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Abstract: Background: osteoarthritic human articular cartilage (AC)-derived cartilage cells (CCs)
with same-donor bone marrow (BMSCs) and adipose tissue (ASCs)-derived mesenchymal stem cells
were compared, in terms of stemness features, and secretory and immunomodulatory responses
to inflammation. Methods: proteoglycan 4 (PRG4) presence was evaluated in AC and CCs.
MSCs and CCs (n = 8) were cultured (P1 to P4) and characterized for clonogenicity, nanog
homeobox (NANOG), and POU class 5 homeobox 1 (POU5F1) expression, immunotypification,
and tri-lineage differentiation. Their basal and interleukin-1β (IL-1β)-stimulated expression of matrix
metalloproteases (MMPs), tissue inhibitors (TIMPs), release of growth factors, and cytokines were
analyzed, along with the immunomodulatory ability of CCs. Results: PRG4 was mainly expressed in
the intact AC surface, whereas shifted to the intermediate zone in damaged cartilage and increased
its expression in CCs upon culture. All cells exhibited a similar phenotype and stemness maintenance
over passages. CCs showed highest chondrogenic ability, no adipogenic potential, a superior basal
secretion of growth factors and cytokines, the latter further increased after inflammatory stimulation,
and an immunomodulatory behavior. All stimulated cells shared an increased MMP expression
without a corresponding TIMP production. Conclusion: based on the observed features, CCs
obtained from pathological joints may constitute a potential tissue-specific therapeutic target or
agent to improve damaged cartilage healing, especially damage caused by inflammatory/immune
mediated conditions.
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1. Introduction

The study of resident adult stem cells and progenitors in tissues with limited self-renewal ability,
such as articular cartilage (AC), constitutes a partially explored research field with constant growing
interest [1]. Those specific cells can become a target or be part of regenerative-based novel treatments
for AC damage. AC is a highly specialized tissue with a healing capacity after injury present during
embryonic development [2], reduced after birth, and virtually lost thereafter [3]. AC contains a mixed
population of cartilage cells (CCs) composed by differentiated matrix-embedded chondrocytes and a
pool of resident cartilage-derived stem/progenitor cells (CSPCs). The latter cell population presents a
stem-like immuno-phenotype, with chondrogenic potential and the ability to respond to injury with
an increased migratory behavior. CSPCs were first identified by observing that while chondrocytes in
culture were rapidly losing their phenotype (i.e., dedifferentiation), they showed colony-forming cells
with multi-differentiation potential [4]. Furthermore, chondroprogenitors were found at the healthy
AC surface [5], associated with the expression of proteoglycan 4 (PRG4) encoding for proteoglycan 4
or lubricin [6] also produced by migratory chondrogenic progenitors in damaged AC [7].

These cells found within normal and osteoarthritic tissues are CD105+ and CD166+, show a
differentiation capacity comparable to BMSCs, and participate in reparative attempts to restore
structural integrity and tissue homeostasis [4,7–11]. In various clinical scenarios, CCs are processed
and used therapeutically, such as in autologous chondrocyte implantation (ACI), in which harvested
and culture-expanded chondrocytes are then used to treat AC focal defects and even osteoarthritis (OA)
with varying success rates [12,13].

The use of mesenchymal stem cells (MSCs) from different sources has been proposed for
years as a viable therapeutic alternative to treat AC damage, however, various challenges are still
present [14]. MSCs can be used therapeutically given their in vitro chondrogenic potential and
established immunomodulatory and trophic properties (collectively called “medicinal”) [15,16]. The
medicinal properties of MSCs are tightly associated with a strategic perivascular localization where
they exhibit a pericytic phenotype [17], as well as an environmental sensing capacity that allows them
to modulate local responses to tissue disruption (e.g., inflammation and trauma) [15]. In particular,
MSCs are molecularly equipped to recognize, home, and engraft to distant injured tissues, where
they exert similar activities after retaking the key perivascular localization [18,19]. MSCs’ medicinal
activities help to maintain or re-establish tissue homeostasis through the paracrine secretion of bioactive
molecules that modulate local immune responses, stimulate angiogenesis, and promote tissue-specific
progenitor proliferation, while inhibiting cell apoptosis and tissue fibrosis. MSCs are therefore able to
induce the establishment of a “regenerative microenvironment” [16,20].

