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A B S T R A C T

Triple-negative breast cancer (TNBC) exhibits the highest recurrence and mortality rates among breast cancer 
subtypes. Approximately one million TNBC cases are diagnosed worldwide annually. Current clinical treatments, 
primarily chemotherapy regimens based on paclitaxel and anthracycline, are associated with high recurrence 
rates and low overall survival rates. Platinum drugs, introduced for TNBC treatment, demonstrated a positive 
effect; however, their high-dose administration inevitably results in toxic side effects and drug resistance. 
Therefore, identifying agents that sensitize patients to platinum-based therapies is critical. Analysis of the TCGA 
database revealed that AKT1 and autophagy are activated in breast cancer, playing crucial roles in malignant 
behavior. Further investigation demonstrated that CBP activates the AKT pathway in MDA-MB-231 cells, while 
its combination with LY294002 or Triciribine (inhibitors of the PI3K/AKT pathway), suppresses cell prolifera
tion. However, this combination also activates autophagy, a protective mechanism. Inhibition of autophagy with 
CQ or Baf A1 further increased the proliferation-inhibitory effects of CBP in MDA-MB-231 cells. Notably, the 
sesquiterpene lactone EM-2 extracted from Elephantopus mollis H.B.K., significantly inhibited both the AKT and 
autophagy pathways in TNBC cells, demonstrating superior cellular inhibitory effects compared with other AKT 
or autophagy inhibitors combined with CBP. When CBP was combined with EM-2, cell survival decreased by 
approximately 36 % compared with CBP monotherapy, while the apoptosis rate increased by 22.8 % after 48 h. 
The combination of CBP and EM2 also produced the greatest tumor shrinkage in vivo. Interestingly, the CBP (3 
mg/kg) + EM-2 (6 mg/kg) group achieved the same tumor shrinkage, with only one-fifth the amount of CBP 
compared with the CBP (16 mg/kg) monotherapy group. In other words, low doses of EM-2 combined with CBP 
produced the same anti-tumor effects as high-dose CBP alone. These findings provide a novel strategy for the 
treatment of CBP using dual AKT and autophagy inhibitors, highlighting potential clinical applications.

Introduction

Triple-negative breast cancer (TNBC) is characterized by the absence 

of estrogen receptor (ER), progesterone receptor (PR), and proto- 
oncogene HER-2 expression, as determined by immunohistochemical 
examination of cancer tissue [1,2]. This subtype exhibits the highest 
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recurrence and mortality rates among breast cancers, with approxi
mately 1 million cases diagnosed worldwide annually [1,3,4]. Patients 
with TNBC undergo various treatments based on cancer type and stage, 
including chemotherapy, radiotherapy, immunotherapy, laser therapy, 
photodynamic therapy [5–8]. Early adjuvant and neoadjuvant chemo
therapy regimens, predominantly based on paclitaxel and anthracycline, 
remain the most common interventions. However, these treatments are 
associated with high recurrence rates, low overall survival, and acute 
toxic effects—such as irreversible cardiotoxicity and myelotox
icity—that restrict their clinical utility [9–11]. Platinum-containing 
regimens have emerged as among the most studied and effective 
TNBC treatments in recent years [12,13]. These agents primarily func
tion by forming DNA adducts, which disrupt DNA replication and 
transcription, ultimately inducing cell death [14,15]. In clinical prac
tice, however, platinum resistance significantly impairs treatment out
comes, frequently leading to therapeutic failure and disease recurrence 
[16]. A combined treatment plan may offer an effective solution. For 
example, the synergistic effect between AKT inhibitors and carboplatin 
(CBP) has been demonstrated to enhance therapeutic outcomes in can
cers such as ovarian, lung, endometrial cancer and uterine serous car
cinoma[17–21], despite limitations of AKT inhibitors, including the 
induction of protective autophagy[22].

The PI3K/AKT pathway ranks among the most frequently over
activated intracellular pathways in numerous human cancers, including 
breast, lung, head and neck, endometrial, prostate, and colorectal can
cers[23,24]. Its activation triggers downstream AKT targets, promoting 
oncogenesis, proliferation, invasion, and metastasis of tumor cells[23,
25]. Overactivation of the PI3K/AKT/mTOR signaling pathway is 
observed in approximately 70 % of patients with breast cancer (BC) and 
25 % of those with TNBC[26,27]. Inhibition of AKT has been shown to 
suppress tumor cell growth[23,28,29]. In breast cancer, approvals for 
ER-positive advanced breast cancer include the PI3K inhibitor alpelisib 
for PIK3CA-mutated tumours, the AKT inhibitor capivasertib for tu
mours with alterations in PIK3CA, AKT1, or PTEN, and the mTOR in
hibitor everolimus, which is used irrespective of mutation status[30]. 
And luteolin was reported to inhibit proliferation and metastasis in 
androgen receptor-positive TNBC by downregulating the AKT/mTOR 
pathway[31], while calycosin suppressed TNBC progression via the 
PI3K/AKT signaling pathway[32]. Despite promising preclinical effi
cacy in some tumor models[33], the clinical response to small-molecule 
inhibitors of this pathway remains limited, as single AKT inhibition 
typically induces growth arrest rather than cell death in solid tumors 
[34]. To enhance AKT inhibitor-mediated cancer cell death, combining 
drugs has been explored in numerous studies.

