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We propose a method for improving image quality in medical images by using a wavelet-based approach. The proposed method
integrates two components: image denoising and image enhancement. In the first component, a modified undecimated discrete
wavelet transform is used to eliminate the noise. In the second component, a wavelet coefficient mapping function is applied to
enhance the contrast of denoised images obtained from the first component.This methodology can be used not only as a means for
improving visual quality of medical images but also as a preprocessing module for computer-aided detection/diagnosis systems
to improve the performance of screening and detecting regions of interest in images. To confirm its superiority over existing
state-of-the-art methods, the proposed method is experimentally evaluated via 30 mammograms and 20 chest radiographs. It
is demonstrated that the proposed method can further improve the image quality of mammograms and chest radiographs, as
compared to two other methods in the literature. These results reveal the effectiveness and superiority of the proposed method.

1. Introduction

Denoising and contrast enhancement operations are two of
the most common and important techniques for medical
image quality improvement. Because of their importance,
there has been an enormous amount of research dedicated to
the subject of noise removal and image enhancement [1–4].

With regard to image denoising, some approaches using
discrete wavelet transform (DWT) have been proposed [5–
7]. The DWT is very efficient from a computational point
of view, but it is shift variant. Therefore, its denoising
performance can change drastically if the starting position
of the signal is shifted. In order to achieve shift invariance,
researchers have proposed the undecimated DWT (UDWT)
[8–10]. Mencattini et al. reported a UDWT-based method
for the reduction of noise in mammographic images [11].
The reported method was robust and effective. However, the
method was not advantageous in terms of computational
aspects. Zhao et al. proposed an image denoising method

based on Gaussian and non-Gaussian distribution assump-
tions for wavelet coefficients [12]. Huang et al. reported
on a denoising method which involves directly selecting
the thresholds for denoising by evaluating some statistical
properties of the noise [13]. Recently, Matsuyama et al.
proposed a modified UDWT approach to mammographic
denoising [14]. The results demonstrated that the method
could further improve image quality and decrease image
processing time.

As regard to the improvement of contrast enhancement,
various image enhancement techniques have been proposed
[15–20]. These techniques can be divided into several cat-
egories, including histogram equalization [15, 16], region-
based [17], fuzzy [18], genetic algorithm [19], and adaptive
methodology [20]. Wavelet-based approaches to enhance-
ment of digital images have been also reported [21–25]. Tsai
et al. proposed a method which employs an exponential-
type mapping function to the wavelet coefficients of digital
chest images and then reconstructs an enhanced image with
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the mapped wavelet coefficients [22, 23]. Lee et al. used
a sigmoid-type mapping function for wavelet coefficient
weighting adjustment to improve the contrast of medical
images [25]. The method was applied to chest radiographs,
mammograms, and chest CT images. The method showed a
statistically significant superiority over the exponential-type
mapping function.

In this study, we expanded upon the previously suggested
modified UDWT method [14] and combined it with the
sigmoid-type mapping function [25]. By combining the two
methods together in sequence, an effective algorithm for
both image denoising and enhancement could be obtained.
Original images were first denoised using the modified
UDWT, followed by image enhancement using the wavelet
coefficientmapping function. Finally, a denoised and contrast
enhanced image was reconstructed by the inverse wavelet
transform. In this study, we investigated the effectiveness of
the proposed method by comparing it with two methods in
the literature [14, 25].

2. Methods and Materials

2.1. Combined Method of Undecimated Discrete Wavelet
Transform and Wavelet Coefficient Mapping. Figure 1 shows
a flowchart of our proposed method. In the first phase,
denoising was applied to original images using our newly
adopted UDWT. In the second phase, image enhancement
was performed using a sigmoid-type transfer function for
wavelet coefficient mapping. Sections 2.1.1 and 2.1.2 describe
the two phases of the proposed method, respectively.

