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Abstract 

Background:  Risk-prediction tools allow classifying individuals into risk groups based on risk thresholds. Such risk 
categorization is often used to inform screening schemes by offering screening only to individuals at increased risk 
of harmful events. Adding information concerning an individual’s risk development over time would allow assessing 
not just who to screen but also when to screen. This paper illustrates the value of personalised, time-dependent risk 
predictions to optimize risk-based screening schemes.

Methods:  In a simulation analysis, two different time-dependent risk-based screening approaches are compared to 
another risk-based, but time-independent approach regarding their impact on screening efficiency. For this purpose, 
81 scenarios featuring 5000 patients with five consecutive annual risk estimations for a hypothetical disease D are 
simulated, using different parameters to model disease progression and risk distribution. This simulation analysis is 
validated using a real-world clinical case study based on German breast cancer patients and the INFLUENCE-nomo-
gram for locoregional breast cancer recurrence.

Results:  If individual risk estimations were used to personalise screening for a disease D aiming at detecting a 90% 
of curable cases, more than 20% of screening examinations could be avoided relative to a conventional uninformed 
approach, depending on the simulated scenario. Whereas an individual but time-independent approach is associ-
ated with acceptable saving potentials in case of a relatively homogenous risk distribution, the time-dependent 
approaches are superior when the complexity of a scenario increases. With slowly progressing diseases, risk-accumu-
lation over time needs to be considered to achieve the highest screening efficiency on population level, for rapidly 
progressing diseases, an interval-specific approach is superior. The possible benefits of time-dependent risk-based 
screening were confirmed in the real-world clinical case study.

Conclusions:  Appropriate approaches to use time-dependent risk predictions may considerably enhance screening 
efficiency on individual and population level. Therefore, predicting risk development over time should be supported 
by future prediction tools and be incorporated in decision algorithms.
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Background
With limited financial resources for healthcare, it is 
essential for society as a whole to reduce unnecessary 
healthcare spending [1, 2]. The economic benefits of 
personalised screening have been demonstrated [3, 4]. 
On individual level, it is important to reduce unneces-
sary screening examinations which may inflict serious 
impairments on a patient’s health [5, 6]. In the current 
striving towards personalised medicine, risk-prediction 
tools are gaining importance [7]. Adjuvant! Online from 
the field of breast cancer care and the Framingham risk 
score for cardiovascular risk are two well-known predic-
tion tools meant to assist clinicians in individualizing and 
optimizing patient care [7, 8]. Both were built to estimate 
10-year risks for their outcome of interest. Like many 
prediction tools, they concentrate on long prediction 
intervals since a larger number of events accumulated 
over time facilitates the fitting of accurate prediction 
models, and increases their stability [9]. In addition, dif-
ferentiation between individual risk profiles seems easier 
when the absolute differences between the correspond-
ing risk estimations are large. For example, a difference 
of 10% vs. 15% concerning a 10-year risk is likely to be 
regarded as substantial, whereas a 1.0% vs. 1.5% differ-
ence in the annual risks might be deemed less relevant. 
However, by concentrating on cumulative estimations for 
the long-term risk, one disregards the longitudinal risk-
evolution, which often is a nonlinear function of time [10, 
11]. Making use of available information concerning an 
individual’s expected risk development over time might 
contribute to improved decision processes. Certain tools, 
such as CanRisk, and INFLUENCE, can already pro-
vide such information [12, 13]. In a screening context, 
such information can be used to target examinations or 
interventions not only at high-risk individuals but also 
at high-risk periods in the lives of these individuals. This 
information is especially helpful when the severity of 
untreated disease is likely to increase over time and early 
detection in a still curable stage is crucial (e.g. screening 
for malignancies [14–16]). Since guidance on the incor-
poration of time-dependent risk estimations in the plan-
ning of personalised screening schemes is scarce, this 
paper introduces three promising approaches and evalu-
ates their performance. For this purpose, various scenar-
ios with different disease progression, risk distribution 
and risk evolution patterns over time are simulated at 
patient-level. Moreover, all approaches are illustrated in a 
clinical case study based on the INFLUENCE-nomogram 

which uses a variety of patient-, tumour -, and treatment 
characteristics to estimate five consecutive annual risks 
of locoregional breast cancer recurrence (LRR) in the 
first 5 years after primary surgery [13]. It was applied to 
a German breast cancer cohort to explore the yield of the 
different screening approaches in a real-world context. 
The analyses presented in this paper are meant to reveal 
the importance of personalised, time-dependent risk 
predictions in further optimizing risk-based screening 
schemes.

