TPOAb level, T stage, and N stage (Supplementary
Table S6).

Dose-response relationship
According to the results of the multivariate logistic
regression analysis, we further explored the associations
www.thelancet.com Vol 77 November, 2024
of age, BMI, RBC count, MONO count, PLR, TG level,
and TPOAb level with DM in PTC. RCS is a commonly
used method for exploring nonlinear associations be-
tween independent and dependent variables.38 Before
analyzing the dose–response relationship, we adjusted
for confounding factors and performed nonlinear tests.
The dose–response curves (Fig. 2) showed nonlinear re-
lationships of age, TG level, and TPOAb level with DM in
PTC (P < 0.05 for overall, P < 0.05 for nonlinear). The risk
of DM in PTC increased rapidly when age was <24.87 or
>50.77 years, as well as when the TG level was
>1.39 ng/mL. The risk of DM in PTC decreased rapidly
when the TPOAb level was >0.96 IU/mL. BMI had a
linear relationship with DM in patients with PTC
(P < 0.05 for overall, P > 0.05 for nonlinear), with a risk
threshold of 18.73. In addition, MONO count, PLR, and
RBC count had no significant overall or nonlinear asso-
ciations with DM (P > 0.05 for overall, P > 0.05 for
nonlinear).

Selection of predictor variables
We used the RFE strategy for feature selection. The
optimal feature subset for each ML model was deter-
mined using the RFE method. The RFE variable selec-
tion process for each ML model is visualized in
Supplementary Fig. S4. The importance score for each
variable was calculated and displayed in a bar plot
(Supplementary Fig. S5).

Model development, performance comparison and
sensitivity analysis
We carried out ten rounds of 10-fold internal cross-
validation to construct nine ML models. The results
showed that the XGB model performed the best in
terms of AUC (0.916 ± 0.028, 95% CI: 0.9106–0.9214)
and specificity (0.973 ± 0.016, 95% CI: 0.9698–0.9762),
followed by RF (AUC = 0.913 ± 0.028, 95% CI:
0.9075–0.9185; specificity = 0.983 ± 0.014, 95% CI:
0.9802–0.9858) and LR (AUC = 0.908 ± 0.026, 95%
CI: 0.9029–0.9131; specificity = 0.955 ± 0.021, 95% CI:
0.9509–0.9591) (Fig. 3).

In the training set, the RF model performed the best
in terms of discrimination and calibration, with an AUC
of 0.9999 (95% CI: 0.9997–1) and a calibration score of
0.004 (95% CI: 0.001–0.009) (Fig. 4A and C). The
Hosmer–Lemeshow test showed that the RF model fit
well (P > 0.05) (Supplementary Fig. S7). The Log–Loss
value of the RF model is 0.1046, which is the lowest
among all models, indicating that the RF model fits the
training data well and has strong predictive accuracy
(Supplementary Fig. S7). The RF model had the highest
accuracy (0.9811), precision (1.0000), sensitivity (0.8696),
specificity (1.000), NPV (0.9784), and F1 score (0.9302)
(Fig. 4E and Supplementary Table S8). The DeLong test
showed that the AUC of the RF model was significantly
different from that of all other models (P < 0.05), followed
by the XGB model (Supplementary Table S9). NRI and
5
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Characteristic Overall, N = 1864 M0, N = 1610 M1, N = 254 P-valuea Training set, N = 1430 Test set, N = 434 P-valuea

M stage, n (%) 0.05

M0 1610 (86%) 1223 (86%) 387 (89%)

M1 254 (14%) 207 (14%) 47 (11%)

Sex, n (%) <0.01 0.06

Female 1432 (77%) 1254 (78%) 178 (70%) 1084 (76%) 348 (80%)

Male 432 (23%) 356 (22%) 76 (30%) 346 (24%) 86 (20%)

Benign thyroid lesions, n (%) 0.03 0.40

Yes 1014 (54%) 860 (53%) 154 (61%) 771 (54%) 243 (56%)

No 850 (46%) 750 (47%) 100 (39%) 659 (46%) 191 (44%)

Multifocal, n (%) 0.30 <0.01

Yes 1009 (54%) 864 (54%) 145 (57%) 716 (50%) 293 (68%)

No 855 (46%) 746 (46%) 109 (43%) 714 (50%) 141 (32%)

Infiltrated the adjacent tissue,
n (%)

<0.01 >0.90

Yes 380 (20%) 256 (16%) 124 (49%) 292 (20%) 88 (20%)