2.1.1. Extended Undecimated Discrete Wavelet Transform
Method. The UDWT is a wavelet transform algorithm
designed to overcome the lack of translation invariance of
the DWT. Unlike the DWT, the UDWT does not incorporate
the downsampling operations.Thus, the approximation coef-
ficients (low-frequency coefficients) and detailed coefficients
(high-frequency coefficients) at each level are the same length
as the original signal.The basic algorithm of the conventional
UDWT is that it applies the transform at each point of
the image and saves the detailed coefficients and uses the
approximation coefficients for the next level. The size of the
coefficients array does not diminish from level to level. This
decomposition operation is further iterated up to a higher
level. There are major differences between the modified
UDWT method [14] and the conventional UDWT method.
First, the conventional UDWT decomposes the original
image (level 0) into one low-frequency band and three high-
frequency bands for each resolution level with the same
size as the original image. The decompositions are usually
conducted up to resolution level 4. In contrast, the modified
UDWTmethod only needs to perform the computation up to
resolution level 2 and repeat the computation only one time
[14, 26]. Second, the conventional UDWT thresholded the
detailed coefficients at all 4 levels with the same thresholding
value, while the modified UDWTmethod utilizes the hierar-
chical correlation of the coefficients between level 1 and level
2 of the three detailed coefficients for thresholding. In other

words, the thresholding values vary and are dependent on the
nature of the noise.

The extended UDWT method adopted in the present
studywas based on themodifiedUDWT [14].Themethodwe
used mainly consisted of the following steps (see Figure 1).

(1) Perform two-dimensional UDWT to the original
image to obtain wavelet coefficients up to level 2.

(2) Calculate the hierarchical correlations of the detailed
coefficients between level 1 and level 2 for the three
subbands. The correlations for the three detailed
subbands are given as





Coeflev 1 (𝑝, 𝑞) × Coeflev 2 (𝑝, 𝑞)





, (1)

where 𝑝 and 𝑞 are the new coordinates after wavelet
transform. Coeflev 1 and Coeflev 2 are wavelet coeffi-
cients of level 1 and level 2, respectively.

(3) Determine threshold values for each detailed sub-
band. The determination procedure is as follows

(a) Generate a correlation image ImgCor(𝑝, 𝑞) for
each detailed subband:

ImgCor (𝑝, 𝑞)

=







Coeflev
1

(𝑝, 𝑞) × Coeflev
2

(𝑝, 𝑞)







.

(2)

(b) Find themaximumvalue in each row in the hor-
izontal (𝑥-) direction of the obtained correlation
image for each of the three detailed subbands.

(c) Compute the mean of the maximum values
obtained from all rows in the 𝑥-direction of
the correlation image. The mean is denoted by
Meanmax

(d) Eliminate those correlation values greater than
0.8 × Meanmax. These excluded values are con-
sidered signal data. The value of 0.8 was deter-
mined empirically through experiments.

(e) Compute the standard deviation 𝜎 from the
remaining correlation values.

(f) Determine the threshold value by use of the
following formula:

THR = 1.6 × 𝜎. (3)

The value of 1.6 was determined empirically
through experiments.

(4) Apply the determined threshold values to the correla-
tion values:

New Coeflev 1 (𝑝, 𝑞)

= {

Coeflev 1 (𝑝, 𝑞) , if 



Coeflev 1 × Coeflev 2





≥ THR,

0, otherwise,
(4)
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Figure 1: A flowchart summarizing the processing procedure for the proposed algorithm.

where New Coeflev 1(𝑝, 𝑞) is the newly obtained,
modified coefficient for level 1. The modified coeffi-
cients of the horizontal, vertical, and diagonal sub-
bands are, respectively, obtained. It should be noted
that the threshold operation was only applied to the
detailed components. The reason is that the detailed
components mainly contain the noise and high-
frequency information, whereas the approximation
component thatmainly contains low-frequency infor-
mation remains unchanged.

(5) Perform the inverse wavelet transform to reconstruct
the denoised image with the approximation coeffi-
cient of level 1 and the three newly obtained detailed
coefficients of level 1.

In a previous study [14], we evaluated six comparatively
popular wavelet basis functions, namely, discrete FIR approx-
imation of Meyer wavelet (dmey), Daubechies order 2 (db2),
Symlets order 7 (sym7), Coiflets order 1 (coif1), Coiflets order
5 (coif5), and biorthogonal 6.8 (bior6.8), as candidates for
selection as the most suitable basis function for the UDWT.
The evaluation results showed that wavelet-processed images
with db2 basis function provided the best results among the
six basis functions. Thus, we selected db2 basis function for
the proposed method [14, 25, 26].