Methods
First, the general definitions underlying the simulation 
analysis shall be explained. Thereafter, the three simu-
lation parameters that are varied to generate different 
scenarios are introduced. It follows an overview of the 
suggested three approaches to design risk-based (and 
time-dependent) screening schemes, which are compared 
in each of these scenarios. Lastly, these three approaches 
are explored in a real-world clinical case study.

General definitions
Let D be a disease that occurs at time tocc in individu-
als of an initially disease-free population (N = 5000). 
D usually does not cause symptoms in an early, curable 
stage but can be detected by a hypothetical examina-
tion E with, which is performed at time ti. The chance 
that D is fully curable decreases with the growing length 
of the time interval between its occurrence and the fol-
lowing screening examination/detection. In principle, E 
could be performed at any time ti, but for simplicity and 
to ensure congruency with the real-world clinical case 
study described later, it may only be done at five fixed 
time points after the initialization of screening, yielding a 
maximum of five screening examinations per individual: 
ti = i, i ∈ {1, 2, 3, 4, 5 years}.

It shall be assumed further that there exists a prediction 
algorithm PA which estimates interval-specific risks for 
the occurrence of D in a single individual k, k ∈ [1; 5000] 
conditional on the fact that this individual did not experi-
ence the event in the previous interval. PA gives five inde-
pendent risk estimations pk,i(D), i ∈ {1, 2, 3, 4, 5}; each 
of those covers the risk for the occurrence of D within 
a 1-year interval between two potential time points for 
screening examinations. The accuracy of PA is assumed 
to be perfect on individual and population level. There-
fore, it is not necessary to additionally simulate “real” 
occurrences of D at specified times tocc: if a simulated 
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individual is, for example, assigned a risk pk,1(D) = 1% for 
the first year, this is equivalent to 0.01 theoretical disease 
occurrences in this interval. The sum of every individual’s 
conditional risks/ occurrences aggregated over all 5 years 
yields the expected amount of disease occurrences on 
population level. Since an annual risk prediction does not 
provide further information concerning the exact onset 
time of D, it is assumed that D occurs on average exactly 
in the middle of an annual interval: tocc ∈ {0.5, 1.5, 2.5, 3.5, 
4.5 years}.

Simulation parameters
The performance of risk-based screening approaches 
likely depends on the scenario they are applied to, which 
is characterised by features of the target population or the 
disease. To reflect certain key aspects of these features, 
three parameters are employed to simulate five individual 
consecutive annual risk predictions for three kinds of dis-
ease progression patterns and N = 5000 patients.

Coefficient of variation of mean risk (cvmr) across five years
At population level, the average cumulative 5-year risk 
per individual is set to 10% since many diseases show 
comparable incidence rates in clinical practice [17, 18]. If 
cvmr was zero, meaning no variation of the mean risk, the 
mean annual risk would be perfectly stable at 2% in each 
year. Setting cvmr to a value larger than zero induces vari-
ation concerning the distribution of the five mean annual 
risks over time; for example, the mean annual risks might 
be > 2% in years 1 and 2, and < 2% in years 3–5, while the 
average cumulative risk still sums up to 10% over 5 years. 
For the different simulation scenarios, cvmr was set to 0.5 
(equivalent to a standard deviation of the mean annual 
risk, sdmr, of 1%) representing high, to 0.25 (equivalent 
to a sdmr of 0.5%) representing intermediate, and to 0.05 
(equivalent to a sdmr of 0.1%) representing low varia-
tion of the mean annual risks over time (Fig. 1a, top line). 
Having generated the mean annual risks like this, the 
individual risk estimations per year were assumed to be 
normally distributed around the population average risk 
for the same year. The corresponding standard deviations 
were assumed to be directly inversely correlated to the 
log-value for a year’s mean risk on population level.

Parameter 2: Pearson correlation coefficient r
A patient with a relatively high value for pk,1(D) in the 
first year likely features relatively high values pk,i(D), i ∈ 
[2, 5] for the subsequent years as well since their risk pro-
file always relies on the same fixed predictors. However, 
the influence of one or more predictors may change over 
time causing shifts in the relative size of consecutive risk 
estimations. In this simulation, the correlation param-
eter r was set to 0.2 to simulate low, to 0.5 to simulate 

intermediate, and to 0.8 to simulate high correlation 
between the five annual risk predictions on individual 
level. To maintain simplicity, it was assumed that r is con-
stant between all five annual predictions. Figure 1a, lines 
two to four, illustrates the influence of r on the simulated 
annual risks of a randomly chosen sample patient, given 
the underlying population-level risk distribution, which 
is dependent on cvmr. Since r also influences whether 
changes over time in the relative risk of individuals, com-
pared to other individuals, are common (low correlation) 
or rare (high correlation), the population-based quartiles 
for the annual risks are displayed as a reference.