No 1848 (80%) 1138 (80%) 346 (80%)

Tumor size, n (%) <0.01 0.03

>1 and ≤ 2 385 (21%) 303 (19%) 82 (32%) 277 (19%) 108 (25%)

>2 238 (13%) 120 (7.5%) 118 (46%) 179 (13%) 59 (14%)

≤1 1241 (67%) 1187 (74%) 54 (21%) 974 (68%) 267 (62%)

T stage, n (%) <0.01 0.07

T1/2 1459 (78%) 1344 (83%) 115 (45%) 1133 (79%) 326 (75%)

T3/4 405 (22%) 266 (17%) 139 (55%) 297 (21%) 108 (25%)

N stage, n (%) <0.01 <0.01

N0 1052 (56%) 994 (62%) 58 (23%) 831 (58%) 221 (51%)

N1 812 (44%) 616 (38%) 196 (77%) 599 (42%) 213 (49%)

Age, Median (IQR) 45.00 (37.00, 52.00) 44.00 (37.00, 51.00) 48.50 (37.25, 59.00) <0.01 45.00 (37.00, 52.00) 45.00 (38.00, 53.00) 0.20

BMI, Median (IQR) 23.51 (21.30, 25.89) 23.63 (21.36, 25.91) 22.94 (20.76, 25.56) <0.01 23.51 (21.23, 25.89) 23.45 (21.40, 25.91) 0.70

WBC, Median (IQR) 6.05 (5.08, 7.18) 6.07 (5.08, 7.14) 6.02 (5.09, 7.45) 0.70 6.14 (5.13, 7.29) 5.86 (4.87, 6.79) <0.01

RBC, Median (IQR) 4.90 (4.61, 5.30) 4.92 (4.66, 5.30) 4.86 (4.50, 5.19) <0.01 4.96 (4.70, 5.30) 4.83 (4.52, 5.21) <0.01

PLT, Median (IQR) 243.00 (207.00, 289.00) 243.00 (207.00, 287.00) 248.50 (208.25, 303.75) 0.20 244.00 (206.00, 290.00) 243.00 (209.25, 287.75) >0.90

HGB, Median (IQR) 145.00 (137.00, 156.00) 145.00 (137.00, 156.00) 144.00 (132.25, 155.00) 0.03 146.00 (137.00, 156.00) 143.00 (136.00, 154.00) 0.04

LYM, Median (IQR) 2.01 (1.64, 2.44) 2.03 (1.67, 2.45) 1.81 (1.40, 2.34) <0.01 2.00 (1.64, 2.44) 2.05 (1.63, 2.39) >0.90

MONO, Median (IQR) 0.32 (0.25, 0.41) 0.31 (0.24, 0.39) 0.39 (0.30, 0.51) <0.01 0.31 (0.24, 0.39) 0.35 (0.28, 0.44) <0.01

NE, Median (IQR) 3.45 (2.73, 4.37) 3.44 (2.73, 4.34) 3.49 (2.70, 4.57) 0.30 3.55 (2.81, 4.46) 3.19 (2.56, 4.02) <0.01

EOS, Median (IQR) 0.11 (0.06, 0.19) 0.11 (0.06, 0.18) 0.12 (0.07, 0.19) 0.60 0.11 (0.06, 0.19) 0.11 (0.06, 0.18) 0.40

BASO, Median (IQR) 0.02 (0.01, 0.04) 0.02 (0.01, 0.04) 0.02 (0.01, 0.03) 0.09 0.02 (0.02, 0.03) 0.02 (0.00, 0.04) 0.01

PLR, Median (IQR) 121.73 (96.06, 154.06) 120.11 (95.33, 150.63) 136.03 (103.72, 179.57) <0.01 122.14 (96.05, 154.83) 120.60 (96.18, 153.41) 0.80

MLR, Median (IQR) 0.16 (0.12, 0.21) 0.15 (0.12, 0.20) 0.21 (0.16, 0.26) <0.01 0.15 (0.12, 0.20) 0.18 (0.14, 0.23) <0.01

ELR, Median (IQR) 0.06 (0.03, 0.09) 0.05 (0.03, 0.09) 0.06 (0.04, 0.11) <0.01 0.06 (0.03, 0.09) 0.05 (0.03, 0.09) 0.50

BLR, Median (IQR) 0.01 (0.01, 0.02) 0.01 (0.01, 0.02) 0.01 (0.01, 0.02) 0.90 0.01 (0.01, 0.02) 0.01 (0.00, 0.02) 0.03

