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The importance of studying cancer cell invasion is highlighted by the fact that 90% of all

cancer-related mortalities are due to metastatic disease. Melanoma metastasis is driven

fundamentally by aberrant cell motility within three-dimensional or confined environments.

Within this realm of cell motility, cytokines, growth factors, and their receptors are crucial

for engaging signaling pathways, which both mediate crosstalk between cancer, stromal,

and immune cells in addition to interactions with the surrounding microenvironment.

Recently, the study of the mechanical biology of tumor cells, stromal cells and the

mechanics of the microenvironment have emerged as important themes in driving

invasion and metastasis. While current anti-melanoma therapies target either the MAPK

signaling pathway or immune checkpoints, there are no drugs available that specifically

inhibit motility and thus invasion and dissemination of melanoma cells during metastasis.

One of the reasons for the lack of so-called “migrastatics” is that, despite decades of

research, the precise biology of metastatic disease is still not fully understood. Metastatic

disease has been traditionally lumped into a single classification, however what is now

emergent is that the biology of melanoma metastasis is highly diverse, heterogeneous

and exceedingly dynamic—suggesting that not all cases are created equal. The following

mini-review discusses melanoma heterogeneity in the context of the emergent theme of

mechanobiology and how it influences the tumor-stroma crosstalk during metastasis.

Thus, highlighting future therapeutic options for migrastatics and mechanomedicines in

the prevention and treatment of metastatic melanoma.
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INTRODUCTION

In recent years, studies elucidating the biology of metastatic melanoma have revealed highly
complex, yet dynamic processes, with equal parts unpredictability. The dynamic behavior of
metastatic melanoma is highlighted by the multiple migration modalities employed to navigate
the topography of a fluctuating microenvironment (Figures 1, 2). The ability of melanoma
to both transition through multiple environments and integrate stromal signals with invasive
and proliferative behaviors influences the response of metastatic melanoma to therapies.
Advanced stage metastatic disease is particularly important as it is currently incurable by
conventional targeted therapies and patient survival does not benefit from surgical resection
alone (1). Furthermore, paradigm shifting “immuno-therapies” whilst effective in a subset
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FIGURE 1 | Dynamic switching of 3D migration modes in metastatic melanoma. Schematic representation of 3D mesenchymal and amoeboidal migration mode

dynamic switching. Mesenchymal migration relies on RAC signaling to establish front-rear 3D polarity in order to generate a predominant pseudopodia, producing the

characteristic spindle like morphology. Mesenchymal migration relies on MMP-dependent ECM degradation and integrin-dependent cell-matrix attachment protein

complexes known as focal adhesions (FAs). FAs are thought to be hot spots for exocytic trafficking of MMPs, mediated by cortical microtubule stabilization complexes

containing microtubule associated proteins, CLASPs, and FA adaptor proteins, KANKs. In contrast, amoeboid migration subsumes several migration modes from

blebbing, chimneying to actin gliding modes. Importantly, amoeboidal migration requires little to no integrin activity and or MMP-mediated matrix degradation.

Transformed cancer-associated fibroblasts (CAFs) are known to facilitate ECM changes through deposition of fibronectin that crosslinks collagen I fibers.

CAF-dependent contractility further in reorganization of ECM influenceing melanoma migration and survival mechanosensory proteins.

of patients, are not effective in all (2–5). Thus, many patients
diagnosed with metastatic melanoma are left with little to no
treatment options, leaving survival prognosis bleak (1, 6–8). This
underscores the importance of both studying and understanding
the biology of melanoma, with the aim of using this knowledge
to produce novel targeted therapies, or “migrastatics” (9), that
specifically target both the cancer and the microenvironment to
prevent metastatic spread.

METASTATIC MELANOMA

Melanoma metastasis is governed by the fundamental process of
cell motility, whereby aberrantly transformed cancer cells hi-jack
normal cellular processes used in homeostasis and development
(10–12). Broadly, tumor cells that have subsumed a pro-
invasive phenotype achieve metastatic dissemination through
processes of intra- and extravasation to arrest at anatomically
distant sites where they regain proliferative programming (13).
Although we have progressively elucidated our understanding
of metastatic behaviors, particularly those shared across
multiple cancer types, the exact molecular mechanisms
remain elusive and are of high clinical relevance (14–17).
Metastatic melanoma spreads in an unpredictable fashion,
often through parallel routes of widespread dissemination to
multiple organs (18). Melanoma has been shown to engage

in conventional intravasation and subsequent vascular and
lymphovascular metastatsis (19) and also unconventional
intravasation-independent migration known as “pericytic
mimicry” (20, 21), where tumor cells migrate along the exterior
of blood vessels. There have even been reports of melanoma
cells exhibiting exhibiting “vasculogenic mimicry,” whereby they
are proposed to form de novo vascular networks to promote
tumor perfusion (22). Interestingly, parallels exist between
the highly invasive nature of metastatic melanoma and their
neural crest/melanoblast precursors, with the two sharing similar
pro-migratory behavior attributes resulting in multiple studies
suggesting that melanoma reactivates neural crest migration
programs to drive plasticity and invasiveness in melanoma
(12, 18, 23, 24).