The avascular nature of AC limits the extrapolation of the concept of a responsive perivascular
MSC to local inflammation/tissue imbalance during AC damage. Nevertheless, as stated above,
resident populations of mitotic and plastic CSPCs have shown to be present within the damaged
tissue, apparently migrating from surrounding “non-weight bearing healthy” tissue and/or from gaps
at the tidemark [7,10,11]. CSPCs represent an intermediate cell population between differentiated
chondrocytes and MSCs, which can be either ex vivo processed or in vivo stimulated to induce
tissue healing and homeostasis at different stages of AC damage. Despite reported similarities of
CSPCs with MSCs, a full characterization of CCs as a mixed cell-based product, including their
secretory response to an inflammatory environment and subsequent medicinal activities, have not
been thoroughly investigated.

Consequently, we aimed to compare side-by-side human-derived CCs (from healthy AC
surrounding advanced osteoarthritic tissue) with same-donor BMSCs and MSCs derived from adipose
tissue (ASCs), with regards to stemness features in culture, phenotypic display, multi-differentiation
potential, and extracellular matrix (ECM) remodeling of protein gene expression. Due to the emerging
role of the MSC-derived secretome as a promising immunomodulatory/trophic cell-free approach for
OA treatment [21], we further assessed their comparative ability to sense and respond to an in vitro
inflammatory environment, by interrogating the composition of the conditioned media produced by
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the three cell types, under the hypothesis that CCs could not only harbor a progenitor cell, but also
exert immunomodulatory effects as MSCs do.

2. Materials and Methods

2.1. Histological Analysis

Formalin-fixed, ethylene diamine tetraacetic acid (EDTA)-decalcified (6 weeks),
paraffin-embedded, 4 µm-sectioned explanted femoral heads from 3 patients (2 males and 1
female, age range 44–74 years) were stained with hematoxylin and eosin and immunohistochemically
for type II collagen and PRG4 (lubricin) assessment. Briefly, sections were blocked (2% bovine
serum albumin (BSA), incubated with a rabbit polyclonal anti-type II collagen (AB34712, Abcam,
Cambridge, UK) and anti-lubricin primary antibody (AB28484, Abcam, Cambridge, UK) diluted
in 5% phosphate-buffered saline (PBS)-BSA (1:100 and 1:500, respectively) for 1 h at room
temperature, followed by washing with PBS buffer (PBS 1 × + Tween20) and incubation for 30
min with a biotinylated goat anti-rabbit IgG secondary antibody (1:200 diluted in PBS 2% BSA,
INVC-BA-1000-MM15, Vector Laboratories, Burlingame, CA, USA). Diaminobenzidine (ImmPACT
DAB peroxidase, Vector Labs, Burlingame, CA, USA) was used as a chromogenic substrate of the
peroxidase reaction, and all sections were counterstained with Mayer’s hematoxylin, dehydrated,
and mounted.

2.2. Cell Isolation and Expansion

The study was approved by the local Institutional Review Board (M-SPER-015, for use of discarded
biological material), involving 8 consented/de-identified patients (5 females and 3 males, age range
41–74 years), with OA (Kellgren Lawrence III or IV) undergoing total hip arthroplasty. AC was
harvested with a scalpel from non-weight bearing superficial areas of femoral head/neck, excluding
the subchondral bone; bone marrow from femoral channel after neck resection; and subcutaneous
adipose tissue from local hip fat deposit. CCs were isolated by enzymatic digestion of harvested AC
(37 ◦C, 22 h) with 0.15% w/v type II collagenase (Worthington Biochemical, Lakewood, NJ, USA) [22],
then cultured in control medium consisting of 4.5 mg/mL high Glucose DMEM supplemented with
10% FBS (Lonza), 0.29 mg/mL L-glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin, 10 mM
4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 1 mM sodium pyruvate (all reagents
from Life Technologies, Carlsbad, CA, USA). Bone marrow was washed in PBS, centrifuged, and BMSCs
selected for plastic adherence [23]. ASCs were isolated by enzymatic digestion of harvested adipose
tissue (37 ◦C, 30 min) using 0.075% w/v type I collagenase (Worthington Biochemical, Lakewood,
NJ, USA) as previously reported [24,25]. ASCs and BMSCs were then cultured in minimum essential
medium (αMEM) supplemented as described above, adding 5 ng/mL fibroblast growth factor 2
(FGF-2) (PeproTech, Rocky Hill, NJ, USA) to preserve the chondrogenic potential [26,27]. All cell types
were expanded up to four passages (indicated as P1–P4).

2.3. Clonogenic Ability

A colony-forming unit-fibroblast (CFU-F) assay was performed [24] at P1 and P3. The cells were
plated at different low densities (range, 48–12 cells/cm2) and cultured in control medium with 20%
FBS. After 14 days, the cells were fixed with 10% neutral buffered formalin and stained with Gram’s
crystal violet (Sigma-Aldrich, Saint Louis, MO, USA). CFU-F frequency was established by counting
the colonies and expressing them as a percentage relative to the number of seeded cells.