NLR, Median (IQR) 1.72 (1.32, 2.26) 1.69 (1.30, 2.22) 1.86 (1.49, 2.57) <0.01 1.76 (1.37, 2.31) 1.58 (1.22, 2.06) <0.01

SII, Median (IQR) 413.92 (299.80, 578.42) 405.23 (295.31, 565.19) 459.42 (343.14, 699.43) <0.01 422.57 (308.04, 599.29) 380.58 (275.52, 508.75) <0.01

GLU, Median (IQR) 4.90 (4.51, 5.31) 4.90 (4.50, 5.30) 4.94 (4.54, 5.40) 0.12 4.88 (4.51, 5.33) 4.92 (4.50, 5.29) 0.40

ALP, Median (IQR) 70.00 (58.00, 85.00) 69.00 (57.30, 84.00) 73.40 (60.00, 88.00) 0.02 70.00 (58.00, 85.00) 68.55 (57.05, 83.18) 0.13

TG, Median (IQR) 16.39 (6.68, 46.29) 13.89 (5.87, 35.15) 83.48 (20.90, 86.93) <0.01 15.14 (6.40, 42.67) 21.97 (9.33, 60.84) <0.01

TSH, Median (IQR) 2.64 (1.71, 4.11) 2.67 (1.75, 4.11) 2.48 (1.41, 4.05) 0.02 2.72 (1.76, 4.24) 2.39 (1.59, 3.61) <0.01

TGAb, Median (IQR) 15.03 (10.00, 57.97) 15.00 (10.00, 62.20) 15.89 (10.92, 42.86) 0.40 15.29 (10.00, 58.33) 15.00 (10.54, 51.55) 0.40

TPOAb, Median (IQR) 12.95 (4.95, 31.49) 13.72 (6.06, 33.12) 5.83 (2.00, 18.00) <0.01 11.86 (3.77, 27.98) 17.54 (10.00, 38.94) <0.01

BMI: body mass index; WBC: white blood cell; RBC: red blood cell; PLT: platelet; HGB: hemoglobin; LYM: lymphocyte; MONO: monocyte; NE: neutrophil; EOS: eosinophil; BASO: basophil; GLU: glucose;
ALP: alkaline phosphatase; TG: thyroglobulin; TSH: thyroid stimulating hormone; TGAb: thyroglobulin antibody; TPOAb: thyroid peroxidase antibody; PLR: PLT-to-LYM ratio; MLR: MONO-to-LYM ratio;
ELR: EOS-to-LYM ratio; BLR: BASO-to-LYM ratio; NLR: NE-to-LYM ratio; SII: the systemic immune-inflammation index = PLT count × NE count/LYM count. aPearson’s Chi-squared test; Wilcoxon rank
sum test.

Table 1: Comparison of demographic characteristics and clinical characteristics between distant metastasis (DM) and Non-DM patients, and between training and test sets.
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Fig. 1: Flow chart of the study design. YCH: Yunnan Cancer Hospital; KMU 1st AH: First Affiliated Hospital of Kunming Medical University; RCS:
restricted cubic splines; CV: cross-validation; LR: logistic regression; DT: decision tree; RF: random forest; SVM: support vector machine; KNN: K-
nearest neighbors; NB: naive bayes; XGB: extreme gradient boosting; SGBT: stochastic gradient boosting; NNET: neural network; ROC: receiver
operating characteristic; AUC: area under curve; SHAP: SHapley Additive explanation.
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IDI analysis showed that the RF model performed the
best in terms of reclassification and overall discrimina-
tory ability, followed by the XGB model (Supplementary
www.thelancet.com Vol 77 November, 2024
Table S10). DCA showed that the RF model performed
the best across the entire threshold range (0–1.0), fol-
lowed by the XGB model (Fig. 4G).
7
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Fig. 2: Restricted cubic spline (RCS) plots for different continuous variables. These plots illustrate the nonlinear relationships between each
continuous variable and distant metastasis (DM). The specific continuous variables include age (A), triglycerides (TG) (B), thyroid peroxidase
antibody (TPOAb) (C), body mass index (BMI) (D), monocytes (MONO) (E), platelet-to-lymphocyte ratio (PLR) (F), and red blood cells (RBC) (G).
Each variable’s overall and nonlinear relationships are accompanied by P-values, indicating the significance and nonlinearity of the associations.
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In the test set, the RF model had the best perfor-
mance, with an AUC of 0.8996 (95% CI: 0.8483–0.9509)
and a calibration degree of 0.057 (95% CI: 0.036–0.081)
(Fig. 4B and D). The Hosmer–Lemeshow test revealed
that the LR, RF, SVM, KNN, XGB, SGBT, and NNET
models fit well (P > 0.05) (Supplementary Fig. S7). The
Log–Loss value of the RF model is 0.2243, which is also
the lowest among all models. This indicates that the RF
model has good generalization ability, maintaining sta-
ble performance on unseen data (Supplementary
Table S7). The RF model had the highest accuracy
(0.9332), precision (0.8214), specificity (0.9871), and F1
score (0.6133) (Fig. 4F and Supplementary Table S8).
The DeLong test showed that the AUC of the RF model
was higher than that of several other models, and the
difference was statistically significant (P < 0.05)
(Supplementary Table S11). NRI and IDI analysis
revealed that the RF and XGB models performed excel-
lently in the external test set. In particular, the NRI and
IDI values of the RF and XGB models were significantly
higher than those of the DT and KNN models (P < 0.05),
suggesting that the RF and XGB models performed the
best in terms of reclassification and overall discrimina-
tory ability in the external test set (Supplementary
Table S12). DCA showed that the RF model performed
the best across the entire threshold range (0–0.8), with
the XGB model being the second best (Fig. 4H).