INVOLVEMENT OF CYTOKINES AND
CHEMOKINES IN MELANOMA
METASTASIS

Despite dissemination to most tissue types, melanoma exhibits
metastatic tropism, preferentially metastasizing to the brain,
lung, liver, small bowel or skin (25). Although the specific
tumor-tissue tropism mechanisms are still unclear; chemokine
receptors appear to play a role in tumor-tissue “homing”
(26, 27). Recent studies show that cytokines and chemokines

Frontiers in Medicine | www.frontiersin.org 2 November 2018 | Volume 5 | Article 307

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Ju et al. Melanoma Motility, Invasion and Metastasis

FIGURE 2 | Migration at the 3D Melanoma-collagen interface. (A) Melanoma spheroids (1205Lu cells) embedded in a porous fibrillar collagen I hydrogel show

heterogeneous 3D migration phenotypes at the spheroid-matrix interface. Within collagen I hydrogels, melanoma cells exhibit multi-cellular streaming (red arrows),

single-cell rounded migration (white arrows) and polarized mesenchymal migration (orange arrow). (B) Representative high resolution spinning disc confocal

images of single melanoma cells expressing fluorescently labeled filamentous actin (mScarlet-i-Lifeact) demonstrating several 3D migration phenotypes within the

same collagen I hydrogel i. Amoeboid blebbing migration ii. Intermediate blebbing-pseudopodia phenotype and iii. Mesenchymal migration.

are integral to immune detection of melanoma cells by
differentially regulating the behavior of monocytes, macrophages
and natural killer cells (NK cells) (27, 28). Normally, these
immune cells function to detect and kill pre-metastatic
tumor cells. This process is mediated by the type 2 tumor
suppressor protein, pigment epithelium-derived factor (PEDF),
whereby PEDF-positive tumor-derived exosomes circulate the
vasculature and mount immune responses. This results in, (1)
macrophage differentiation and tumor cell detection through
the modulation of the IL-10/12 axis, as well as (2) the
recruitment of CX3CR1-expressing patrolling monocytes, which
function to clear micro-particles and cellular debris from the
microvasculature. Additionally, the recruitment and activation
of NK cells has been shown to play an auxiliary role
in tumor cell killing. The activation of these three arms
results in immune detection of pre-metastatic melanoma cells
ensuing in tumor death and clearance (27). However, PEDF
expression in tumor cells and circulating exosomes is lost during
metastatic melanoma transformation, and thus metastatic cells
go undetected, allowing cellular debris and micro-particles to

create pre-metastatic niches at distant microenvironments (27,
29–33). This process involves transforming and modulating
local inflammatory immune cells, stromal cells and extracellular
matrix (ECM) through the secretion of homing factors,
inflammatory cytokines, and chemokines (34–36). Reciprocally,
melanoma secreted cytokines and progressive increases in
chemokine receptor expression during progression act to drive
angiogenesis and metastasis to certain organs, respectively (37–
39). Specifically, studies have shown that the ectopic expression
of the chemokine receptor CCR7 in murine melanoma cells
increases tumor-lymph node and -brain tissue homing in
vivo (40), whilst CXCR4 promotes melanoma-lung tropism
(41). However, melanoma tissue tropism is likely to be more
complex as studies using human melanoma xenografts only
partially recapitulate this phenomenon (42). Irrespectively,
these findings demonstrate that chemokines play a role in
the “tissue-homing,” supporting Paget’s 1889 “Seed and Soil”
hypothesis that postulated tumor metastasis to particular
anatomical sites was driven by cellular mechanism, and not at
random (43, 44).
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THE ROLE OF CELL MOTILITY AND
MICROENVIRONMENT MECHANICS IN
MELANOMA INVASION