2.4. Immunophenotype

Flow cytometry analysis was conducted at P4 on 2.5 × 105 cells incubated with anti-human primary
monoclonal antibodies: CD14-FITC, CD34-biotinylated, CD44-FITC, CD45-FITC, CD71-biotinylated,
CD105-biotinylated, CD166-FITC (Ancell Corporation, Bayport, MN, USA), CD90-FITC and CD73-PE
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(Miltenyi Biotec, Bergisch Gladbach, Germany), and CD151 (R&D Systems, Minneapolis, MN, USA).
Biotinylated stained cells were incubated with streptavidin-PE (Ancell Corporation, Bayport, MN, USA),
whereas anti-CD151 stained samples were incubated with a FITC-conjugated goat anti-mouse secondary
antibody (Ancell Corporation, Bayport, MN, USA). Background fluorescence was established by unstained
cells as negative controls and data acquired using a FACSCalibur flow cytometer (BD Biosciences, San
Jose, CA, USA) collecting a minimum of 10,000 events. The analysis was performed using CellQuest
software (BD Biosciences, San Jose, CA, USA).

2.5. Multi-Lineage Differentiation

At P1 and P3, 3 × 103 cells/cm2 were plated and differentiated for 14 days either in adipogenic or
osteogenic medium as previously reported [28]. A commercially available medium (Miltenyi Biotec,
Bergisch Gladbach, Germany) optimized for the generation of adipocytes from human MSCs was used
as an adipogenic differentiation control (n = 3 at P1). Lipid vacuoles were quantified by Oil Red O
staining and calcified matrix deposition was measured using Alizarin Red-S staining and absorbances
were read at 490 nm and at 570 nm, respectively (Perkin Elmer Victor X3 microplate reader).

Pellet cultures at P1 and P3 were obtained by centrifugation of 4 × 105 cells, maintained for 28 days
in chondrogenic medium, following an already published protocol [29]. An additional 10 ng/mL of
bone morphogenetic protein 6 (BMP-6) (PeproTech, Rocky Hill, NJ, USA) was added to the ASCs [30].

To evaluate the glycosaminoglycans (GAGs) deposition, pellets were fixed, embedded in paraffin,
sectioned at 4 µm, and stained with Alcian Blue (Sigma-Aldrich, Saint Louis, MO, USA). For GAGs’
quantification, pellets were digested (16 h, 60 ◦C) in PBE buffer containing L-cysteine (Sigma-Aldrich,
Saint Louis, MO, USA) and papain (Worthington Biochemical Co., Lakewood, NJ, USA). Samples were
incubated with dimethylmethylene blue (Sigma-Aldrich, Saint Louis, MO, USA) and absorbance was
read at 500 nm.

2.6. In Vitro Model of Inflammation

Cells at P3 were stimulated with 1 ng/mL of IL-1β for 48 h [31,32], after which both supernatant
and cells were collected.

2.7. Gene Expression Analysis

Total RNA was isolated from cell lysates using the PureLink®RNA Mini Kit (Life Technologies,
Carlsbad, CA, USA) and quantified spectrophotometrically (NanoDrop, Thermo Scientific, Waltham,
MA, USA). RNA was reverse-transcribed to cDNA employing the iScript cDNA Synthesis Kit (Bio-Rad
Laboratories, Hercules, CA, USA). Gene expression was evaluated by real time PCR (StepOne
Plus, Life Technologies, Carlsbad, CA, USA), with cDNA incubated with a PCR mixture, including
TaqMan®Gene Expression Master Mix and TaqMan®Gene Expression Assays (Life Technologies,
Carlsbad, CA, USA).

Expression levels of NANOG, Hs04260366_g1, POU5F1, Hs04260367_gh in all cells, and of PRG4,
Hs00981633_m1 in CCs at P1 and P3 were evaluated. MMP1, Hs00899658_m1, MMP3, Hs00968305_m1,
MMP13, Hs00233992_m1, TIMP1, Hs00171558_m1, TIMP3, and Hs00165949_m1 were analyzed at P3
with or without IL-1β stimulation in all cell types. TBP, Hs00427620_m1 was selected as a housekeeping
gene [33]. Data were expressed according to the dCt or ddCt (PRG4) method.

2.8. Protein Array

Commercially available multiplex ELISA-based protein arrays for growth factors (GFs) (Table S1)
and for inflammation mediators (Table S2) (RayBio® C-Series, RayBiotech, Norcross, GA, USA) were
used to evaluate basal and post-IL-1β stimulation relative levels in media obtained from all cells (4
donors run in 3 technical replicates pooled) following the manufacturer’s instructions, and normalized
by the total protein content assessed through bicinchoninic assay (BCA). Samples were exposed to
a FluorChem E chemiluminescence imaging system (ProteinSimple, San Jose, CA, USA) to quantify
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the mean spot pixel signal density using the protein array analyzer for ImageJ (ImageJ, NIH website).
The signal intensity for each protein spot is proportional to the relative concentration of the antigen in
the sample.