In the sensitivity analysis for predicting distant
metastasis sites in PTC, the RF, SGBT, and XGB models
performed the best, particularly in predicting ‘lung-only
metastasis’, where they demonstrated high sensitivity,
specificity, F1 score, AUC, and low Brier score. How-
ever, when predicting ‘other metastases’, the sensitivity,
F1 score, and AUC of all models decreased significantly,
showing poorer performance (Supplementary Fig. S6
and Table S13). Overall, the RF, SGBT, and XGB
models exhibited strong overall performance across
different types of metastasis predictions.

In summary, the RF model performed the best in
both the training set and the test set and is thus
www.thelancet.com Vol 77 November, 2024
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Fig. 3: The internal validation results of nine machine learning (ML) models. It displays the receiver operating characteristic (ROC) curves,
sensitivity (Sens), and specificity (Spec) of the nine ML models in internal validation. These models include decision tree (DT), k-nearest
neighbors (KNN), neural network (NNET), naive Bayes (NB), support vector machine (SVM), stochastic gradient boosting (SGBT), logistic
regression (LR), random forest (RF), and extreme gradient boosting (XGB).
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recommended as the preferred model for the prediction
of the risk of DM in PTC, followed by the XGB model.

Heatmap analysis of RF model variables
A heatmap was created to show the performance of the
RF model in predicting DM in PTC. Different colors
Fig. 4: Performance of machine learning (ML) models predicting distant m
training and test sets. ROC curve analysis (A, B), calibration curve analysis
F), and DCA curves for each model (G, H) predicting DM in PTC patients u
LR: logistic regression; DT: decision tree; RF: random forest; SVM: suppo
extreme gradient boosting; SGBT: stochastic gradient boosting; NNET: n

www.thelancet.com Vol 77 November, 2024
were used to show the distributions of the actual values
of various predictive factors (such as age, tumor size,
and LYM count) among different patients, as well as the
model-predicted DM probability and the actual out-
comes (Fig. 5). Heatmap analysis revealed that the
model could effectively distinguish between high-risk
etastasis (DM) in patients with papillary thyroid cancer (PTC) in the
(C, D), parallel line graph of the evaluation metrics for each model (E,
sing nine ML algorithms in the training and test sets. Abbreviations:
rt vector machine; KNN: K-nearest neighbors; NB: naive bayes; XGB:
eural network.
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Fig. 5: Variable heatmap of the random forest (RF) model predicting distant metastasis (DM) in papillary thyroid cancer (PTC). Each row
represents a variable, and each column represents a sample, with colors indicating the variable’s values. The color legend represents the different
value ranges of each variable, including age, tumor size (Tumor_size ≤ 1 cm, Tumor_size > 2 cm), lymphocyte count (LYM), monocyte count
(MONO), monocyte-to-lymphocyte ratio (MLR), thyroglobulin (TG), thyroid peroxidase antibody (TPOAb), T stage [T_stage(T1/2), T_stage(T3/
4)], N stage [N_stage(N0)], RF model predicted probability (RF), actual distant metastasis outcome (Outcome), and dataset grouping (Group).
Color gradients indicate the value ranges of variables, and categorical variables are represented by different colors for categories.
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and low-risk patients, with consistent performance in
the training set and the test set, indicating that the
model had good prediction accuracy and generalization
ability and therefore may be helpful for the early clinical
identification of high-risk patients with PTC.