2.1.2. Wavelet Coefficient Mapping. A sigmoid-type transfer
curve with a one-to-one mapping function was used for
enhancement of image contrast [25]. The mapping function
was determined based on the following considerations: (a)
wavelet coefficients having high values are heavily weighted

because they carry more useful information; (b) the coeffi-
cients at low levels are heavily weighted because they carry
detailed information, such as edge information; and (c) the
approximation coefficients are not manipulated to prevent
image distortion [23, 25].

The input coefficient 𝑤

𝑗

input(𝑚, 𝑛) of level 𝑗 at position
(𝑚, 𝑛) was manipulated using the sigmoid-type transfer
curves of wavelet coefficients. The mapping function is given
by

𝑤

𝑗

output (𝑚, 𝑛)

= 𝑎 ×

1

1 + {1/ exp [(𝑤

𝑗

input (𝑚, 𝑛) − 𝑐) /𝑏]}

× 𝑤

𝑗

input (𝑚, 𝑛) ,

(5)

where 𝑤

𝑗

output(𝑚, 𝑛) represents output coefficient. a, b, and 𝑐

are constants and are determined depending on the extent
of enhancement to be added. In practice, (6) is used as the
mapping function instead of (5). In (6), the values of the
coefficients are expressed in terms of percentage for the ease
of computation:

𝑤

𝑗

output = 𝑎 ×

1

1 + [1/ exp ((𝑤

𝑗

input − 𝑐) /𝑏)]

× 𝑤

𝑗

input [%] .

(6)

Here, 𝑤𝑗input is the input value expressed in terms of percent-
age. This value makes the mean of the absolute values of the
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coefficients at level 𝑗 equal to 50%. Notation 𝑤

𝑗

output is the
corresponding output value expressed in terms of percentage.
By utilization of percentage, the constants a, b, and c could
be used independent of image characteristics. The value of
constant a was obtained using (7):

𝑎 = 2 −

(𝑗 − 1)

𝑁

, (7)

where 𝑁 represents the maximum decomposition level.
Consequently, the lower the wavelet decomposition level j,
the greater the gradient of the transfer curve becomes. As
a result, the wavelet coefficients at low-decomposition levels
that contain information about edges of an image are highly
weighted. The constant 𝑐 was determined by use of (8):

𝑐 = 𝑑 + 𝑏 × log
𝑒
(𝑎 − 1.0) , (8)

where 𝑑 is a constant used for determining the inflection
point of the sigmoid curve, and 𝑏 represents a constant used
for determining the gradient of the sigmoid curve.The values
of 𝑏 and 𝑑 used in this study were 20 and 25, respectively [23].

2.2. Image Data. To evaluate and validate our proposed
method, we used two standard digital databases: a mam-
mogram database and a chest radiograph database. The
former was from theMammographic Image Analysis Society
(MIAS) [27] and the latter was from the Japanese Society of
Radiological Technology [28]. Patient informed consent was
not required. A total of 30 mammograms obtained from the
database were used for investigation of the effectiveness of the
proposed method. The matrix size of each image was 1024 ×

1024 pixels with 8-bit gray-level resolution. The matrix size
of each chest radiograph was 2048 × 2048 pixels with 12-bit
gray-level resolution. From the radiograph database, 20 chest
images were used for the present study.

Other than the described image data, we also prepared
another data set by purposely adding a zero-mean Gaussian
noise with a standard deviation of 0.01 to the obtained 30
mammograms and 20 chest radiographs. The purpose of
using the images with external added noise was to clearly
demonstrate the effectiveness of the proposed method by
comparing the pixel-value profiles along the horizontal direc-
tion of processed images. As for visual perceptual evaluation,
in order to keep visual evaluation clinically practical, images
without adding external noise were used for visual assess-
ment.

2.3. Visual Perceptual Evaluation. Avisual perceptual evalua-
tionwas designed for performance analysis.We used Scheffe’s
method of paired comparison to evaluate the preference of
overall image quality [29, 30].The visual evaluationwasmade
by five experienced radiological technologists (ranging from
20 to 25 years of experience). In the case of mammograms,
the obtained 30 mammograms from the data set were
processed using the proposed method, the modified UDWT
method, and the sigmoid-type wavelet coefficient mapping
method. Thus, a total of 90 images were used for image
quality evaluation. All images were evaluated on a pair of