In diagnosed tumors, autophagy sustains the survival of cancer cells 
under metabolic stress conditions, such as hypoxia, nutrient deprivation, 
and chemotherapy[35–37]. The interplay between autophagy and 
apoptosis may contribute to platinum resistance, as autophagy can 
suppress apoptosis response to platinum, thus promoting cell survival 
[38,39].Autophagy serves as a survival mechanism in response to 
platinum-induced stress[40], with aggressive tumors like TNBC exhib
iting elevated autophagy levels to tolerate cellular stress during metas
tasis[41–43]. Moreover, multiple studies have indicated that common 
PI3K/AKT/mTOR inhibitors can induce autophagy in different preclin
ical models, facilitating the evasion of their antitumor effects[22,44]. 
Given the autophagy-induced resistance associated with platinum 
therapy and the autophagy-promoting effects of conventional 
PI3K/AKT/mTOR inhibitors, a novel inhibitor capable of simulta
neously suppressing both autophagy and the AKT pathway could 
improve TNBC prognosis.

Natural products are widely applied in tumor treatment due to their 
low cytotoxicity, high efficiency, and cost-effectiveness. In this study, a 
sesquiterpene lactone monomer, EM-2, extracted from Elephantopus 
mollis H.B.K., was identified as an inhibitor of both the AKT pathway and 
autophagy. Combining CBP with EM-2 reduced cell survival by 
approximately 36 % compared to CBP monotherapy, with the apoptosis 

rate increasing by 22.8 % after 48 h. The combination of CBP and EM-2 
was also demonstrated to produce the greatest effect on tumor shrinkage 
in vivo.

Results

Upregulation of AKT1 and autophagy-related genes predicts poor 
prognosis in patients with breast cancer

The Cancer Genome Atlas (TCGA) database was used for pre
processing and screening. Elevated mRNA levels of AKT1, p62, and 
ATG7 were observed in breast cancer tissues compared to normal tissues 
(99 cases of adjacent tissues and 1072 cases of tumor tissues; Fig. 1A). 
Matching analyses further revealed overexpression of AKT1 and 
autophagy-related genes (p62, ATG5, and ATG7) in cancer tissues 
relative to paired adjacent breast tissues (n = 96; Fig. 1B). Subsequently, 
Kaplan–Meier analyses were conducted using 1020 cases with complete 
survival data from the TCGA cohort. Patients were divided into high- 
and low-risk groups with optimum cutoff values of AKT1 and 
autophagy-related genes, respectively. High expression levels of AKT1, 
ATG5, and ATG7 were associated with shorter overall survival (Fig. 1C). 
In contrast, the expression level of p62 in cancer tissues showed no 
correlation with overall survival (P = 0.18, Fig. 1C). These findings 
indicate that AKT1 and autophagy are activated in breast cancer and 
contribute significantly to malignant biological behavior.

Inhibition of the AKT pathway can increase the anti-TNBC effect of CBP 
but autophagy was activated

Analysis of relevant data from the ATGG database indicated that CBP 
activates the AKT pathway in TNBC cells following treatment, and that 
inhibiting this pathway may enhance the anti-TNBC effect of CBP. As 
shown in Fig. 2A, expression levels of p-AKT Ser473, p-AKT Thr308, p- 
GSK3β, p-FOXO3, and p-MDM2 increased with rising CBP concentra
tion, confirming activation of the AKT pathway in MBA-MD-231 cells. 
When cells were pretreated with LY294002, a PI3K/AKT pathway in
hibitor, expression levels of p-AKT Ser473 and p-AKT Thr308 were 
reduced, as were those of the downstream AKT proteins p-GSK3β and p- 
FOXO3, compared to cells treated with CBP alone (Fig. 2B). p62, a 
widely studied autophagy substrate, exhibits an inverse correlation be
tween its protein expression and autophagy activity during autophago
some formation[45]. In the LY294002 + CBP group, p62 expression was 
reduced, suggesting the activation of the autophagic in MDA-MB-231 
cells. Furthermore, MTT and EdU experiments demonstrated that inhi
bition of the AKT pathway enhanced the inhibitory effect of CBP on 
MDA-MB-231 cells (Fig. 2C, D).