2.9. Determination of IL-1Ra

The levels of soluble interleukin 1 receptor antagonist (IL-1Ra) (detection range of 23–1500 pg/mL)
in cell culture medium treated or not treated with IL-1β for 48 h were determined by commercially
available enzyme-linked immunosorbent assays (ELISAs) according to the manufacturer’s instructions
(PeproTech, Rocky Hill, NJ, USA).

2.10. Immunopotency Assay (IPA)

CCs (7 cell populations) were seeded in 96-well plates at a density of 2 × 104 or 5 × 104 in 100 µL
control medium, and 24 h later stimulated with 1 ng/mL of IL-1β. After 48 h, medium containing
IL-1β was removed and 1 × 105 peripheral blood lymphocytes (PBLs) pre-treated with 0.1 µg/mL
anti-human CD3/CD28 antibodies (Mabtech AB) were added to CCs cultures. After 72 h, PBLs’
proliferation was evaluated by analyzing BrdU incorporation with the Cell Proliferation ELISA, BrdU
Kit (Roche) following the manufacturer’s protocol. The absorbance was measured at 370 nm (Perkin
Elmer Victor X3 microplate reader). The experiments were replicated with PBLs derived from 2
different donors. Stimulated PBLs cultured in the absence of CCs were used as positive controls, while
non-stimulated samples (cultured in the absence of anti-CD3/CD28) were used as negative controls.

2.11. Statistical Analysis

Data are expressed as mean ± standard deviation (SD). Normal distribution of values was
assessed by the Kolmogorov-Smirnov normality test. Statistical analysis was performed using paired
and unpaired Student’s t-test for normally distributed data and Wilcoxon (for paired data) or Mann
Whitney (for unpaired data) test in the absence of a normal distribution; one-way ANOVA was used
for multiple comparisons. Pearson’s (for paired data) or Spearman’s (for unpaired data) correlation of
PRG4 expression and inflammatory biomarkers was performed (GraphPad Prism v5.00, San Diego,
CA, USA). Level of significance was set at p < 0.05 (* p < 0.05, ** p < 0.01, *** p < 0.001). The number of
data used for the statistical analyses is indicated in the figure legends and corresponds to independent
experiments [34].

3. Results

3.1. PRG4 (lubricin) Expression Shifts from Healthy to Damaged AC and Increases in CCs during
in vitro Culture

The intact portion of cartilage (non-weight bearing area) was characterized by normal cartilage
tissue morphology rich in type II collagen, with the highest PRG4 presence in the upper zone and mildly
in the intermediate zone in some cells. In the interface portion, between intact and damaged cartilage,
the tangential layer was missing and the tidemark in the pathological side was not distinguishable,
with PRG4 localized in a thinner superficial area compared with intact AC (data not shown). In the
damaged AC sections, the tissue structure appeared non-homogeneous, exemplified by a distorted
superficial zone, with PRG4 expression randomly distributed in the intermediate zone within CCs
(Figure 1A). Notably, the PRG4 expression level was positive in CCs after isolation (control) and
exhibited a significant (p < 0.05) upregulation (8-fold) after three culture passages (Figure 1A). With
the exception of IL-4 (Pearson’s r = −0.98, n = 4 donors), no significant correlation between the
inflammatory biomarkers analyzed and the PGR4 expression in expanded chondrocytes was observed.
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Figure 1. PRG4 expression, clonogenic ability, and stemness marker expression. (A) Representative
immunohistological distribution of type II collagen and PRG4 in healthy and damaged AC (scale bars
correspond to 100 µm), and PRG4 expression in culture-expanded CCs (n = 4). (−) indicates negative
control (secondary antibody only). (B) Clonogenic ability and (C) stemness marker expression of
adipose (ASCs), bone marrow (BMSCs)-derived MSCs and cartilage cells (CCs) obtained from the same
eight donors. Cells were analyzed at passage 1 (P1) and passage 3 (P3). * p < 0.05, *** p < 0.001 vs. ASCs
at P1, § p < 0.05 vs. BMSCs at P3, ˆ p < 0.05 vs. CCs at P1. Data are represented as mean ± SD (n = 8).