Model explanation
Since it is difficult for clinicians to accept prediction
models that are not directly explainable or not explain-
able at all, we used the SHAP method to explain the
output of the final model by calculating the contribution
of each variable to the prediction. This explainable
method provides two types of explanations: a global
explanation of the model at the feature level and a local
explanation at the individual level. The global explana-
tion describes the overall functionality of the model. As
shown in the SHAP summary bar plot (Fig. 6A), the
contribution of features to the model was evaluated
using the mean SHAP values, which were displayed in
descending order: tumor size, TG level, TPOAb level,
MLR and age were the five most important features in
the prediction model. In addition, the SHAP summary
dot plot (Fig. 6B) visually shows the direction and
strength of the influence of each feature on the model
prediction: features such as a large tumor size, high TG
level, advanced age, and late tumor stages (T3 and T4)
significantly increased the risk of DM. In addition, the
SHAP dependence plot helps to understand how indi-
vidual features affect the output of the prediction model.
Fig. 6D compares the actual values and the SHAP values
of these 11 features, where features with SHAP values
greater than zero correspond to positive predictions in
the model; that is, these features indicate a higher risk
of DM. For example, patients with PTC with a TG level
>45.56 ng/mL, an MLR >0.1893, a MONO count
>0.45 × 109/L, and age <25 years or >50 years had SHAP
values greater than zero, pushing the decision toward
the “DM” category. In addition, a TPOAb level <4.05
U/mL and LYM count <1.32 × 109/L both lead to the
classification of “DM”. Finally, when the tumor size
>2 cm, T stage = T3/4, and N stage∕=N0, the classifica-
tion is also “DM”.

Additionally, local explanation helps us understand
the decision-making mechanism of the model by
calculating and displaying the contribution of each
feature to the prediction result of individual samples.
www.thelancet.com Vol 77 November, 2024
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Fig. 6: Global and local model explanation by the SHapley Additive exPlanation (SHAP) method. (A) SHAP summary bar plot. This plot evaluates
the contribution of each feature to the model using mean SHAP values, displayed in descending order. (B) SHAP summary dot plot. The probability
of developing distant metastasis (DM) increases with the SHAP values of the features. Each dot represents a patient’s SHAP value for a given
feature, with orange indicating higher feature values and purple indicating lower values. Dots are stacked vertically to show density. (C) SHAP
waterfall plot. This plot shows the contribution of each feature to the prediction result of the third patient using the random forest (RF) model.
Orange bars indicate features that contribute positively to the prediction, while purple bars indicate negative contributions. Feature values are
shown alongside their SHAP values, highlighting key features such as thyroglobulin (TG, +0.0807), thyroid peroxidase antibody (TPOAb, +0.0564),
monocyte to lymphocyte ratio (MLR, −0.0404), and tumor size ≤1 cm (−0.0374). The overall contribution is 0.122, with a baseline contribution of
0.144. (D) SHAP dependence plot. Each dependence plot shows how a single feature affects the model’s output, with each point representing a
patient. For example, age values either below 25 or above 50 push the decision towards the “DM” class. SHAP values are on the y-axis, and actual
feature values are on the x-axis. Features with SHAP values above zero push the decision towards the “DM” class.
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The SHAP waterfall plot (Fig. 6C) shows the contribu-
tion of each feature to the model prediction of DM in for
the third patient with PTC. The specific value of each
feature and its corresponding SHAP value in the plot
indicate the positive and negative impact of the feature
on the prediction result. A TG level of 86.9 and TPOAb
level of 1.16 made significant positive contributions
of +0.0807 and + 0.0564 to the prediction result,
respectively, while an MLR of 0.125 and a tumor size
≤1 cm made significant negative contributions
of −0.0404 and −0.0374 to the prediction results,
respectively. Other features, such as age, MONO count,
LYM count, lymph node stage, and tumor size >2 cm,
also had varying degrees of impact. By accumulating
SHAP values, the waterfall plot visually demonstrates
the formation process of the prediction result for a
specific patient, helping us to understand in depth the
decision-making mechanism of the model.