Inhibition of autophagy enhances the anti-breast cancer effect of CBP

Autophagy is involved in the catabolic processes that promote the 
degradation of overabundant or malfunctioning cellular components 
[46]. Increasing evidence suggests that autophagy is associated with 
poor chemotherapeutic drug treatments. Western blotting was per
formed to explore the effects of CBP on autophagy. As shown in Fig. 3A, 
p62 expression decreased with increasing CBP concentration, indicating 
that autophagy was activated. In MDA-MB-231 cells, cell viability in 
CBP + CQ or CBP + Baf A1 groups decreased by 22.64 % and 14.87 %, 
respectively, compared to the CBP group (Fig. 3B). In addition, EdU 
assay results indicated that blocking autophagic flux with CQ increased 
the sensitivity of MDA-MB-231 cells to CBP (Fig. 3C). These findings 
demonstrate that CBP induces protective autophagy, and inhibiting 
autophagic flux enhances the anti-TNBC effects of CBP.
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CBP combined with EM-2 exhibits a synergistic anti-tumor effect on TNBC 
cells

The chemical structure of EM-2 is shown in Fig. 4A. In this study, 
MDA-MB-231 and MDA-MB-468 cells were selected to assess the 

growth-inhibitory effects of EM-2 / CBP / EM-2 + CBP over 48 h. Cell 
viability was detected using a MTT assay (Fig. 4B, C). In both MDA-MB- 
231 and MDA-MB-468 cells, the inhibitory effect on cell proliferation 
increased progressively with higher concentrations of CBP and EM-2. 
MDA-MB-231 and MDA-MB-468 cells treated with EM-2 in 

Fig. 1. Upregulation of AKT1 and autophagy-related genes predicts poor prognosis in patients with breast cancer. (A) Elevated mRNA levels of AKT1, p62, and ATG7 
(but not ATG5) were observed in breast cancer tissues compared to normal tissues (99 cases of adjacent tissues and 1072 cases of tumor tissues). (B) Overexpression 
of AKT1 and autophagy-related genes (p62, ATG5, and ATG7) was detected in cancer tissues relative to paired adjacent breast tissues (n = 96). (C) Kaplan–Meier 
analyses were performed on patients with breast cancer, categorized by expression levels of AKT1, p62, ATG5, and ATG7; data were obtained from TCGA breast 
cancer (n = 1020). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns, not significant.
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combination with CBP exhibited combination index (CI) < 1 (Fig. 4D 
and E), indicating a synergistic effect. This effect was more pronounced 
in MDA-MB-231 cells.

EM-2 acts as a dual inhibitor of the AKT pathway and autophagy

To investigate the molecular mechanism underlying EM-2 

sensitization of CBP, Western blotting was performed to determine the 
effects of EM-2 on the AKT pathway and autophagic flux in MDA-MB- 
231 cells. As shown in Fig. 5A, the expression levels of p-AKT Ser 473 
and p-AKT Thr308 proteins decreased with increasing concentrations of 
EM-2 over 24 h, accompanied by reduced phosphorylation of down
stream proteins GSK3β and FOXO3. In contrast, levels of cell cycle–re
lated proteins p21 and p27 increased, suggesting that EM-2 also induced 

Fig. 2. CBP induces activation of the AKT signaling pathway, and inhibition of this pathway enhances the anti-breast cancer effect of CBP. (A) MDA-MB-231 cells 
were treated with CBP (0, 200, 400, 600 μM) for 24 h and Western blot analysis was performed to detect the expression level of proteins related to the AKT pathway. 
(B) MDA-MB-231 cells were treated with CBP (400 μM) for 24 h in the presence or absence of LY294002 (10 μM), and Western blot analysis was performed to detect 
the expression level of proteins associated with the AKT pathway. (C) MDA-MB-231 cells were treated with CBP (400 μM) for 24 h in the presence or absence of 
LY294002 (10 μM) or Triciribine (10 μM), and the cell viability was detected by MTT assay (**P < 0.01, ***P < 0.001). (D) The cell proliferation inhibitory effect of 
CBP (200 μM, 24 h) in the presence or absence of Triciribine (10 μM) on MDA-MB-231 cells was detected by EdU assay and DMSO treatment with the largest volume 
ratio of 0.02 % as the control group.
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cell cycle arrest. In a subsequent time-gradient experiment, MDA-MB- 
231 cells were treated with 5 μM EM-2 for 0, 3, 6, 9, 12, and 24 h, 
and Western blot analysis was performed (Fig. 5B). When cells were 
treated with EM-2 for 6 h, p-AKT Ser473 and p-AKT Thr308 levels 
decreased and reached their lowest levels at 24 h. Downstream proteins 
p-GSK3β and p-FOXO3 showed a similar decreasing trend. p21 and p27 
levels increased at 3 h and peaked at 9 h.