Parameter 3: disease progression dp
Screening aims at early detection of disease manifesta-
tions to avoid severe or permanent damage, possibly even 
leading to premature death. While time to detection is 
always a crucial factor in this context, progression rates 
to an irreversible state differ between diseases. Some-
times there is still a fair chance to cure a disease several 
years after its first occurrence, sometimes the time win-
dow closes considerably faster, after 1 year or even earlier. 
In this simulation, it was assumed that progression to an 
irreversible disease state follows an exponential function 
returning an individual’s chance to be fully cured if her 
or his disease D, which occurred at time tocc, is detected 
at time ti: p(Dcurable) = dp(ti−tocc) . The function’s basis dp 
was set to 0.6 representing slow, to 0.3 representing inter-
mediate, and to 0.1 representing fast disease progression.

In total, we defined 27 scenarios in which screening 
approaches will be compared. These represent all possi-
ble value-combinations of the three parameters cvmr, r, 
and dp.

Screening approaches
Performing a screening examination at time ti is assumed 
to result in the detection of an individual’s accumulated 
theoretical occurrences of D. It is supposed to detect 
each new occurrence of the disease since the last screen-
ing examination or the beginning of the screening pro-
gramme if it concerns the first screening examination. If 
the maximum of five screening examinations was per-
formed in all individuals, every occurrence of D, pk,i(D), 
would be detected after half a year on average. In this 
study’s setup, such a full screening approach would, by 
definition, yield the highest possible number of disease 
detections in a still curable state (nmax(Dcurable)) on indi-
vidual and population level.

Due to economic or psychological constraints, a full 
screening approach might not be desired or feasible. 
However, reducing the number of screening examina-
tions on individual and population level inevitably leads 
to delayed detection of D in some individuals, which is 
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associated with a lower chance of curability. If a screen-
ing examination is supposed to detect not only occur-
rences of D from the previous, but also earlier years, the 
actual number of diseases which are detected in a still 
curable state (nactual(Dcurable)) decreases for earlier occur-
rences, dependent on the parameter dp and the actual 
detection delay ti - tocc.

Therefore, before different risk-based screening 
approaches are proposed and compared, it is important 
to define the desired target detection rate (tdr), which is 
the number of detected occurrences of D in a curable 
state on population level, divided by the maximum num-
ber of disease detections : tdr = nactual(Dcurable)

nmax(Dcurable)
 . All 

screening approaches shall be compared regarding the 
number of screening examinations which is necessary to 
achieve exactly the predefined value for tdr. Since in the 
view of ethical considerations it seems unlikely that clini-
cians would accept an overly high “missing rate”, it was 
decided to assess three settings with a tdr of 80, 90, and 
95%. Based on this, the following three approaches to 
develop individualised screening schemes are proposed 
and will be compared:

Cumulative approach (CA
All five annual risk predictions of PA for a patient are 
summed. A risk threshold corresponding to the pre-
defined target detection rate tdr is determined and 
applied to the cumulative risk to discern between high-
risk and low-risk patients. High-risk patients are assigned 
a screening examination after each year, while screen-
ing is completely omitted in low-risk patients. (Fig. 1b-1, 
lower-left panel).

Cumulative approach with interval‑wise reevaluation (CAIR)
A patient’s annual risk predictions are summed up until 
a threshold corresponding to the pre-defined target 
detection rate tdr is reached. Consequently, this patient 
is assigned a screening examination which will be per-
formed at the end of the last year contained in the sum. If 
a screening examination was performed, the cumulation 
process starts anew, beginning with the risk of the fol-
lowing year and continuing until the threshold is reached 
again. (Fig. 1b-2, lower-middle panel).

Interval‑specific approach (ISA)
A patient is assigned a screening examination after every 
year in which her or his annual risk exceeds a thresh-
old resulting in the pre-defined target detection rate tdr. 
(Fig. 1b-3, lower-right panel).

To compare these three approaches, a reference is 
required. While it seems unrealistic that anyone would rely 
on chance to allocate screening examinations, a random 
approach (RA) is the most appropriate reference for com-
paring approaches that are less extensive than full screen-
ing. The previously proposed three approaches will only 
provide added value in daily clinical practice if they require 
fewer screening examinations to achieve the predefined 
target detection rate tdr compared to screening allocation 
in the most uninformed, random way. The percentage of 
potentially avoided inefficient screening examinations of 
the approaches CA, CAIR, and ISA relative to the refer-
ence approach RA is calculated for all 27 simulated sce-
narios and three target detection rates. To ensure stability 
of the results and reduce stochastic uncertainty, each sce-
nario was evaluated 100 times and results were averaged.