Implementation of the web calculator
As shown in Fig. 7, the final prediction model was in-
tegrated into a web application for use in clinical set-
tings. By inputting the actual values of the 11 features
Fig. 7: The web-based calculator for predicting distant metastasis (DM) in
the postoperative pathological information: tumor size, T stage, N stage
lymphocyte (LYM), monocyte (MONO), monocyte/lymphocyte ratio (MLR
possible to predict the risk of DM of PTC.
required for the model, the application can automati-
cally predict the risk of DM in individual patients with
PTC. The web application can be accessed online at the
following link: https://predictingdistantmetastasis.
shinyapps.io/shiny1/.
Discussion
To our knowledge, this is the first ML model based on
large-sample multicenter data from a source other than
the SEER database. A total of nine ML models for the
prediction and analysis of the risk of DM in PTC were
studied and compared. We identified a set of predictive
risk factors and used various ML algorithms along with
clinical and laboratory data to construct a DM risk pre-
diction model for patients with PTC.

To date, studies on predicting the risk of DM in
thyroid cancer have been reported. However, most of
these studies are based on the mining of data from the
SEER database,11–18 which may not reflect the real situ-
ation of the Chinese patient population, and use a single
method (traditional logistic regression) for model
building, which may not be capable of handling complex
papillary thyroid cancer (PTC) using this model. By simply inputting
; age; and laboratory test indicators within one month preoperative:
), thyroglobulin (TG), and thyroid peroxidase antibody (TPOAb), it is
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relationships and hence affect prediction performance.39

For clinicians and researchers, clinical EMR data are
relatively objective, accurate, and easy to access.
Combining EMR data with complex ML algorithms can
facilitate the development of clinical prediction
models.40 Among the nine ML models, the RF model
had the highest AUC, with good accuracy, calibration,
and net benefit. The RF model also exhibited the best
performance in the independent external validation set.
The RF algorithm makes predictions by integrating
multiple decision trees in combination with a voting
mechanism, which can increase the prediction accuracy
and stability of the model. The RF algorithm can capture
nonlinear relationships in data, making this algorithm
suitable for complex clinical data. In addition, by con-
structing and averaging many decision trees, the risk of
the overfitting of a single decision tree is reduced.41

Multiple studies have demonstrated that the RF
method is very valuable for prediction models in the
medical field.42–44 In the present study, we employed the
RF algorithm to develop a final model containing 11
features. These features can be easily acquired and
evaluated during the hospitalization of patients with
PTC, making this model a promising tool for effectively
predicting the risk of DM in patients with PTC.

Due to the lack of unified guidelines or consensuses
guiding the selection of features for prediction models,
it is currently unclear how many features should be
included in the model. Although more features may
provide richer information for the prediction model, too
many features may limit the clinical application of the
model, while the inclusion of noncausal features may
reduce prediction accuracy. To assist feature selection,
we employed an RFE method. Our final model is a
simple and convenient ML prediction model that can be
easily used for clinical decision-making for patients with
PTC.

Multivariate logistic regression analysis revealed that
age, BMI, benign thyroid disease, tumor size, RBC
count, MONO count, PLR, TG level, TPOAb level, T
stage, and N stage were factors independently associated
with the risk for DM in patients with PTC. Most studies
have shown that a high BMI is associated with tumor
progression.45,46 However, some studies have suggested
that a high BMI may have a protective effect against
some types of cancer, and this effect may be associated
with the higher nutrient reserves and muscle mass in
patients with obese.47 Laura reported that a higher BMI
was associated with a lower risk of breast cancer in
premenopausal women, possibly because a higher BMI
affects hormone levels in the body, especially estrogen
and insulin levels, and these changes provide a protec-
tive effect on premenopausal women.48 Our study found
that BMI is a protective factor for DM in PTC; there is a
linear relationship between BMI and DM, and the risk
of DM is reduced when BMI is > 18.73. It is well known
that the risk of DM of thyroid cancer is related to tumor
www.thelancet.com Vol 77 November, 2024
size, patient age, lymph node involvement, and tumor
stage.25,49 Notably, we detected a U-shaped association
between age and DM in patients with PTC, and the risk
of DM in PTC increased rapidly for patients aged <24.87
years or >50.77 years. Similarly, the study by Huang
et al. included 111 patients with PTC, and the RCS curve
also showed a U-shaped pattern between age and DM,
with significantly higher incidences of DM in patients
≤21 years and >55 years old than that in patients 22–55
years old.50 The multivariate logistic regression analysis
in our study reached similar conclusions. In addition,
our study revealed that patients with benign thyroid
diseases were prone to DM. Cari et al. also reported that
the risk of regional metastasis and DM in PTC increases
after the diagnosis of hyperthyroidism and thyroiditis.51