widely used medical 3M monochrome liquid-crystal display
monitors. Each observer reviewed the images independently.
The reading time was limited to less than 20 seconds for each
reading. The observers independently evaluated one pair of
images, which were shown on the monitors one at a time,
using a 5-point grading scale (−2 points to +2 points). If the
image shown on the left was much better than that shown
on the right in terms of overall image quality, the left image
was given +2 points; the left image was given +1 point when
it was slightly better than the right one; the left image was
given 0 points, when both images were of the same image
quality. Conversely, if the image shown on the left was much
poorer than that shown on the right in terms of overall image
quality, the left image was given −2 points; the left image was
given −1 point when it was slightly poorer than the right one.
Comparisons were made by use of three possible combina-
tions, that is, modified UDWT/sigmoid mapping, modified
UDWT/proposed method, and sigmoid mapping/proposed
method combinations. Each pair of images was determined
randomly. In addition, the two paired images (left side versus
right side) were arranged on a random basis.

The same procedures were performed for the case of chest
radiographs.

2.4. Quantitative Evaluation. In order to compare objectively
the performance of the proposed algorithm against two
published algorithms [14, 25], in this study we adopted
four image quality metrics. The 4 metrics are the mean-to-
standard-deviation (MSR), the contrast to noise ratio (CNR),
contrast improvement ratio (CIR), and peak signal-to-noise
ratio (PSNR). They are briefly described as follows.

TheMSR [31, 32] in a desired region of interest (DROI) is
defined as

MSR =

𝜇
𝑑

𝜎
𝑑

, (9)

where 𝜇
𝑑
and 𝜎

𝑑
are the mean and standard deviation

computed in the DROI. The CNR [31, 32] is defined as

CNR =







𝜇
𝑑
− 𝜇
𝜇







√0.5 (𝜎
2

𝑑
+ 𝜎
2

𝜇
)

, (10)

where 𝜇
𝜇
and 𝜎

𝜇
are the mean and the standard deviation

computed in an undesired region of interest (UROI) such
as background. Both the MSR and CNR measurements are
proportional to the medical image quality.

TheCIR [33] is a quantitativemeasurement of the contrast
improvement and is defined as

CIR =

∑
𝑖
∑
𝑗







𝑐 (𝑖, 𝑗) − 𝑐


(𝑖, 𝑗)

2





∑
𝑖
∑
𝑗
𝑐(𝑖, 𝑗)

2
, (11)

where 𝑐(𝑖, 𝑗) and 𝑐


(𝑖, 𝑗) are the local contrast values of

original and enhanced images, respectively.The local contrast
𝑐(𝑖, 𝑗) is defined by the difference of mean values in two



International Journal of Biomedical Imaging 5
Table 1: Results of mammogram scoring for the three combinations
by the five observers.

Combination Observer
a b c d e Sum

Sigmoid UDWT −1.1 −0.87 0 −1.2 −1.2 −4.37
Sigmoid Proposed −1.57 −1.4 −1.67 −1.47 −1.6 −7.71
UDWT Proposed −1.33 −1.27 −1.47 −1.3 −1.5 −6.87

Table 2: Results of chest radiograph scoring for the three combina-
tions by the five observers.

Combination Observer
a b c d e Sum

Sigmoid UDWT −1 −0.4 −0.1 −0.95 −1.25 −3.7
Sigmoid Proposed −1.7 −1.4 −1.35 −1.4 −1.65 −7.5
UDWT Proposed −1.5 −1.35 −1.5 −1.4 −1.55 −7.3

rectangular windows centered on a pixel at the coordinate
(𝑖, 𝑗). In detail the 𝑐(𝑖, 𝑗) is given by

𝑐 (𝑖, 𝑗) =





𝑝 (𝑖, 𝑗) − 𝑎 (𝑖, 𝑗)










𝑝 (𝑖, 𝑗) + 𝑎 (𝑖, 𝑗)






, (12)

where 𝑝 and 𝑎 are the average values of pixels within a 3 × 3
region and a 7 × 7 surrounding neighborhood, respectively.
The greater the CIR value, the better the enhancement result.

The PSNR [34] in decibels is adopted for measuring the
performance of denoising and is given by

PSNR = 10 log
10

𝑀 × 𝑁 × 𝑇

2

∑
𝑖
∑
𝑗
[𝑑 (𝑖, 𝑗) − 𝑑


(𝑖, 𝑗)]

2
, (13)

where 𝑀 × 𝑁 is the size of the image, 𝑇2 is the maximum
possible value that can be obtained by the image signal, 𝑑(𝑖, 𝑗)
and 𝑑


(𝑖, 𝑗) are the pixel-values of original and processed

images, respectively. The higher the PSNR value, the better
the performance of denoising.