The phenotype-switching model of melanoma heterogeneity
(45–47) highlights the importance of understanding the influence
of the microenvironment on invasive behavior, notably, how
do cells move in 3D? 3D cell motility is a complex biophysical
process, which occurs through dynamic interplay between
cytoskeletal remodeling, plasma membrane deformation,
acto-myosin contractility, and cell-matrix adhesion. The
functional organization of these molecular components is
highly adaptive, mechanically responsive and varies between
cell and tissue types (48–50). The theme of mechanoreciprocity
encompasses the rapidly growing knowledge that the cell-ECM
interaction is in fact a bi-directional relationship resulting in
a biophysical reciprocity whereby cancer cells switch between
a growing repertoire of migration modalities to adapt to the
geometry, topography, elasticity and chemical composition
their surrounding microenvironment (Figure 1). The bi-
direcitonal nature of mechanoreciprocity arrives from our
understanding of the multi-component viscoelastic units
(i.e., cells and the ECM), subject to reciprocal mechanical
and chemical interactions that catalyze, assist or restrict
cell migration, in context dependent manners (51). This
relationship acts to facilitate changes in cell shape, position,
the decision between single-cell and collective migration, and
structural modification to tissue and the microenvironment
through the deposition of matrix (52). The question of how
melanoma cells interpret particular environmental cues and
integrate a response hierarchy to each stimulus remains
an exciting area with the capacity to influence therapies
(9, 53).

CYTOSKELETAL DRIVING FORCES OF
MOTILITY

Cell motility is driven by a symphony of cytoskeletal components,
which act in fine spatial-temporal orchestration to facilitate
movement. The cytoskeleton encompasses actin microfilaments,
microtubules, intermediate filaments, and septins (48, 54–58).
The spotlight for motility has long been held by the actin
cytoskeleton, with many researchers proposing that targeting the
actin cytoskeletal network during invasion, through rate limiting
mechanisms, may abrogate cancer metastasis and invasion (9,
59–62). A substantial amount of our cell motility knowledge
has been uncovered by studying cultured cells on stiff 2D
substrates such as plastic and glass (63, 64). However, the greatest
limitation that 2D migration biology imposes is that it very
poorly recapitulates the biomechanical architecture within tissues
and organs in mammalian tissue (63, 65, 66) which varies
dramatically in bio-mechanical composition and thus impacts
on mechanosensing (67). Similar to other 3D models of cancer,
our studies, have demonstrated that 3D models more accurately
mirror in vivo biology and tumor drug response when studying
melanoma (68–71).

3D MIGRATION PLASTICITY

Similarly to 2D, cell shape changes observed in 3D migration
are classically attributed to remodeling of the actin cytoskeleton
and spatio-temporal regulation of RHO/RAC GTPase signaling
that govern cytoskeletal dynamics (72). Traditionally, cancer
cells predominantly exploit two modes of 3D or confined
migration, categorized as either amoeboidal or mesenchymal
migration (Figure 1) (73). More complex models have identified
that cancer cells can also behave semi-collectively to exhibit
multicellular streaming whereby cells invade in a chain-like
fashion following a primary leader cell (Figure 2) (52). It
is the ability of cells when subjected to different 3D ECM
topographies to dynamically adapt to undergo the most
efficient mode of migration (51) (often switching between
migration mode sub-types), which highlights the role of
mechanoreciprocity in facilitating dynamic plasticity during
cancer invasion

One crucial feature that affects the cell determination of
migration mode is the degree of ECM confinement (74).
Increased confinement imposes a mechanical cell-deformation
challenge, which allows cells to traverse through narrow
spaces. Several landmark studies have demonstrated that
the degree to which cancer cells are able to squeeze to
facilitate migration is rate-limited by the degree of nuclear
compression or distortion, defined as the “nuclear limit of
migration,” which is equal to approximately 10% of the
nuclear cross-sectional area (75, 76). If nuclear constriction
falls beyond this limit, cells switch to migration modalities
that upregulate ECM proteolysis, seen in the process of
amoeboid-to-mesenchymal switching (50, 75, 77) or alternatively
undergo nuclear envelope rupture which may affect cell viability
(78–80).