3.2. CCs Formed Colonies, Expressed Stemness Markers, and Differentiated into Osteo- and
Chondrogenic Lineage

From P1 to P3, CCs showed a significant increase (p < 0.05) in clonogenic ability, with a significantly
higher (p < 0.05) number of colonies in comparison with BMSCs at P3, while at P1, the number of ASC
colonies was significantly higher (p < 0.05) in comparison with BMSCs (Figure 1B). Stemness markers,
NANOG and POU5F1 (Oct-4), showed a significant reduction with passages in ASCs (p < 0.001) and
BMSCs (p < 0.05), but not in CCs. A trend of lower NANOG expression was observed at P1 in CCs
in comparison with both BMSCs and ASCs, reverted later at P3, where CCs only maintained this
expression (Figure 1C).

All three cell types were able to differentiate into the osteogenic lineage at both P1 and P3,
as demonstrated by the significant increase of calcified matrix deposition compared to untreated
controls (ASCs P1 and P3 p < 0.001, BMSCs P1 p < 0.001 and P3 p < 0.05, CCs P1 p < 0.01 and P3
p < 0.05). In particular, ASCs showed a significantly higher amount (p < 0.001) of calcium deposition
in comparison with CCs and BMSCs at P3 (Figure 2A). At P1, with the exception of ASCs, and at P3,
all the cells differentiated toward the chondrogenic lineage, as shown by the significant increase of
GAGs’ deposition compared to untreated controls (ASCs P3 p < 0.05, BMSCs P1 and P3 p < 0.05, CCs
P1 and P3 p < 0.01). As expected, CCs showed significantly higher levels (p < 0.05 at P1, p < 0.01 at
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P3) of GAGs in comparison with both MSCs types (Figure 2B). Only ASCs and BMSCs at P1 showed
appreciable and comparable signs of adipogenic differentiation compared with control cells (p < 0.05,
p < 0.01, respectively). Indeed, significantly lower levels of lipid vacuole deposition were observed in
CCs in comparison with BMSCs at P1 (p < 0.05) and ASCs at P3 (p < 0.05) (Figure 2C). The adipogenic
differentiation was also verified with a commercial differentiation medium. While ASCs and BMSCs
showed comparable results when treated either with the adipogenic medium currently used in
our laboratory or the commercial medium (absorbance at 490 nm 0.140 ± 0.03 and 0.150 ± 0.02 in
control and cultured ASCs in both adipogenic media, respectively; 0.154 ± 0.03 and 0.167 ± 0.04
and 0.191 ± 0.03 for control, standard medium, and commercial medium BMSCs, respectively; all
differences were not statistically significant), CCs showed a better differentiation ability (p < 0.05)
when cultured in our laboratory adipogenic medium (0.227 ± 0.02 and 0.219 ± 0.03 and 0.179 ± 0.005
for control, standard medium, and commercial medium CCs).

Figure 2. Multi-differentiation potential. (A) Osteogenic-O (Alizarin red staining),
(B) Chondrogenic-Ch (Alcian blue staining and GAG quantification), and (C) Adipogenic-A (Oil O red
staining) differentiation potential assessment. Adipose (ASCs)-, bone marrow (BMSCs)-derived MSCs
and cartilage cells (CCs) obtained from the same eight donors were subjected to differentiation at P1
and P3. Scale bars correspond to 200 µm. Only scale bars of the biggest Chondrogenic-Ch images
correspond to 100 µm. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. ASCs, § p < 0.05, §§ p < 0.01 vs. BMSCs,
◦ p < 0.05, ◦◦ p < 0.01, ◦◦◦ p < 0.001 vs. control. Data are represented as mean ± SD (n = 8).

3.3. CCs and MSCs Share a Similar Immunophenotype

At P4, as expected, both the MSC types were negative for CD14, CD34, CD45, and CD71 and
positive for CD44, CD73, CD90 CD105, CD151, and CD166 expression. BMSCs were clearly positive
for CD146, with significantly higher values in comparison to both ASCs (p < 0.05) and CCs (p < 0.01),
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which exhibited similar values. CCs showed a similar immunophenotypic pattern to MSCs. Notably,
the expression of CD90 was significantly higher in CCs in comparison with both MSC types (p < 0.05
for ASCs and p < 0.01 for BMSCs), in which it was lower than expected. Finally, as already reported [8],
CD105 and CD166 were positive in CCs, even with a significant lower (p < 0.01) expression of the latter
compared with MSCs (Figure 3).

Figure 3. Immunophenotype. Representative expression of the typical pattern of MSC surface markers
in all the analyzed cells, with a table reporting the percentages of positive cells for the whole panel of
surface markers tested at P4. Adipose (ASCs)-, bone marrow (BMSCs)-derived MSCs, and cartilage
cells (CCs). * p < 0.05 vs. ASCs, § p < 0.05, §§ p < 0.05 vs. BMSCs. Data are expressed as mean ± SD
(n = 5).