Clinical case study
Currently, there do not exist many prediction tools which 
facilitate the calculation of time-dependent risks. One 
of them is the INFLUENCE-nomogram [13]. Based on 
a patient’s age, tumour size, nodal involvement, grade, 
estrogen−/ progesterone-status, multifocality, radiother-
apy, chemotherapy, and endocrine therapy, it estimates 
conditional annual risks of developing a locoregional 
breast cancer recurrence (defined as reappearance of the 
tumour in the ipsilateral breast, chest wall or regional 
lymph nodes) within 5 years after diagnosis. The INFLU-
ENCE-nomogram’s algorithm is based on data of more 
than 37,000 Dutch patients diagnosed with early breast 
cancer between 2003 and 2006. Its external validity was 
recently demonstrated by applying it on a cohort of 6520 
breast cancer patients diagnosed between 2000 and 
2012 obtained from Tumorzentrum Regensburg (Insti-
tute for Quality Control and Health Services Research 
of University of Regensburg), a clinical cancer registry 
in Germany [19]. The same cohort is used in this study 
to examine how follow-up patterns and rates of missed 

Fig. 1  a Showcase risk distribution over time, dependent on r and cvmr. Cvmr: coefficient of variation; r: Pearson correlation coefficient. b 
Visualization of decision strategies. (1) cumulative approach / CA: interval-specific risks (dark blue bars) are added up (dashed arrows): if the sum 
exceeds the chosen threshold, a screening examination is done. (2) approach with interval-specific reevaluation / CAIR: interval-specific risks 
are added up (dashed arrows) until the chosen threshold is reached, leading to a screening examination (cumulation process according to high 
threshold: dark blue bars; cumulation process according to low threshold: light blue bars). (3) interval-specific approach / ISA: if an interval-specific 
risk (dark blue bars) exceeds the threshold, a screening examination is done. Cvmr: coefficient of variation; r: Pearson correlation coefficient

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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locoregional recurrence (LRR) events might look like, if 
the approaches CA, CAIR, and ISA were applied in clini-
cal practice.

Following actual guideline recommendations, the 
potential time points for screening/ follow-up exami-
nations were set to 1, 2, 3, 4, and 5 years, like in the 
previously described simulation analyses. While the 
parameters cvmr and r are fixed given the real individual 
risk predictions of INFLUENCE, an assumption concern-
ing disease progression of locoregional breast cancer 
recurrences had to be made. Based on clinical evidence 
that early detection yields significant advantages in sur-
vival [14], it was assumed to be at least intermediate and 
the parameter dp was again set to 0.3. Additionally, the 
target detection rate tdr was set to 90%. In contrast to the 
simulation analyses, the assumption of perfectly accurate 
predictions is not valid in a real-world example. Moreo-
ver, there do not exist theoretical partial disease occur-
rences in a single individual. Instead, the real recurrence 
events observed in the German population were counted 
as detected by the consecutive follow-up examination 
which would have been assigned to a patient. Of course, 
there does not exist a perfect examination procedure in 
breast cancer follow-up. Since the sensitivity of the usu-
ally employed – and sometimes combined - diagnos-
tic procedures varies between 65% for mammography, 
around 90% for ultrasound and up to 100% for MRI, an 
overall examination sensitivity of 80% was incorporated 
in the analyses [20]. To quantify the impact of such a 
screening examination, the real detection delays were 
determined and used to calculate a patient’s chance to be 
fully cured.

For all analyses, R version 3.5.1 (R Foundation for Sta-
tistical Computing, Vienna, Austria; http://​www.R-​proje​
ct.​org/) was used.

Results
Simulation analysis
In total, 3 × 27 scenarios featuring 5000 patients with 
five annual risks/theoretical occurrences of D at an aver-
age individual five-year risk/ occurrence rate of 10% were 
simulated. This represents all possible value combina-
tions of the parameters disease progression (dp ∈ {0.1, 
0.3, 0.6}), coefficient of variation of mean risk (cvmr ∈ 
{0.05, 0.25, 0.5}), and Pearson correlation coefficient (r: ∈ 
{0.2, 0.5, 0.8}) at three different target detection rates (tdr 
∈ {80, 90, 95%}). In the following paragraphs, the perfor-
mances of the three proposed screening approaches CA 
(cumulative approach), CAIR (cumulative approach with 
interval-specific reevaluation), and ISA (interval-specific 
approach) relative to RA (random approach) are analyzed 
in detail, using 27 scenarios with a fixed tdr of 90%. The 
corresponding results for tdr = 80% and tdr = 95% are 

briefly mentioned at the end of this section and can be 
found in the supplementary material.