Additionally, MDA-MB-231 cells were cultured with increasing 
concentrations of EM-2 (0, 2, 4, 8 μM) for 24 h, and Western blotting was 
performed to assess expression of autophagy-related proteins (Fig. 5C). 
Expression levels of p62 increased with higher EM-2 concentrations, 
while the LC3 II/LC3 I ratio remained largely unchanged, indicating that 
EM-2 blocked the autophagic flux without affecting the initiation phase 
of autophagy. In the subsequent time-gradient experiment, when EM-2 
(5 μM) was applied to MDA-MB-231 cells, p62 expression exhibited a 
decreasing trend before 9 h, but gradually increased after 12 h. This may 
be attributed to cells initiating autophagy to survive when exposed to 
external stimuli, however, the autophagy-blocking effect of EM-2 was 
enhanced after 9 h, whereas the expression of LC3 I and LC3 II did not 
change significantly (Fig. 5D). These results indicate that EM-2 is a dual 
inhibitor of the AKT pathway and autophagy.

EM-2 combined with CBP inhibits the AKT pathway and autophagy while 
induced apoptosis

Analysis of these findings suggests that EM-2 inhibits the AKT 
pathway and blocks autophagic flux, thereby enhancing the inhibitory 

effect of CBP on breast cancer proliferation. As shown in Fig. 6A, 
expression levels of p-AKT Ser473 and p-AKT Thr308 in the EM-2+CBP 
group were significantly lower than that those in the CBP group, and the 
expression levels of downstream AKT pathway proteins p-GSK3β, p- 
FOXO3, and p-MDM2 were also significantly reduced. In contrast, the 
expression levels of p21 and p27 were significantly higher in the EM2 +
CBP group compared to the CBP group. As shown in Fig. 6B, p62 
expression in the EM-2 + CBP group was significantly higher than in the 
CBP group, indicating that EM-2 combined with CBP inhibits the AKT 
pathway and blocks autophagic flux.

A colony formation assay was performed to evaluate the anti-tumor 
effects of EM-2, CBP, and EM-2 + CBP. The inhibitory effect on cell 
proliferation was more pronounced in the EM-2 + CBP group compared 
to EM-2 or CBP alone (Fig. 6C). Furthermore, Western blot analysis 
revealed increased expression levels of apoptosis-related proteins CL- 
caspase 9 and CL-PARP in the EM-2 + CBP group (Fig. 6F). MDA-MB- 
231 cells were treated with EM-2, CBP, or EM-2 + CBP for 24 and 48 
h, and apoptosis rates were assessed using Annexin V-FITC /PI double 
staining (Fig. 6D, E). After 24 h, the apoptosis rate in the EM-2 + CBP 
group increased by 16.14 % (25.38 % vs. 9.24 %) compared to the CBP 
group, and after 48 h, the increase was 22.8 % (52.6 % vs. 29.8 %). 
Similar results were observed in the EdU assay, with the EM-2 + CBP 
group showing significantly stronger inhibition of cell proliferation 
compared to the CBP or EM-2 groups (Fig. 6G). In addition, EM-2 
sensitization to CBP was more effective than AKT or autophagy in
hibitors alone and even more effective than combined inhibition of both 
AKT and autophagy (Fig. 6H).

Fig. 3. CBP induces protective autophagy, and inhibition of autophagy enhances the anti-TNBC effect of CBP. (A) MDA-MB-231 cells were treated with CBP (0, 200, 
400, 600 μM, 24 h), and Western blot analysis was performed to detect the expression level of proteins associated with autophagy. (B) MDA-MB-231 cells were 
treated with CBP (400 μM, 24 h) in the presence or absence of Baf A1 (100 nM) or CQ (10 μM), and MTT analysis was performed to detect the cell viability (*P < 0.05, 
**P < 0.01, ***P < 0.001). (C) The cell proliferation inhibitory effect of CBP (200 μM, 24 h) in the presence or absence of CQ (10 μM) on MDA-MB-231 cells were 
detected by EdU assay and DMSO treatment with the largest volume ratio of 0.02 % as the control group.
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EM-2 enhances the anti-breast cancer effect of CBP in vivo