Huang et al.52 studied the metabolic features of benign
thyroid nodules and PTC and found that the metabolic
features of the two overlapped, suggesting that benign
thyroid diseases may affect the risk of metastasis in
thyroid cancer. Our study found that RBC count was a
protective factor against DM in PTC. Although previous
studies have almost never reported a direct association
between the RBC count and DM in PTC, the study by
Jin et al.53 investigated the impact of anemia during
chemotherapy on the outcomes of patients with
advanced epithelial ovarian cancer, finding that anemia
is correlated with poor progression-free survival and
overall survival, indirectly suggesting that anemia may
promote tumor metastasis. Therefore, we speculate that
patients with low RBC counts are in an anemic state that
might promote the development of DM in patients with
PTC. Our study revealed that the MONO count was an
independent factor associated with the risk for DM in
PTC. Currently, no study has reported the relationship
between the MONO count and DM in PTC, but some
studies have found that a low pretreatment LMR is
associated with advanced clinicopathological features
and poor outcomes in patients with pancreatic cancer,
making it a prognostic predictor. Our study found that
the PLR was also an independent factor associated with
the risk for DM in PTC. Cao et al. reported that the
higher the PLR is, the worse the clinicopathological
features of PTC are, with larger tumor diameters, a
higher N1 stage, and a higher TG level.54 However,
Elena’s meta-analysis, which included 7599 patients
with differentiated thyroid cancer (DTC), showed no
association between the PLR and disease-free survival
(DFS) in patients.55 In addition, the preoperative TG
level helps to predict the initial DM in patients with
DTC. The study by Kim et al., which included 4735
patients with DTC, found that the preoperative TG level
helps to predict the initial DM in patients with DTC,
with a median preoperative TG level of 328.4 ng/mL in
the initial DM group and 10.0 ng/mL in the non-DM
group.56 Similarly, a study from South Korea showed
that preoperative TG measurement may help predict
cervical lymph node metastasis. Our study also found
13
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that the preoperative TG level was a factor associated
with the risk for DM in PTC, showing a nonlinear
relationship with DM, and that the risk of DM increased
significantly when the TG level was >1.39 ng/mL. For
TPOAb, the study by Shen et al. included 1126 patients
with PTC, and multivariate logistic regression analysis
revealed that TPOAb positivity is a protective factor
against DM in PTC, with an odds ratio (OR) of 0.403
(95% CI 0.216–0.622, P < 0.001). In addition, subgroup
analysis showed that combined positivity for TGAb and
TPOAb is associated with fewer distant metastatic dis-
eases.57 Interestingly, TPOAb is also associated with DM
in breast cancer. A study from Germany found that
TPOAb positivity is associated with a significantly
reduced incidence of DM in breast cancer, and that the
TPOAb level is inversely proportional to the levels of
conventional tumor markers CA-15-3 and CEA.58 Simi-
larly, our study found that the preoperative TPOAb level
was a protective factor against DM in PTC and that it
had a nonlinear relationship with DM; the risk of DM
was significantly reduced when the TPOAb level was
>0.96 U/mL.

Because of one-hot encoding, our final model actu-
ally included nine variables, namely, tumor size, TG
level, TPOAb level, MLR, age, N stage, MONO count, T
stage, and LYM count. The SHAP summary dot plot
showed that the associations of tumor size, TG level,
TPOAb level, age, N stage, MONO count, and T stage
with the outcome of DM were consistent with the re-
sults of aforementioned multivariate analysis. In addi-
tion, the SHAP summary dot plot indicated that patients
with higher LYM counts were less likely to have DM,
while patients with higher MLRs were more prone to
develop DM. A study by Cínthia et al. validated our re-
sults, finding that the MLR, NLR, and PLR are higher in
patients with DM than in those without, and that the
threshold of MLR for the diagnosis of DM in DTC is
0.21 (sensitivity = 80%, specificity = 45.2%, and
accuracy = 57.9%).59