ADHESION-INDEPENDENT AMOEBOIDAL
MIGRATION

Blebbing behavior for motility purposes was overlooked until
a landmark study identified melanoma cells lacking the
actin crosslinking protein, Filamin A, exhibited non-apoptotic
blebbing which correlated with motility (81). The classification
of amoeboid migration now subsumes a heterogeneous spectrum
of migration modes ranging from blebbing, “chimneying”
and actin-polymerisation gliding-based modes (Figure 1) (82).
Amoeboid-based motility is rapid as it entails little to no integrin
activity and does not require proteolytic degradation, opening
of junctions, penetration of basement membranes, or breaching
endothelial vasculature (50, 83). Instead, surrounding surfaces
immobilize cells with the transmission of traction forces alone
being sufficient for cells movement. The mechanical drivers
of amoeboid migration are attributed to the RHOA-ROCK-
myosin II signaling axis which governs acto-myosin contractility
to generate membrane blebs which are both reinforced by
ROCK-dependent JAK-STAT3 signaling and maintained by IL6-
STAT3 (84, 85). Myosin II contractile activity drives membrane
blebbing by localized rises in hydrostatic pressure resulting in the
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rupture of cortical actin networks (86) or localized detachment
of plasma membrane from the cortical actin cytoskeleton (87).
Both mechanisms that generate hydrostatic pressure gradients
are able to produce spherical membrane blebbing as a result
of cytosolic content flow that protrudes the plasma membrane.
The subsequent membrane bleb retraction occurs once pressure
is equilibrated (88). Acto-myosin blebbing activity functions in
tandem with RHO-RAC inhibitory crosstalk, which generates
tractional force through the inter-digitation of blebs or actin
based protrusions into gaps within the matrix environment (89).
The cytokine TGFβ has also been shown to promote amoeboid
migration and invasion in melanoma via a SMAD/CITED-
dependent transcriptional activation of key genes involved in
sustained actomyosin contractility (90).

PROTEASE-DEPENDENT MESENCHYMAL
MIGRATION

Mesenchymal or proteolytic-dependent modes of migration
occur when cells are subjected to highly confined
microenvironments, that are not permissible to squeezing-
based migration modes, requiring cells to remodel the matrix to
facilitate invasion (50). Cells engaged in mesenchymal migration
exhibit polarized spindle-like morphologies, which are highly
dependent on integrin-based ECM adhesion and proteolysis of
ECM (Figure 1) (91). The characteristic polarized phenotype of
mesenchymal migration and also the formation of a predominant
pseudopodium, analogous to a lamellipodium in 2D, arises from
RAC signaling which results in a slow, but highly directional
3D migration (Figure 2iii) (92–94). Interestingly, the RAC1
GTPase activating mutation (P29S) is the third most frequently
occurring mutation in sun-exposed melanoma (∼9%). RAC1
plays significant roles in lamella actin dynamics, acting upstream
of key actin regulatory proteins including Arp2/3 and Cofilin to
drive membrane protrusion in 2D. RAC1P29S drives resistance
to targeted therapy (84, 85) via mechanosensory-dendritic
actin polymerization in low compliance environments which
drives proliferation via a MAPK-independent pathway (95).
RAC1 also affects 3D cell motility (86) and inhibits RHO-
ROCK signaling, further highlighting that the presence and
high frequency of RAC1P29S in melanoma cases may have
implications on both melanoma metastasis and survival in these
patients.

The pseudopodial extensions are created by polarized actin
polymerisation which results in the breaking of symmetry
and formation of a dominant protrusion. Pseudopodia a
facilitates directional 3D migration whilst also allowing cells
to mechanosense their microenvironments. Pseudopodial
extensions are stabilized by interactions with the matrix
through integrin transmembrane receptor interactions, which
scaffold into multiprotein complexes known as focal adhesions
(Figures 1, 2iii.). These mechanosensory complexes determine
changes in substrate composition and stiffness primarily through
the force transduction proteins talin and vinculin which scaffold
onto the acto-myosin cytoskeleton (Figure 1) (96). Force-
dependent conformational changes in talin act to coordinate

recruitment of key focal adhesion signaling and scaffolding
proteins [i.e., KANKS (97)] by exposing and disrupting binding-
sites in a tension-dependent manner (98). Additionally, focal
adhesions serve as ECM anchor points, enabling actin-dependent
traction force generation via a molecular-clutch to drive cells
forward (99). Synchronous acto-myosin contractility occurs at
the rear of the cell which facilitates the disassembly of trailing
adhesion sites whilst also propelling the cell body and nucleus
forward to drive migration (50, 100).

An important facet of mesenchymal migration is the
focalization of matrix degradation, which is dependent on
targeted matrix metalloprotease (MMP) secretion. A landmark
study by Wolf and Friedl, identified MMP focalization to
the neck of pseudopodia (101). Although the mechanism
of MMP targeting during collagenolysis is still unclear, we
have demonstrated that microtubules and the associated +TIP
proteins, CLASPs, play a crucial role in the release of ECM-
matrix interactions via targeted delivery of MMPs to adhesion
sites (Figure 1) (102). We have recently identified that CLASPs
are overexpressed in several metastatic melanoma cell lines,
supported by gene expression database analysis (103–105),
outlining a potential role for this process to be dysregulated in
metastatic melanoma. Understanding themechanisms governing
MMP-targeted secretion in the context of 3D models will
elucidate how cells co-ordinate polarized proteolysis to drive
invasion in response to the microenvironment. Nuclear-
deformation is also thought to play a mechanosensitive rate
limiting role as nuclear deformation has been shown to
arrest migration if proteolysis is inhibited (75, 76). Although
microtubules are less well understood in the context of
3D migration, we know that confined migration requires
microtubules (106) and microtubules are mechanically coupled
to the nuclear envelope (107). This in addition to microtubule
roles in trafficking, polarity and spatio-temporal regulation of
signaling, highlight that microtubules are likely to play key roles
in melanoma invasion (60, 63, 108).