3.4. MSCs and CCs have Distinct Basal and IL-1β-Induced ECM Remodeling Predisposition

In basal conditions, the highest and the lowest MMP1 expression was demonstrated by CCs and
BMSCs, respectively; for MMP3, the highest level was expressed by ASCs and the lowest by BMSCs.
The highest and the lowest MMP13 expression was shown by CCs and ASCs, respectively (Figure 4A).
All the cells reacted to the inflammatory stimulation by upregulating MMP1, 3, 13 expression in
comparison with their basal levels. In the basal condition, the lowest expression of both TIMP1 and
TIMP3 was observed in CCs. The highest expression was observed in ASCs and BMSCs. Interestingly,
no change was observed for TIMP1 and TIMP3 levels after IL-1β treatment, with the exception of a
significant downregulation of TIMP3 in ASCs (Figure 4B).
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Figure 4. ECM remodeling molecular response to a pro-inflammatory stimulus. Expression of
metalloproteases (MMP1, MMP3, MMP13) (A) and their inhibitors (TIMP1, TIMP3) (B) in adipose
(ASCs)-, bone marrow (BMSCs)-derived MSCs, and cartilage cells (CCs) obtained from the same donors,
assessed by quantitative real-time PCR at P3 before and after IL-1β stimulation. * p < 0.05, ** p < 0.01,
*** p < 0.001 vs. ASCs, § p < 0.05, §§ p < 0.01, §§§ p < 0.001 vs. BMSCs, ◦ p < 0.05, ◦◦ p < 0.01 vs. control.
Data are expressed as mean ± SD (n = 8).

3.5. Differential Production of Growth Factors (GF) in Basal and Pro-Inflammatory Conditions

In basal conditions, CCs showed a higher amount of total growth factors released compared to
both two MSC types, based on the comparable total protein content assessed by BCA (Figure 5A and
Figure S1 with statistical significance of all GFs among cell types). Lower levels of GFs belonging to
the EGF, IGF, VEGF, and FGF families, as well as angiogenesis-related molecules (VEGF and VEGFRs),
were observed in MSCs compared with CCs. Higher levels of GFs related to the promotion of cell
proliferation, such as EGF, EGF R, FGF-4, FGF-6, FGF-7, and GDNF, were also observed in CCs when
compared with BMSCs.

Post IL-1β stimulation, ASCs showed higher responsiveness compared to both BMSCs and
CCs (Figure 5A), where the only growth factor increased after the inflammatory condition was
granulocyte-macrophage colony-stimulating factor (GM-CSF). When comparing ASCs and BMSCs,
9 GFs showed a common upregulation, ASCs showed unique upregulation of 16 additional GFs,
whereas BMSCs showed unique upregulation of 6 additional GFs. Interestingly, after IL-1β stimulation,
angiogenic VEGF D, VEGF R2, and VEGF R3 increased in both MSC types whereas VEGF increased
only in ASCs. Molecules belonging to the IGF and PDGF families were overall increased in both MSC
types, but mainly in ASCs, whereas TGFβ-2 and TGFβ-3 increased only in ASCs (Figure 5A).

3.6. Differential Production of Cytokines in Basal and Pro-Inflammatory Conditions

In basal conditions, CCs showed similar levels to BMSCs and higher compared to ASCs (Figure 5B).
Differences between pro- and anti-inflammatory cytokines were observed among cells (Figure S2 with
statistical significance of all cytokines among cell types). A more general pro-inflammatory behavior
in BMSCs was counteracted by higher levels of various immunomodulatory mediators, such as IL-10,
sTNF-RI, sTNF-RI, I-309, Eotaxin, and others, some of them also highly present in CCs.

Post IL-1β treatment, all cell types were highly responsive in terms of changes in pro- and
anti-inflammatory mediators (Figure 5B). Almost all of the immunomodulatory factors were increased
in CCs, whereas only ICAM-1, IL-1b, IL-8, MIP-1-a, MIP-1-b, and RANTES increased in all three
cell populations. Overall, BMSCs were the less responsive cells, with an increase of only six
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pro-inflammatory mediators, even in comparison with ASCs, which showed an increase in nine
inflammatory mediators (Figure 5B, Figure S2). IL-1Ra, a critical anti-inflammatory cytokine, was
upregulated after IL-1β treatment in all analyzed populations (increase vs controls of 1.7-fold for ASCs
(p < 0.01), 1.3 fold for BMSCs and 2.0 fold for CCs (p < 0.01)) (Figure 5C).