3. Results
In this study, we used 30 mammograms and 20 chest
radiographs to evaluate the proposed method by comparing
it to two other existing methods: a modified UDWTmethod
[14] and a sigmoid-type wavelet coefficient (STWC)mapping
method [25]. The results of a previous study showed that
by use of a modified UDWT method the computation
time can be reduced to approximately 1/10 that of the
conventional UDWT method. In addition, the results of
visual assessment indicated that the images processed with
the modified UDWT method showed statistically signifi-
cant superior image quality over those processed with the
conventional UDWT method [14]. The STWC mapping
method demonstrated that it offers considerably improved
enhancement capability as compared to the conventional
enhancement methods, such as the fast Fourier transform
method, the conventional wavelet-based method, and the
conventional exponential-type wavelet coefficient mapping
method [25].

Figure 2 shows two sets of example images of mammo-
grams and chest radiographs. Original images are shown in

the upper row of the figure and corresponding images are
shown in the lower row with external noise added. Figure 3
illustrates an example of image processing results obtained
from the mammogram shown in Figure 2(e). Figures 3(a),
3(b), and 3(c) are resulting images processed by using the
proposed method, the modified UDWT method, and the
STWCmapping method, respectively.

Figure 4 shows the 𝑥-direction profiles of the processed
images traced from the lines indicated on the images of
Figures 3(a)–3(c). Figures 4(a)–4(c) illustrate the profiles of
the images processed by the proposed method, the modified
UDWT method, and STWC mapping method, respectively.
The 𝑥-direction profile of the original image traced from the
line indicated on the image of Figure 2(e) is also shown in the
figures for comparison. Figures 4(d)–4(f) show themagnified
views of the profiles corresponding to the positions indicated
by the dotted circles in Figures 4(a)–4(c), respectively. The
pixel-value profile of the image obtained with the proposed
method and that of the image obtained with the modified
UDWT method are shown in Figure 4(g). The pixel-value
profile of the image obtained with the proposed method and
that of the image obtained with the STWC mapping method
are shown in Figure 4(h). It is obvious from Figure 4(g) that
the pixel-value profile of the image processed by the proposed
method is much more enhanced at the edges than that of
the image processed by the modified UDWT method. It
is also apparent from Figure 4(h) that the noise has been
significantly reduced by employing the proposed method.

Similarly, Figure 5 illustrates an example of image pro-
cessing obtained from the chest radiograph shown in
Figure 2(g). Figures 5(a), 5(b), and 5(c) are resulting images
processed by using the proposed method, the modified
UDWT method, and the STWC mapping method, respec-
tively.

Figure 6 shows the 𝑥-direction profiles of the processed
images traced from the lines indicated on the images of
Figures 5(a)–5(c). Figures 6(a)–6(c) illustrate the profiles of
the images processed by the proposed method, the modified
UDWT method, and the STWC mapping method, respec-
tively. The 𝑥-direction profile of the original image traced
from the line indicated on the image of Figure 2(g) is also
shown in the figures for comparison. Figures 6(d)-6(f) show
the magnified views of the profiles corresponding to the
positions indicated by the dotted circles in Figures 6(a)–
6(c). The pixel-value profile of the image obtained with the
proposed method and that of the image obtained with the
modified UDWT method are shown in Figure 6(g). The
pixel-value profile of the image obtained with the proposed
method and that of the image obtained with the STWC
mappingmethod are shown in Figure 6(h). It is obvious from
Figure 6(g) that the pixel-value profile of the image processed
by the proposedmethod is muchmore enhanced at the edges
than that of the image processed by the modified UDWT
method. It is also apparent from Figure 6(h) that the noise
has been significantly reduced by employing the proposed
method.

The results of scoring for the three combinations by the
five observers are listed in Tables 1 and 2 for mammograms
and chest radiographs, respectively. As described earlier, if
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Examples of images used for this study. Images shown in the upper row are original images: (a) and (b) are two mammograms and
(c) and (d) are two chest radiographs. The corresponding images are in the lower row with external added noise.