MDA-MB-231 cells were used to establish a breast tumor xenograft 
model. When tumors volumes reached approximately 100 mm3, mice 
were randomly assigned to five groups: normal saline, EM-2 (6 mg/kg), 
CBP (16 mg/kg), EM-2 (6 mg/kg) + CBP (16 mg/kg), and EM-2 (6 mg/ 
kg) + CBP (3 mg/kg). Treatments were administered for 21 days. Tumor 
volume was inhibited in the EM-2 (6 mg/kg) and CBP (16 mg/kg) 
groups, though the effect was modest (Fig. 7A, B, and D). A more pro
nounced inhibitory effect was observed in the EM-2 (6 mg/kg) + CBP 
(16 mg/kg) group compared to the control group. Notably, the EM-2 (6 
mg/kg) + CBP (3 mg/kg) and CBP (16 mg/kg) groups had nearly the 
same inhibitory effect on tumor volume, indicating that the use of EM-2 
combined with CBP could reduce CBP dosage. Mean tumor weight 
corroborated the tumor volume findings (Fig. 7C). Toxicity of EM-2, 
CBP, and their combination was assessed in nude mouse xenograft 
models. The weight change trends of mice in the five treatment groups 
were similar, and the toxicity of each treatment was negligible (Fig. 7E). 
Subsequently, immunohistochemical hematoxylin and eosin (H&E) 
staining was used to analyze tissue damage in the major organs of each 
treatment group, and the results showed no significant damage to the 
heart, lung, liver, spleen, and kidney in any treatment group (Fig. 7G).

The staining of Ki67 was decreased in all treatment groups compared 
with the control group, and was most evident in the EM-2 (6 mg/kg) +
CBP (16 mg/kg) group, as shown in Fig. 7F. p62 expression serves as an 
indicator of autophagy. Autophagy was activated in the CBP group 
compared to the control group, as evidenced by a slight reduction in p62 
expression in tissue sections. Conversely, p62 expression was higher in 
the combined treatment group than in the control group, suggesting that 
EM-2 inhibited CBP-induced autophagy in vivo. In addition, immuno
histochemical analysis revealed significantly increased expression levels 
of p-AKT Thr308 and p-AKT Ser473 in tumors treated with CBP alone 
compared with control tumors; however, these expression levels 
decreased following the combination of CBP with EM-2 (Fig. 7F), indi
cating that EM-2 inhibited CBP-induced activity of the AKT pathway in 
vivo. Therefore, these findings demonstrate the synergistic anti-tumor 

effect and underlying mechanism of EM-2 combined with CBP in 
TNBC in vivo.

Discussion

TNBC exhibits the highest recurrence and mortality rates among 
breast cancer subtypes. The standard systemic treatment for operable 
TNBC has relied on anthracyclines plus cyclophosphamide, followed or 
preceded by taxane (AC-T), due to the absence of conventional targeted 
therapies. Consequently, non-selective chemotherapy remains the pri
mary approach[1]. Platinum drugs are cytotoxic DNA damage com
pounds that can cause DNA strand breakage and apoptosis. This 
mechanism of action renders them particularly effective against cancer 
cells with defective DNA repair, such as those with deleterious BRCA 
mutations. The combination of CBP with AKT inhibitors has demon
strated robust antitumor effects across various solid tumors[17–21,47]; 
however, AKT inhibitors have disadvantages, such as active protective 
autophagy.

Transcriptome sequencing data from TCGA database revealed 
significantly elevated AKT1 mRNA levels in breast cancer tissues 
compared to normal tissues (Fig. 1A). Matching analyses further indi
cated overexpression of AKT1 in cancer tissues relative to paired adja
cent breast tissues (Fig. 1B). Moreover, survival analysis showed that 
high AKT1 expression was associated with shorter overall survival 
(Fig. 1C). The PI3K/AKT/mTOR signaling pathway, one of the most 
frequently activated pathways in cancer, drives tumor cell proliferation 
and many other malignant behaviors[26,48]. AKT, a key molecule in 
this pathway, regulates cell survival, cell growth, cell cycle regulation, 
and metabolism. Its anti-apoptotic function is activated when stress in
duces cell death[26]. The combination of AKT inhibition and chemo
therapy (acting as a stress inducer) has been studied and proven to be 
synergistic in preclinical studies [17,18,47,49]. In this study, activation 
of the AKT signaling pathway was observed in MDA-MB-231 cells 
following CBP treatment (Fig. 2A). Inhibition of the AKT pathway was 
found to enhance the cytotoxic effect of CBP (Fig. 2B, C, D). Further
more, p62 levels in the CBP + LY49002 group were lower than those in 