Figure 5. Secretome multiplex analysis. Secretion of growth factors of (A) inflammation-related
cytokines (B) and IL-1Ra (C) in conditioned media obtained from adipose (ASCs)-, bone marrow
(BMSCs)-derived MSCs, and cartilage cells (CCs) at basal (−) and post-stimulation with IL-1β (+).
Growth factors and cytokines are presented as: overall heat maps of the mean pixel intensity, and
arithmetic sum of the pixel intensity calculating the fold increase in the overall secretion from basal to
post-stimulation; a table showing significantly upregulated molecules with stimulation (n = 4). For
IL-1Ra, ◦◦ p < 0.01 vs. control, data are expressed as mean ± SD (n = 8).

3.7. CCs Stimulated with IL-1β Reduce the Proliferation of Activated PBLs in an IPA

Co-culturing CCs with PBLs at different ratios (immunopotency assay-IPA) demonstrated the
ability of CCs stimulated with IL-1β to antagonize the proliferative response of activated PBLs by
anti-CD3/CD28 antibodies. The higher reduction with respect to activated samples was obtained for
the 1 CCs:2 PBLs condition, showing a dose-dependent effect (Figure 6).
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Figure 6. PBLs’ proliferation after interaction with CCs. Proliferation of PBLs in presence (+) or absence
(−) of anti-CD3/CD28 and IL-1β-treated CCs in a ratio of 1:2 or 1:5 (PBLs:CCs). *** p < 0.001. Data are
expressed as mean ± SD (n = 7).

4. Discussion

This study confirmed the presence of active chondrogenic progenitors within human cartilage
obtained from OA patients, revealed their active and enhanced secretory responses to inflammation
when compared with MSCs, and showed their immunomodulatory effects that may be harnessed
under novel therapeutic schemes. In this view, CCs might not only be useful to derive novel and
improve existing cell-based therapies for the treatment of cartilage defects, but also constitute a
potential therapeutic target to enhance healing responses under various pathological circumstances,
including inflammatory/immune mediated conditions.

The PRG4 shift in expression from the surface in intact/healthy AC, where it is generally
associated with chondroprogenitor cells [6,35], to almost exclusively the intermediate zone in damaged
AC highlights the migratory [7] and progenitor phenotype acquisition of those cells and their
potential involvement in a remodeling/repair response [36]. In parallel, PRG4 was upregulated
in culture-expanded CCs, suggesting a progressive enrichment in chondroprogenitors. These findings
are in line with the enhanced clonogenic ability and sustained expression of stemness markers in CCs
throughout in vitro expansion, suggesting that this heterogeneous cell population conserves (or even
expands) a chondrogenic progenitor pool of cells over time. It has been reported that normal CCs,
OA CCs, and MSCs show no significant differences in CFU-F capacity when seeded in vitro directly
after isolation [37]. Our data showed that CCs, ASCs, and BMSCs obtained from OA patients have
comparable CFU-F capacity at P1, however, serial expansion of CCs resulted in CFU-F enrichment at P3.
On the contrary, MSCs showed a tendency towards a loss of stemness potential during expansion, more
dramatically observed in ASCs. Interestingly, NANOG and POU5F1 expression became downregulated
in cultured MSCs while it was maintained in CCs, thus reinforcing the concept of the presence of a
pool of progenitor cells, such as CSPCs.

Unlike with both MSCs and according to previous reports with sorted or clonal-selection obtained
chondroprogenitors [8,9,11], our data demonstrated that CCs have little or no adipogenic potential.
However, they were able to differentiate towards osteogenic and chondrogenic lineages, with the latter
more pronounced than MSCs, as expected.

The immunophenotyping analysis showed that OA CCs shared minimal MSC defining criteria for
both negative (CD14, CD34, CD45) and positive (CD44, CD73, CD90, and CD105) markers [38], while
positive for CD166+ in a higher proportion (28% ± 19%) than what was previously reported in normal
AC (less than 10%) [8]. Another study showed that the cartilage of patients with severe end-stage OA
is populated by a chondroprogenitor subpopulation (~32%) expressing CD9, CD90, and CD166 [9],
data more comparable with our results overall. Moreover, in our CCs, we found a slightly higher
proportion (~6%) of CD146, a marker that denotes a perivascular phenotype [17,39,40], in comparison
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with unsorted cells from diseased femoral condyles (0.5% and 2%) [41]. CD151, on the other hand,
has been associated with undifferentiated states of BMSCs, which once subjected to chondrogenic
differentiation, result in a significant reduction in its expression. Our results support the presence of
undifferentiated chondroprogenitors as we found it high (~95%), similar to undifferentiated MSCs [42].