In this study, we employed multiple goodness-of-fit
tests to evaluate the predictive performance of the ML
models, including the Hosmer–Lemeshow (HL) test,
AUC-ROC, and Calibration Curve. Although the HL test
is a commonly used calibration tool for logistic regres-
sion models, its effectiveness may be limited in both
large and small sample sizes.34 Therefore, we introduced
the Log–Loss test as a supplement. Unlike the HL test,
Log–Loss does not rely on data grouping and provides a
continuous error measurement, making it more sensi-
tive in reflecting the accuracy of predicted probabilities.
The results of the Log–Loss test were consistent with
those of the AUC-ROC and Calibration Curve, further
supporting the predictive performance of the models.
Thus, by combining the HL test with Log–Loss, we were
able to more comprehensively assess the calibration and
discriminative ability of the models. It should also be
noted that in this study, the training and test sets were
sourced from two different medical institutions, which
may account for the observed performance differences.
The AUC of the RF model on the training set was
exceptionally high (0.9999), suggesting potential over-
fitting, where the model may have learned not only the
underlying patterns but also the noise in the training
data. In contrast, the AUC from 10 rounds of 10-fold
cross-validation (0.913 ± 0.028) provides a more realistic
estimate of the model’s generalizability. The AUC of
0.8996 on the independent test set, while slightly lower,
still indicates excellent predictive performance, as an
AUC close to 0.9 is considered very strong in clinical
predictions. This demonstrates the model’s robustness
across different datasets. To further evaluate the model’s
stability and generalizability, we plan to include addi-
tional external validation cohorts in future research.

ML techniques are often referred to as “black boxes”,
making their prediction processes nearly impossible to
explain.60 This lack of transparency may cause clinicians
to hesitate to use these techniques because they are
unwilling to make medical decisions based on opaque
information. However, a major advantage of the present
study is that we used the SHAP method to reasonably
elucidate the “black box” of the ML model. The SHAP
method clarifies the functionality of the model by
providing global and local explanations, detailing how
the personalized input data are used to make specific
predictions for individual patients. In addition, by using
the convenient tools of the Shinyapps platform, we in-
tegrated out prediction model into a user-friendly online
prediction platform for both doctors and patients.
Another strength of the present study is the comparison
of the prediction performance of different ML models
for the risk of DM in PTC. The evaluation of the per-
formance of the models in the external validation set
and the comparison of the models also showed that the
RF model had good predictive value for DM in PTC.
Another strength of the present study is that the pre-
dictive factors included in the model were all routine
items obtained for patients during hospitalization and
were easy to obtain, providing feasibility for the pro-
motion and application of the model in clinical practice.

We acknowledge several limitations of the present
study. First, this was a retrospective study. Although we
had strict inclusion and exclusion criteria, it was difficult
to completely avoid bias in the research results. Second,
the model was constructed based on data from Chinese
patients. Although the performance of the model was
externally validated, there is still no basis for the
generalizability of the model for use in patients from
other populations. This study did not measure partici-
pants’ socioeconomic status or other structural factors
(such as access to healthcare), which may influence the
prognosis of patients with thyroid cancer. Future
research should consider incorporating socioeconomic
background and related variables to further enhance the
generalizability of the model. Third, even though “big
www.thelancet.com Vol 77 November, 2024
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data” are needed for creating a prediction model, there
is currently no criterion for determining an appropriate
sample size. Nevertheless, the good performance of the
model in internal cross-validation and external valida-
tion indicated that the sample size in this study was
appropriate and provided sufficient support for
exploring DM in patients with PTC. Fourth, considering
the generalizability of the model, the variables included
in this study were all routine items that are easy to
obtain in clinical practice. Some novel molecular
markers associated with the DM in thyroid cancer, such
as BRAF V600E and TERT mutations, were not included
in the present study.61,62 Fifth, the model’s performance
in predicting “other metastases” was lower, likely due to
the smaller sample size of patients with this type of
metastasis, leading to data imbalance and affecting the
model’s sensitivity and accuracy. In the future,
increasing the sample size or applying data balancing
techniques could improve the predictive performance.
Additionally, this study did not incorporate imaging
data, despite the critical role that imaging examinations
play in the diagnosis and staging of thyroid cancer. The
inclusion of imaging features, whether traditional
radiomic features or deep learning-based features, could
potentially enhance the accuracy and clinical applica-
bility of the model. Despite these limitations, the
impressive performance of our final prediction model is
not overshadowed.

In conclusion, we successfully developed an
explainable ML model to predict the risk of DM in pa-
tients with PTC based on clinical data easily extracted
from EMRs. The final RF model exhibited excellent
prediction ability in both internal and external valida-
tions. In the future, further prospective randomized
controlled studies are needed to clarify whether indi-
vidualized diagnosis and treatment plans and follow-up
strategies developed based on the final prediction model
can effectively improve the outcomes of patients with a
high risk of DM in PTC.
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