Fig. 4. Proliferation inhibition of EM-2 / CBP / EM-2 + CBP on TNBC cells. (A) Molecular structure of EM-2. (B) MDA-MB-231 and (C) MDA-MB-468 cells were 
treated with increasing concentrations of EM-2, CBP or EM-2 + CBP for 48 h, and cell viability was detected using a MTT assay. (D) and (E) Combination index (CI) 
was calculated using CompuSyn software.
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the CBP alone group, indicating that autophagy was activated when the 
AKT pathway was inhibited (Fig. 2B). However, multiple studies have 
shown that common PI3K-AKT/mTOR inhibitors can induce autophagy 
in various preclinical models, facilitating an escape from their antitumor 
effect[50–53]. To further investigate the effect of CBP on the autophagy 
pathway, cells were treated with varying concentrations of CBP. The 
results showed that p62 expression decreased with increasing CBP 
concentration, indicating autophagy activation. When the 
autophagy-blocking agents CQ or Baf A1 were added, the killing effect of 
CBP on MDA-MB-231 cells was enhanced (Fig. 3). Thus, CBP can induce 
protective autophagy, and inhibition of autophagy can increase its 
anti-tumor effect.

Given these observations, the potential dual inhibition of AKT and 
autophagy in combination with CBP was considered to enhance anti
tumor efficacy while reducing CBP dosage and associated toxic side ef
fects. Natural products have been widely utilized in tumor treatment due 
to their advantages, including low cytotoxicity, high efficiency, and low 
cost. In this study, sesquiterpene lactone monomer EM-2 extracted from 
Elephantopus mollis H.B.K., was identified (Fig. 5). Following EM-2 

treatment, the expression levels of p-AKT Ser473 and p-AKT Thr308 
proteins decreased, and the phosphorylation levels of the downstream 
proteins GSK3β and FOXO3 also decreased, indicating that EM-2 
inhibited the AKT pathway. The protein expression of p62 increased 
with increasing EM-2 concentration, indicating that EM-2 inhibited 
autophagy (Fig. 5C, D). CBP combined with EM-2 exhibited a synergistic 
anti-TNBC effect (CI < 1) (Fig. 4D, E). Further investigation revealed 
that the apoptosis rates in the EM-2 + CBP group increased by 16.14 % 
(25.38 % vs. 9.24 %) after 24 h and by 22.8 % (52.6 % vs. 29.8 %) after 
48 hours compared to the CBP-alone group (Fig. 6D, E). In addition, 
colony formation and EdU assays demonstrated that CBP combined with 
EM-2 inhibited cell proliferation (Fig. 6C, G). Notably, the synergistic 
antitumor effects of CBP and EM-2 could not be replicated by simply 
adding AKT and autophagy inhibitors (Fig. 6H). In further study, we 
constructed MDA-MB-231 breast tumor xenograft models to explore the 
synergistic anti-tumor effects of CBP combined with EM-2 in vivo. 
Consistent with the in vitro experiments, the combination of EM-2 (6 
mg/kg) with approximately one-fifth the concentration (3 mg/kg) of 
CBP exhibited similar antitumor effects as the CBP (16 mg/kg) alone 

Fig. 5. EM-2 inhibits the AKT pathway and autophagic flux in a time- and dose-dependent manner. (A) MDA-MB-231 cells were treated with EM-2 (0, 2, 4, 8 μM, 24 
h), and Western blot analysis was performed to assess expression levels of AKT pathway-associated proteins. (B) MDA-MB-231 cells were treated with 5 μM EM-2 for 
0, 3, 6, 9, 12, and 24 h, and Western blot analysis was performed to evaluate expression levels of AKT pathway-associated proteins. (C) MDA-MB-231 cells were 
treated with EM-2 at concentrations of 0, 2, 4, or 8 μM for 24 h, and expression levels of autophagy-related proteins were assessed using Western blot analysis. (D) 
MDA-MB-231 cells were treated with 5 μM EM-2 for 0, 3, 6, 9, 12, and 24 h, and Western blot analysis was performed to determine expression levels of autophagy- 
associated proteins.
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group (Fig. 7A, B, C), indicating that EM-2 combined with CBP can 
reduce the required CBP dosage. Moreover, immunohistochemical 
analysis revealed that EM-2 inhibits the AKT pathway and autophagy in 
vivo (Fig. 7F).

These findings demonstrated that EM-2 combined with CBP exhibits 
synergistic anti-TNBC activity in vivo and in vitro (Fig. 8).

Conclusion

This study revealed that the AKT pathway is activated following CBP 
treatment of TNBC cells and that inhibition of this pathway enhances the 
anti-tumor effect of CBP. Autophagy was found to be induced by CBP, 
either alone or in combination with AKT inhibitors, and blocking 
autophagy amplified the anti-tumor efficacy of CBP. EM-2 is a natural 
small-molecule compound that inhibits both the AKT pathway and 
autophagy. The combination of EM-2 with CBP exhibited a synergistic 
anti-tumor effect and promoted apoptosis, a finding further validated in 
vivo.