Using approach RA to achieve tdr = 90% requires 
on average 41,678 screening examinations at dp = 0.6, 
43,670 at dp = 0.3, and 44,613 at dp = 0.1. These values 
serve as reference for all percentages presented in the 
following comparisons. Across all scenarios, the risk-
based, but time-independent approach CA is associated 
with the smallest potential to save screening examina-
tions. It ranges between − 1.3% in scenario 3 (dp = 0.6, 
cvmr = 0.05, r = 0.2) and 10.7% in scenario 25 (dp = 0.1, 
cvmr = 0.5, r = 0.8). Moreover, CA is always inferior 
to the other two proposed approaches CAIR and ISA. 
Especially when disease progression is slow (dp = 0.6, 
cf. scenarios 1–9), only limited or even negative gains in 
screening efficiency can be observed. (Fig. 2).

The two risk-based, time dependent approaches CAIR 
and ISA are always associated with a considerable, posi-
tive saving potential of at least 7.8%, regardless of the 
parameters cvmr and r. Approach CAIR yields its maxi-
mum saving potential in scenario 1 (23.2%, dp = 0.6, 
cvmr = 0.5, r = 0.2), and its minimum in scenario 27 
(9.6%, dp = 0.1, cvmr = 0.05, r = 0.8). The saving potential 
of approach ISA ranges between 19.6%, also in scenario 1, 
and 7.8% in scenario 9 (dp = 0.6, cvmr = 0.05, r = 0.8). For 
high values of dp (0.6, equivalent to slow disease progres-
sion, cf. scenarios 1–9), CAIR’s performance is always 
superior to approach ISA. For intermediate disease pro-
gression (dp = 0.3, cf. scenarios 10–18), both approaches 
are equally efficient, while for high disease progression 
(dp = 0.1, cf. scenarios 19–27), approach ISA is always 
slightly superior. (Fig. 2).

Overall, the saving potential varies considerably 
dependent on the features of the underlying disease and 
population, represented by the simulation parameters dp, 
cvmr, and r. Notably, the influence of these parameters is 
quite heterogenous for the three proposed approaches. 
Figure  3a shows the percentage of potential savings per 
approach, averaged over all scenarios with the same 
parameter dp. The slower the disease progression (the 
higher dp), the higher is the saving potential of approach 
CAIR: it increases from an average value of 12.4 to 18.7%. 
The opposite is true for approach CA. Its saving potential 
decreases at the same time from 7.9 to 1.3%. The saving 
potential of approach ISA is not sensitive to changes in 
dp and remains almost constant at an average value of 
13.6%.

The risk-variation over time represented by cvmr 
mainly affects the performance of the time-dependent 
approaches CAIR and ISA, whereas the approach CA 
is not very sensitive to changes in this parameter. If all 
scenarios with the same cvmr are averaged, the increase 
from cvmr = 0.05 to cvmr = 0.5 is associated with an 

http://www.r-project.org/
http://www.r-project.org/


Page 7 of 13Voelkel et al. BMC Medical Research Methodology          (2022) 22:239 	

additional saving potential of 5.6% for approach CAIR, 
6.5% for approach ISA, and only 1.4% for approach 
CA (Fig.  3b). In contrast, the correlation r between the 
annual risk estimations mainly influences the perfor-
mance of the time-independent approach CA. When 
averaging across all scenarios with the same value r, the 
number of potential savings increases from 3.0% at r = 0.2 
to 7.0% at r = 0.8. Approach CAIR and approach ISA are 
less affected by the parameter r (Fig. 3c).

Looking at all 27 scenarios separately again, one can 
see that the differences between the three proposed 
approaches concerning potentially avoided inefficient 
screening examinations decrease with faster disease 
progression (smaller dp), smaller risk variation over 
time (smaller cvmr), and higher correlation between the 

individual annual risks (higher r). The corresponding 
analyses with tdr = 80% and tdr = 95% yield quite similar 
results, while the absolute saving potentials are consid-
erably higher, or lower, respectively. The exact results of 
these analyses can be found in the supplementary figures 
[see Additional files 1 and 2].