An exhaustive multiplex-based interrogation of the cell secretome before and after IL-1β
stimulation allowed us to assess and compare the cell’s ability to respond to inflammatory
environments. Under basal conditions, CCs exhibited the largest amount of secreted growth factors
(GF) overall, with a special presence of chondrogenic, angiogenic, and pro-mitogenic molecules. This
highly secretory profile may result from a long-standing exposure to a pathologic environment within
the joint, inducing sustained reactive trophic secretory activity by CCs. This hypothetical scenario is
supported by the fact that after ex vivo pro-inflammatory stimulation, no further increase in secretion
of GFs was observed, suggesting that the cells already reached their secretory peak. Conversely, MSCs
exhibited a significant boost (pronounced in ASCs and marginal in BMSCs) in their secretory response
to IL-1β, doubling their secretion of GFs in the case of ASCs. That response includes trophic mediators
for AC, such as factors belonging to IGF, PDGF, and TGFβ families, as well as angiogenic factors,
reaching significant levels in CCs. This pro-angiogenic feature is likely related to the documented
roles of MSCs in promoting tissue healing in general. However, considering the structural avascular
nature of cartilage, this response might result in a metabolic alteration of tissue homeostasis. Along
those lines, the high angiogenic factor secretion by CCs are likely to just be part of the overall highly
secretory status of the cells, rather than a specific reaction to induce new vessels. Of note, angiogenesis
in healthy cartilage is inhibited by anti-angiogenic mediators, while in inflammatory conditions, the
increased production of angiogenic factors promotes pathological blood vessel formation [43].

A comparable induction of a migratory behavior may be related in all three cell types, as GM-CSF
was massively upregulated after inflammatory stimulation. Furthermore, CCs and MSCs exposed to
inflammatory conditions shared a catabolic behavior, with up-regulation of specific MMPs correlated
with an enhanced migratory behavior of chondroprogenitor cells as previously reported; compared
with “static” chondrocytes, migratory chondroprogenitors need to express metalloproteases 1, 3, 9,
and 14 to penetrate through the ECM during migration [11].

The situation with the secretion of inflammation-modulating cytokines follows a trend in which
all three cell types were reactive overall, with ASCs again more pronounced. Despite this comparable
response, and contrary to the situation with GFs, CCs experienced increments in the secretion of a
larger cohort of cytokines upon inflammatory stimulation. Multiple chemotactic and modulators of
cellular components of innate and adaptive immune responses are modulated in all three cell types;
however, the repertoire of molecules altered in CCs correspond more to an anti-inflammatory effect.
Interestingly, IL-1Ra, a direct IL-1β antagonist, was significantly upregulated only in CCs and ASCs.

The functional analysis of the secretome in the presence of activated PBLs evidenced a clear
and significant abrogation of an activated T cell proliferative response by CCs. This unanticipated
immunomodulatory effect exerted by CCs correlated with their induced secretome composition, and
further provides evidence of functional similarities with MSCs. These findings have tremendous
clinical implications as: First, the now evident intrinsic nature of AC to “fight” local immune responses,
such as the ones present in inflammatory-mediated joint disease (e.g., rheumatoid arthritis) and
early pathological events in OA [44,45], can become a target of exogenous interventions; second, the
observed strong immunomodulatory capacity can also be harnessed during the design of cell-based
therapy protocols to treat general AC damage; and third, to further extend their use to enhance tissue
engineering-based protocols for focal AC injuries. In that respect, a popular yet suboptimal option is
autologous chondrocyte implantation (ACI), which includes a heterogeneous CCs population that can
be used in association with exogenous MSCs to induce a better phenotypic maintenance [46]. Along
those lines, a previous study showed that infrapatellar fat pad-derived MSCs exposed to CCs extract
from OA patients acquire a chondrocyte phenotype by upregulating major chondrogenic genes, such
as Sox-9, L-Sox5, Sox6, and Col2a1 [47].
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A limitation of the present study is that only one in vitro model of inflammation was tested;
nevertheless, IL-1β was chosen because it is the most used agent to induce in vitro inflammation to
mimic OA [31,32]. Moreover, an in vivo functional test of the CCs is needed to better evaluate both
their progenitor and therapeutic potentials. On the other hand, we acknowledge that CCs were taken
from non-weight bearing areas of the femoral head, limiting the influence that the mechanical loading
exerts on cellular responses.

5. Conclusions

In conclusion, our findings strengthen the hypothesis that CCs represent a tissue-specific target
for future pharmacological and/or biophysical therapies. Moreover, given their particular features
and performance, CCs from pathological joints may be an alternative therapeutic agent, which can be
selectively isolated, enriched during expansion, and manufactured as a cell-based product or as its
CM for AC damage cell therapy. However, the clinical utilization conditions and specifications will
necessitate further studies, since the in vivo potential of the cells is still untested.
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