Materials and methods

Chemicals and reagents

EM-2 was identified by Professor Wang Guocai at the College of 
Pharmacy, Jinan University (Guangzhou, China)[54]. Its purity was 
determined to be ≥95 % by high-performance liquid chromatography. 
EM-2 was dissolved in dimethyl sulfoxide (DMSO), aliquoted, and stored 
at − 80 ◦C.

The Annexin V–FITC apoptosis detection kit, MTT cell proliferation 
assay kit, and kFluor488-EdU detection kit were obtained from KeyGEN 
Biotech (Jiangsu, China). Bafilomycin A1 (Baf-A1), chloroquine (CQ), 
LY294002, and Triciribine were sourced from Selleck (Houston, TX, 
USA). The Immobilon electrochemiluminescence (ECL) kit and poly
vinylidene fluoride (PVDF) were acquired from Millipore (MA, USA). 
Antibodies against Caspase-9, CL-Caspase-9, poly ADP-ribose polymer
ase (PARP), CL-PARP, AKT, p-AKT Thr308, p-AKT Ser473, GSK3β, p- 
GSK3β, FOXO3, p-FOXO3, MDM2, p-MDM2, p21, p27, p62, LC3 I/II, 
and GAPDH were purchased from Cell Signaling Technology (Boston, 
MA). Goat anti-mouse IgG(H + L) and goat anti-rabbit IgG(H + L) an
tibodies were obtained from Proteintech.

Cell culture

MDA-MB-231, and MDA-MB-468 cells, acquired from the American 
Type Culture Collection, were cultured in DMEM high-glucose medium 
supplemented with 10 % fetal bovine serum (FBS). Cells were cultured 
at 37 ◦C in an atmosphere containing 5 % CO2.

Cell viability assay

Cells were seeded into 96-well plates at a density of 5000 cells per 
well and incubated overnight at 37 ◦C in a 5 % CO2 atmosphere. Sub
sequently, cells were treated with various agents for 24 or 48 h. MTT 
solution (20 μL per well) was introduced into the culture plates followed 

by a 4-h incubation at 37 ◦C. Following supernatant removal, DMSO 
(150 μL per well) was added, and absorbance was measured at 570 nm 
using a microplate spectrophotometer (Bio-Rad Laboratories, Hercules, 
CA, USA). The experiments were conducted in triplicate.

EdU staining assay

Cells were seeded into 96-well plates at a density of 6000 cells per 
well and treated with 0.02 % DMSO (control group) or corresponding 
drugs. EdU staining assays were performed to detect cell proliferation 
using the kFluor488-EdU detection kit (KeyGEN, Jiangsu, China), ac
cording to the manufacturer’s instructions.

Colony formation assay

MDA-MB-231 cells in logarithmic growth phase were seeded into six- 
well plates (1000 cells/well) and incubated overnight at 37 ◦C in a 5 % 
CO2 atmosphere. Cells were then treated with varying concentrations of 
EM-2, CBP, or their combination for 7 days. After fixation with 4 % 
paraformaldehyde for 20 min, colonies were stained with 0.5 % crystal 
violet solution (Sigma, USA) for 30 min. Following gentle rinsing and 
drying, colonies were counted and imaged.

Apoptosis analysis

Apoptosis was evaluated using an Annexin V-FITC detection system 
(KeyGEN Biotech) according to the manufacturer’s specifications. Cells 
were seeded in six-well plates at 2.0 × 105 cells/well and treated with 
drugs for 24 or 48 h. Cells were harvested, washed with PBS, and 
resuspended in binding buffer. Annexin V-FITC (5 μL) and propidium 
iodide (5 μL) were added, followed by 30-min dark incubation at 25 ◦C. 
Flow cytometric analysis was performed (Becton, Dickinson and Com
pany, VT).

Western blot

Cells were seeded in six-well plates (2.0 × 105 cells/well) and treated 
with drugs for 24 h. Proteins were extracted using RIPA buffer (Cell 
Signaling Technology, MA, USA). The lysate underwent centrifugation 
(12,000 × g, 15 min, 4 ◦C) to isolate protein supernatants. Protein 
concentration was quantified using a BCA assay (Sangon Biotech, 
China). Following SDS-PAGE separation and PVDF membrane (Milli
pore, Billerica, MA, USA) transfer, membranes underwent blocking with 
5 % non-fat milk (1 h, room temperature), primary antibody incubation 
(overnight, 4 ◦C), and secondary antibody treatment (1.5 h, room tem
perature). After washing with TBST, proteins were visualized using ECL 
substrate and a gel documentation system (UVItec Ltd., Cambridge, UK).