THE ROLE OF MECHANORECIPROCITY IN
MIGRATION MODE SWITCHING

Binary concepts like Epithelial to Mesenchymal Transition
(EMT), and the reverse (MET), have been extensively studied
in the fields of development and cancer (109). Our current
understanding of cell motility in complex environments
highlights that the initiation of invasion is not as simple as
a transcriptional program switch and is heavily influenced
by mechanochemical signaling and the plasticity it evokes.
Until recently, the two dichotomous modes of 3D migration,
mesenchymal or amoeboid, were thought to be independent.
We now know they are likely to be a continuum of a single
migration process whereby cells dynamically switch between
modes (Figure 1). This adaptive response is highlighted in cases
whereby cells are subjected to continuous vs. non-continuous
confinement, which catalyze very different migration phenotypes
(Figures 2A,B). Continuous confinement is analogous to the
cellular movement in a parallel, tube-like, structure or between
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two planes of tissue, resulting in cellular preference for nuclear
piston-driven lobopodial migration (110, 111); whereas, non-
continuous confinement is analogous to cells traversing between
networks of fibers resulting in squeezing-based amoeboid
migration (Figures 2Bi,ii) (50). Importantly, the premise of
mechanoreciprocity and migrational plasticity has the potential
to encompass many more modes of migration that we do not yet
fully understand and have not yet discovered.

MELANOMA-STROMA INTERACTION

Melanoma cell invasion is facilitated by dynamic interactions
between melanoma, ECM (112) and stroma (113, 114), to which
the mechanics of ECM play key roles (115). We now know the
surrounding tumor stroma is considered to be equally important
as the tumor itself (116, 117). This understanding encompasses
findings that demonstrate that during disease progression, tumor
cells do not act in isolation, instead reciprocally interacting with
the surrounding stroma to facilitate tumor cell dissemination.
This process occurs through tumor recruitment of stromal
cells (117–119), causing stromal cells to co-evolve with the
primary tumor which triggers the metastatic cascade (116). This
tumor-stroma cross talk involves a “melting pot” of extracellular
matrices, fibroblasts, adipocytes, pericytes, endothelial, immune,
and inflammatatory cells, such as macrophages and neutrophils
(117, 120). The process of stromal cell recruitment is facilitated
by tumor-secreted growth factors in a continual paracrine fashion
(52). This disruption of the finely-tuned balance of stromal
homeostasis and elicits transformed stromal cells to alter the
tumor microenvironment to facilitate permissive conditions for
tumor cell invasion (116). In a recent study, transformed cancer-
associated fibroblasts (CAFs), were shown to facilitate tumor
invasion through integrin αVβ3-dependent fibronectin secretion,
which induced mechanical changes in the ECM through the
contraction of collagen fibers (Figure 1) (105). The geometrical
and mechanical ECM changes have been shown to affect the
initial onset of invasion at the tumor-ECM interface (108,

109). Reciprocally, stromal secretion of growth factors elicits
changes in primary tumor cell behavior, resulting in tumor
cell secretion of proteolytic enzymes, including MMPs (116,
121) which have both catalytic and non-catalytic functions in
melanoma invasion (32). Tumor-stromal crosstalk also plays
a role in resistance to therapies where CAF-dependent ECM
remodeling provides a therapeutic “safe-haven” for BRAFmutant
melanoma from the BRAF inhibitor PLX4720 (122). This
protective stromal signaling was mediated by reactivation of
ERK and MAPK, via adhesion-dependent β1-integrin-FAK-Src
signaling.

In summary, the many targets that drive metastatic
melanoma motility are complex, diverse and outline biological
heterogeneity. Our review highlights insight into the idea that
motility and survival are not mechanistically separate and thus
identifying targets which prevent melanoma migration, may
also act to interrupt pro-survival pathways, strengthening the
idea behind “mechanomedicines” for cancer (53). The search
for migrastatics aims to synthesize the many findings that drive
aberrant motility in melanoma to identify a crucial mechanism
that melanoma cells engage that is not only specifically
dysregulated, but the inhibition of such pathway is inescapable
for halting melanoma motility.
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