(a) (b) (c)

Figure 3: Image processing results for mammograms. (a) Image processed by the proposed method, (b) image processed by the modified
UDWTmethod, and (c) image processed by the sigmoid-type wavelet coefficient mapping method.

the left image of the paired images (two-image combination)
was poorer than the right image in terms of overall image
quality, it received a negative score. Table 1 summarizes the
visual results for the case of mammograms. As indicated by
the preference scores shown in the rightmost column of the
table, the images processed by the proposed method were
judged to have the best quality. Figure 7 illustrates visual
evaluation results using Scheffe’s method of paired compar-
isons. The results are shown by a preference ranking map for
the three image groups, namely, the proposed method, the
modified UDWT method, and the STWC mapping method.

The figures shown on the horizontal line of the map are
average preference degrees of the three groups. The average
preference degrees were obtained from the average main
effects by use of the data shown in Table 1. The images
processed by the proposedmethod show the highest ranking,
followed by those processed by the modified UDWTmethod
and those processed by the STWC mapping method. A two-
tailed F test was used to measure statistical significance. The
difference between the processed images of the proposed
method and those of the modified UDWT method was
statistically significant (𝑃 < 0.05).The difference between the
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Figure 4: An example showing pixel-value profiles from original and processed mammograms. (a)–(c) Original versus processed by the
proposed method, the modified UDWT method, and the sigmoid-type wavelet coefficient mapping method, respectively. The profiles were
measured along the horizontal lines (black lines) as shown in Figures 3(a)–3(c). (d)–(f) Correspondingmagnified profiles indicated by circles
as shown in (a)–(c), respectively. (g) Profiles of two processed images; the solid line indicates the profile of an image processed by themodified
UDWTmethod, and the dotted line indicates that by the proposed method. (h) Profiles of two processed images; the solid line indicates the
profile of an image processed by the sigmoid-type wavelet coefficient mapping method, and the dotted line indicates that by the proposed
method.

processed images of the proposed method and those of the
STWCmappingmethodwas also statistically significant (𝑃 <

0.01). However, there was no significant difference between
the processed images of the modified UDWT method and
those of the STWCmapping method.

Table 2 summarizes the visual results for the case of chest
radiographs. As shown in the rightmost column of the table,
the images processed by the proposedmethodwere judged to

have the best quality. Figure 8 shows visual evaluation results
using Scheffe’s method of paired comparisons. As shown in
the figure, the images processed by the proposed method
show the highest ranking, followed by those processed by the
modified UDWTmethod and those processed by the STWC
mapping method. The difference between the processed
images of the proposed method and those of the modified
UDWT method and the difference between the processed
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(a) (b) (c)

Figure 5: Image processing results for chest radiographs. (a) Image processed by the proposed method, (b) image processed by the modified
UDWTmethod, and (c) image processed by the sigmoid-type wavelet coefficient mapping method.

Table 3: Comparison of image processing methods in terms of 4
quantitative quality metrics for mammograms.

Method MSR CNR CIR PSNR
UDWT 5.80 8.18 0.28 38.35
Sigmoid 6.09 7.64 0.29 36.39
Proposed 6.24 8.24 0.67 37.98

Table 4: Comparison of image processing methods in terms of 4
quantitative quality metrics for chest radiographs.

Method MSR CNR CIR PSNR
UDWT 6.36 2.21 0.46 37.61
Sigmoid 6.32 2.17 0.53 36.66
Proposed 6.46 2.29 0.71 36.76

images of the proposed method and those of the STWC
mapping method were statistically significant (𝑃 < 0.01).
However, there was no significant difference between the
processed images of the modified UDWT method and those
of the STWCmapping method.

Tables 3 and 4 summarize the quantitative evaluation
results for the proposed method and two published methods
in terms ofMSR, CNR, CIR, and PSNRmetrics. As described
in Section 2.4 the MSR and CNR measurements are propor-
tional to the medical image quality. It is obvious from the
tables that bothMSR andCNRvalues of the images processed
by the proposed method give the best results as compared
to those processed by the other two methods. The CIR is
a metric used for evaluating the contrast improvement. It
is noted from the results shown in Tables 3 and 4 that the
proposed method shows the greatest value, followed by the
sigmoid mapping and modified UDWT. The reason why the
proposedmethod is superior to the sigmoidmappingmethod
is due to the fact that the images processed by the proposed
method have been denoised prior to mapping operation.
In the case of PSNR measurement, the results listed in the
tables show that the modified UDWT method was slightly

better than both the proposed method and sigmoid mapping
method from the point of viewof denoising performance.The
reason might be because some residual (unremoved) noise
has also enhanced at enhancement operation. This results in
the decrease of PSNR value. However, the images processed
by the proposed method showed the best overall image
quality in terms of both denoising and contrast enhancement
when looking into the values of the MSR and CNR as shown
in Tables 3 and 4.