Clinical case study
The average LRR-risk for the 6520 German patients esti-
mated by the INFLUENCE nomogram is 2.2% for all 5 
years. It reaches its minimum in year 1 (0.35%), and its 
maximum in year 2 (0.68%, Fig. 4a), with a mean annual 
value of 0.47% (cvmr = 0.24). Taking all individual risk 
predictions into account, the mean Spearman correla-
tion coefficient between the annual risk estimations was 

Fig. 2  Comparing the screening-efficiency of the proposed screening approaches (tdr of 90%, for all 27 scenarios). CA: cumulative approach; CAIR: 
cumulative approach with interval-specific reevaluation; ISA: interval-specific approach. dp: disease progression; cvmr: coefficient of variation of 
mean risk; r: Pearson correlation coefficient; tdr: target detection rate
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r = 0.61. According to the correlation matrix, correlation 
is very high between year 1 and the years 2 and 3, high 
between year 1 and year 4, and low between year 1 and 

year 5. In general, correlation declined with increasing 
time periods between risk estimates (Fig. 4b).

If a disease progression rate of dp = 0.3 is assumed and 
the maximum of 5 follow-up examinations per patient 

Fig. 3  Influence of dp, cvmr, and r on the proposed screening approaches’ efficiency (tdr of 90%). a The influence of dp, averaged over all simulated 
values for cvmr and r. b The influence of cvmr, averaged over all simulated values for dp and r. c The influence of r, averaged over all simulated values 
for cvmr and dp. CA: cumulative approach; CAIR: cumulative approach with interval-specific reevaluation; ISA: interval-specific approach. dp: disease 
progression; cvmr: coefficient of variation of mean risk; r: Pearson correlation coefficient; tdr: target detection rate

Fig. 4  The INFLUENCE-nomogram’s predictions for a German patient-cohort. a Mean predicted annual risk over time. b Correlation between 
interval-specific (annual) risk predictions. The row and column mappings are shown in the matrix diagonal together with histograms indicating the 
individual annual risk predictions’ distribution. Matrix lower left triangle: scatterplots showing the relation between individual risk predictions for 
two different years. Matrix upper right triangle: Spearman correlation coefficients between individual risk predictions for two different years
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(as recommended by the current guideline [21]) would 
be performed, one could expect to detect 92 out of 184 
observed recurrence events in a still fully curable state. If 
a tdr of 90% is aspired this number decreases slightly to 
an expected detection rate of 82 still curable recurrence 
events. To achieve this aim, on average 28,392 follow-
ups would have been necessary if the approach RA was 
chosen. Applying approaches CA, CAIR, and ISA would 
yield a potential saving of 4542 (16.0%), 4857 (17.1%) 
and 6465 (22.8%) follow-ups, compared to approach RA 
(Table 1).

On an individual level, a patient who belongs to the 
lowest risk quintile regarding her 5-year overall risk 
estimation (between 0.14 and 0.66%) would on aver-
age receive 0.4 follow-up examinations over all 5 years 
in approach CA, 2.1 examinations in approach CAIR, 

and 1.1 examinations in approach ISA. Patients belong-
ing to the third quintile with a 5-year risk estima-
tion between 0.96 and 1.56% could expect to receive 
5 follow-up examinations in approach CA, and 3.6 in 
approach CAIR and ISA. Patients of the highest quin-
tile with a 5-year risk estimation between 3.03 and 
38.80% were likely to receive 5 follow-up examina-
tions according to approach CA, and 4.9 according to 
the approaches CAIR and ISA (Fig. 5a). Regarding the 
actual detection rates, more than 50% of the detected 
disease occurrences would be diagnosed in patients 
belonging to the highest risk quintile, regardless of the 
applied approach. Concerning the patients from other 

risk quintiles, minor differences in the expected detec-
tions rates exist between the three approaches, but no 
clear trends can be observed (Fig. 5b).

Discussion
This study evaluates the potential of time-dependent 
risk-predictions to enhance screening efficiency for an 
abstract disease D by comparing different approaches on 
how to use them. For this purpose, 3 × 27 scenarios with 
different values for disease progression (dp), risk distri-
bution (cvmr), and risk correlation (r) at three different 
target detection rates (tdr) are simulated. Given a tdr of 
90% and dependent on different values for the other sim-
ulation parameters, the simple risk-based but time-inde-
pendent cumulative approach CA could save up to 10.7% 
of screening examinations compared to the uninformed 

Table 1  Comparison of the proposed screening approaches 
using German patients’ INFLUENCE-predictions (tdr of 90%)