Xenograft experiments

Animal protocols were approved by the IACUC of Jinan University 
(IACUC-20,220,425–03). Female BALB/c nude mice (5–6 weeks, 
Guangdong Yaokang) were subcutaneously injected with MDA-MB-231 
cells (5 × 106 cells/mouse). When tumors reached approximately 100 

Fig. 6. EM-2 combined with CBP inhibits the AKT pathway and autophagic flux while inducing apoptosis. (A) MDA-MB-231 cells were treated with CBP (400 μM, 24 
h) with or without EM-2 (5 μM, 24 h), and Western blot analysis was performed to assess expression levels of AKT pathway–associated proteins. (B) MDA-MB-231 
cells were treated with CBP (400 μM, 24 h) with or without EM-2 (5 μM, 24 h), and the proteins related to autophagy were detected using Western blot analysis. (C) 
MDA-MB-231 cells were treated with EM-2 (0.25 μM), CBP (2.5 μM), or EM-2 (0.25 μM) + CBP (2.5 μM) for 7 days, followed by a colony formation assay. (D) MDA- 
MB-231 cells were treated with EM-2 (5 μM), CBP (400 μM), or EM-2 (5 μM) + CBP (400 μM) for 24 h or 48 h, and apoptosis rates were measured using flow 
cytometry, with DMSO (0.02 % maximum volume ratio) as the control. (E) Percentage of apoptotic cells (mean ±SD for three trials) (**P < 0.01, ***P < 0.001). (F) 
MDA-MB-231 cells were treated with EM-2 (5 μM), CBP (400 μM) or EM-2 (5 μM) + CBP (400 μM) for 24 h, and the apoptosis-related proteins were detected using 
Western blot analysis. (G) The inhibitory effect of CBP (200 μM, 24 h), with or without EM-2 (2 μM, 24 h), on MDA-MB-231 cells was evaluated using an EdU assay 
and DMSO (0.02 % maximum volume ratio) as the control. (H) MDA-MB-231 cells were treated with CBP (400 μM), EM-2 (2 μM), LY294002(10 μM), CQ (10 μM), 
CBP (400 μM) + LY294002(10 μM), CBP (400 μM) + CQ (10 μM), CBP (400 μM) + LY294002(10 μM) + CQ (10 μM) or CBP (400 μM) + EM-2 (2 μM) for 24 h, and 
MTT analysis was used to detect the cell viability (**P < 0.01, ***P < 0.001).
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mm3, mice were randomization into five cohorts (n = 6): (i) saline 
control (i.p.); (ii) EM-2 treatment (6 mg/kg, i.p.); (iii) CBP administra
tion (16 mg/kg, i.p.); (iv) combination therapy; and (v) reduced-dose 
combination (EM-2 6 mg/kg + CBP 3 mg/kg, approximately one-fifth 
of group iv concentration). Treatments were administered daily, and 
tumor dimensions [(length × width2)/2] and body weight were moni
tored every two days. Terminal procedures were performed on day 21, 
followed by the collection of tumor and organ specimens (liver, heart, 
lung, spleen, and kidney) for histological and immunohistochemical 
analyses.

Bioinformatics analysis

Gene expression data and clinical features of patients with breast 
cancer were retrospectively retrieved from publicly available datasets, 
such as the TCGA database (portal.gdc.cancer.gov). The mRNA expres
sion of AKT1 and autophagy-related genes in breast cancer was trans
formed into transcripts per kilobase million, and differential expression 
analyses were conducted using the Limma package (version 3.54.2)[55]. 
Survival analysis was performed using the survival package [56,57] and 
SurvMiner [58]. Optimal cutoff values were determined using the 

Fig. 7. EM-2 combined with CBP significantly inhibits tumor growth in a xenograft tumor model. (A) Animals were euthanized after 21 days of administration. (B) 
Tumors were excised and photographed following euthanasia. (C) Tumor weights in all groups were recorded after 21 days of administration (the mean ± SD of each 
group, *P < 0.05). (D) Tumor volumes and (E) body weights of mice in all treatment groups were measured every 2 days over 21 days. (*P < 0.05, **P < 0.01). (F) 
Immunohistochemical analysis of Ki67, p62, p-AKT Thr308, p-AKT Ser473, and CL-PARP in tumor specimens harvested from mice (original magnification, × 200). 
(G) Immunohistochemical hematoxylin and eosin (H&E) staining of heart, lung, liver, spleen, and kidney in each treatment group.
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surv_cutpoint function.

Statistical analysis

IBM SPSS Statistics 20, GraphPad Prism 7.0, and R 4.2.3. were used 
for statistical analysis. Significant differences were assessed using Stu
dent’s t-test and one-way ANOVA. Survival analysis was assessed using 
the Kaplan–Meier method and log-rank test. A P-value < 0.05 was 
considered statistically significant.
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