4. Discussion and Conclusion

In this study, we proposed an algorithm which combines
the modified UDWT method and the sigmoid-type wavelet
coefficient mapping method.The results of visual evaluation,
as illustrated in Figures 7 and 8, suggested that the proposed
method was significantly superior to the two previously
reported methods. It is apparent from Figures 4(g) and
4(h) and Figures 6(g) and 6(h) that the proposed method
combines the advantages of the two methods: denoising and
contrast enhancement. The results of the quantitative evalu-
ation also showed that the proposed method outperformed
over the two other methods.

By using our proposed method, the computation time
can be reduced to 2 seconds (personal computer, DELL,
OPTIPLEX 960), approximately 1/10 of the computing time
compared to the conventional UDWT method. The reason
for enabling reduction of processing time lies in the following
fact: in the conventional UDWTmethod, the decomposition
and composition processes are usually conducted up to
resolution level 4. That is, the method needs to process
a total of 12 images (3 detailed coefficients for each of
the 4-resolution levels) for wavelet transforms and inverse
transforms and it results in time consumption. In contrast,
the proposed method only needs to perform the process up
to resolution level 2 and repeat the calculation one time.
Therefore, only 6 images (3 detailed components for each of
the 2-resolution levels) were required for processing. As a
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Figure 6: An example showing pixel-value profiles from original and processed chest radiographs. (a)–(c) Original versus processed by the
proposed method, the modified UDWT method, and the sigmoid-type wavelet coefficient mapping method, respectively. The profiles were
measured along the horizontal lines (black lines) as shown in Figures 5(a)–5(c). (d)–(f) Correspondingmagnified profiles indicated by circles
as shown in (a)–(c), respectively. (g) Profiles of two processed images; the solid line indicates the profile of an image processed by themodified
UDWTmethod, and the dotted line indicates that by the proposed method. (h) Profiles of two processed images; the solid line indicates the
profile of an image processed by the sigmoid-type wavelet coefficient mapping method, and the dotted line indicates that by the proposed
method.

result, the computing time using the proposed method can
be much reduced.

This study has several limitations. First, we only applied
the proposed method to mammograms and chest radio-
graphs. In order to validate the versatility of the proposed
algorithm, application of the proposed method to other
images obtained from different modalities, such as ultra-
sound, digital radiography, and SPECT is needed. Second, the
value shown in (3) used for determining threshold value and

that shown in (8) used for determining the gradient of the
sigmoid curve were empirically selected. A method for auto-
mated selection is desirable. Finally, our dataset contained
only 30 mammograms and 20 chest radiographs. A larger
dataset may enable us to better evaluate the performance of
the proposed method.

In summary, we proposed a method for improving image
quality inmedical images by using a wavelet-based approach.
The proposed method integrated two components: image
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Figure 7: Preference ranking map for the three image groups:
STWC-mapping-method-processed, modified-UDWT-processed,
and proposed-method-processed mammograms.
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Figure 8: Preference ranking map for the three image groups:
STWC-mapping-method-processed, modified-UDWT-processed,
and proposed-method-processed chest radiographs.

denoising and image enhancement. In the first component,
a modified undecimated discrete wavelet transform was used
to eliminate the noise. In the second component, a wavelet
coefficient mapping function was applied to enhance the
contrast of denoised images obtained from the first compo-
nent.We examined the performance of the proposedmethod
by comparing it with two previously reported methods.
The results of visual assessment indicated that the images
processed by the proposed UDWT method showed statis-
tically significant superior image quality over the other two
methods. The results of quantitative assessment also showed
that the proposed UDWT method outperformed over the
two other methods. Our research results demonstrated the
superiority and effectiveness of the proposed method. This
methodology can be used not only as a means for improving
visual quality of medical images but also as a preprocessing
module for computer-aided detection/diagnosis systems to
improve the performance of screening and detecting regions
of interest in images.
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