RA Reference approach, CA Cumulative approach, CAIR Cumulative approach 
with interval-specific reevaluation, ISA Interval-specific approach

strategy n (follow-up) % inefficient 
examinations 
avoided

n (detected)

RA 28,392 Ref. 82

CA 23,850 16.0

CAIR 23,535 17.1

ISA 21,927 22.8

Fig. 5  The impact of the proposed screening approaches on patient-level. a Mean number of follow-ups per patient (p.p.) stratified for 5-year 
risk quintiles. b Number of detected LRRs per 5-year risk quintile. 5-year risk quintiles: 1 [0.14%; 0.66%], 2 [0.66%; 0.96%], 3 [0.96%; 1.56%], 4 [1.56%; 
3.03%], 5 [3.03%; 38.80%]. CA: cumulative approach; CAIR: cumulative approach with interval-specific re-evaluation; ISA: interval-specific approach
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random approach RA. The two approaches CAIR and 
ISA outperform CA in all simulated scenarios by using 
information concerning the risk development over time; 
their maximal saving potential within this study’s setup is 
23.2 and 19.6%, respectively. In scenarios with slow dis-
ease progression, CAIR is superior to ISA, in scenarios 
with fast disease progression ISA has a slightly higher 
potential to improve screening efficiency.

There are many reasons to personalise patient care, 
especially in a screening context. Every unneces-
sary treatment or examination is a potential threat to a 
patient’s quality of life [22, 23]. In the worst case, over-
treatment due to false-positive results can even cause 
permanent physical or psychological damage [24, 25]. 
Moreover, it is obvious that with limited – financial – 
healthcare resources it is essential for society as a whole 
to reduce unnecessary expenses [1, 2]. During recent 
years, many studies showed the economic benefits of 
personalised screening [3, 4], but without taking into 
account that an individual’s risk for a disease or certain 
adverse event may change over time. While several stud-
ies revealed that risk-based dynamic monitoring in the 
presence of new examination results during screening is 
a promising new approach to further reduce overtreat-
ment [26–28], the present study focused on the varying 
influence of fixed risk predictors.

This paper was designed to provide the reader with a 
versatile insight into the potential of time-dependent risk 
predictions in a screening context and does not intend 
to cover all aspects of a comprehensive health economic 
analysis such as treatment costs or the burden of missed 
detections. Since the focus of this study is on the most 
efficient usage of time-dependent risk predictions in gen-
eral, it does not account for detailed features of a specific 
disease or diagnostic procedure. The assumption that 
disease progression strictly follows an exponential func-
tion acknowledges that time to detection usually is cru-
cial. However, this is a simplification of reality and does 
not account for the fact that often inter-individual varia-
tion concerning disease progression exists, which might 
influence screening benefits [29]. Such simplifications 
regarding disease progression are often needed, since 
only tracking disease progression after detection without 
intervening when proven effective treatment options are 
available is unethical.

To further maintain simplicity, only the two most 
important outcome measures of a screening setting were 
incorporated: the detection rate for a hypothetical dis-
ease D, represented by the target detection rate tdr, and 
the corresponding number of necessary screening exami-
nations as a surrogate parameter for efficiency. Moreover, 
in reality, there obviously exists no prediction algorithm 
with a perfect accuracy of 100% and screening tests also 

do not have perfect sensitivity and specificity. These are 
clear limitations of this study, which may lead to an over-
estimation of the efficiency gain that may be realized 
when using time-dependent risk predictions to tailor 
screening moments. Including uncertainty in prediction 
and test outcomes in our simulation may have avoided 
these limitations, and moved simulation results closer 
to real-world case studies, but this is beyond the scope 
of this study and should be topic of further research. The 
restriction to five annual risk predictions and five cor-
responding time-points, at which screening examina-
tions are feasible, is another tribute to simplicity. Thus, 
the results could directly be transferred to the presented 
real-world clinical case study and were easier to interpret, 
even if one is not familiar with the topic of time-depend-
ent risk predictions. However, by changing the number 
and length of consecutive prediction intervals, the find-
ings can be projected to all kinds of primary, secondary 
and tertiary screening situations. Furthermore, the pre-
sented approach may be valuable not only when optimiz-
ing screening for recurrences over short time periods but 
also for optimizing screening for first occurrences of a 
disease over long time periods, if time-dependent risks of 
disease occurrence can be predicted.

The results of this study show that individual, time-
dependent risk predictions are only the first step towards 
personalised care. The specific approach to use them 
has a considerable impact on the expected benefit. Sim-
ple discrimination between high- and low-risk patients 
(approach CA) according to cumulative risk estimations 
is always likely to be a suboptimal solution when infor-
mation about the risk development over time is available. 
It might cause dangerous underdiagnosis and -treatment 
in patients just below and ineffective overtreatment in 
patients just above the chosen threshold. Especially if a 
disease with a slow progression rate shall be detected, 
at least one screening examination at the end of a large 
interval could make a huge difference, while full screen-
ing is not associated with substantial benefits. In such 
situations, even screening allocation at random might be 
more efficient.

The faster the disease progresses, the more important is 
early detection. Approach ISA exclusively uses the most 
recent risk prediction as a decision criterion in favour or 
against screening examinations. Thus, it accounts for the 
fact that chances to cure a disease that occurred in a cer-
tain interval (e.g., a year) which is already covered by a 
previous risk prediction, are very limited anyway. CAIR is 
a “hybrid” approach. It uses time-dependent risk predic-
tions and aggregates them if the chosen threshold is not 
reached in a single year/ interval. This makes CAIR the 
most efficient approach for slowly progressing diseases 
with larger detection windows.
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It has been shown that the advantage of personalised, 
time-dependent screening approaches over the plain 
cumulative approach CA increases when risk variation 
over time is higher and the correlation between an indi-
vidual’s annual/ interval-specific risk predictions is lower. 
This coincides with what intuition might tell us: the more 
heterogenous a screening situation is, the more can be 
gained from tailoring follow-up schemes to single indi-
viduals and specific periods in which they are at high risk. 
In “simple” situations with relatively uniform risk predic-
tions, one must weigh the expected gain in screening effi-
ciency yielded by time-dependent approaches against the 
additional efforts it takes to implement them.

The presented real-world clinical case study on breast 
cancer follow-up is not subject to some of the simplify-
ing assumptions made in the simulation analysis, like 
the perfect accuracy of the used prediction algorithm or 
the employed screening examinations. Nevertheless, it 
supports the external validity of the simulation’s results. 
All three proposed approaches yield superior results 
regarding screening efficiency compared to approach 
RA, demonstrating the added value of personalised and 
time-dependent risk predictions. The rank-order of the 
three compared approaches changed, though, relative 
to the most comparable scenario 14 from the simula-
tion analyses (characteristics of scenario 14 vs. charac-
teristics of real world clinical case study: cvmr: 0.24 vs. 
0.25, r: 0.61 vs. 0.5, dp: 0.3 vs. 0.3. In other words, in the 
real-world case study, the variation in mean risk over 
time (cvmr) was similar, the correlation between within 
individual risks over time (r) was slightly lower, and the 
speed of disease progression (dp) was similar, as in hypo-
thetical scenario 14.). While the incorporation of a real-
world examination sensitivity might play a role in this 
context, the overall performance of INFLUENCE also 
needs to be considered. Voelkel et  al. showed that the 
prediction tools’ sensitivity and accuracy is acceptable if 
applied to the German breast cancer patients, but could 
be improved [19].

Personalised screening approaches aim to enhance 
screening efficiency on population level by optimizing 
screening allocation and, thus, avoiding unnecessary 
examinations with the potential to cause physical and 
psychological harm. Such tailoring will result in certain 
individuals being classified as “low risk”, and therefore 
receiving no or very limited screening examinations. 
This is exactly what can be observed in the real-world 
clinical case study. The average number of an individu-
al’s follow-up examinations varies considerably between 
the observed risk quintiles, dependent on the chosen 
screening approach. Remarkably, the three approaches 
do not differ equally substantially concerning their risk-
dependent detection rates, which documents the efficacy 

of the proposed personalised approaches not only on 
population-, but also on individual level. While it is 
obvious that high-risk patients could benefit from per-
sonalised screening approaches, the detection rates in 
low-risk patients of the real-world clinical case study do 
not decline substantially when omitting screening exami-
nations in this group. However, a detailed assessment of 
the concrete clinical scenario, including ethical and social 
judgments next to economic considerations and more 
accurate assumptions concerning disease progression 
is indispensable before a specific screening approach is 
adapted. Furthermore, decision-makers always need to 
consider the patients’ individual preferences and their 
presumed compliance before implementing new screen-
ing schemes in daily clinical practice.

Conclusions
Personalised, time-dependent risk predictions corre-
sponding to a disease’s detection window can consider-
ably enhance screening efficiency by tailoring screening 
examinations to high-risk periods. However, choosing 
the optimal approach to use such predictions is essential, 
and requires a careful evaluation of the concrete screen-
ing context. Since risk development over time is ignored 
by most of the existing prediction algorithms, further 
research efforts towards this direction are recommended.
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