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A combined computational and experimental
strategy identifies mutations conferring resistance
to drugs targeting the BCR-ABL fusion protein
Jinxin Liu1, Jianfeng Pei 2* & Luhua Lai 2,3*

Drug resistance is of increasing concern, especially during the treatments of infectious dis-

eases and cancer. To accelerate the drug discovery process in combating issues of drug

resistance, here we developed a computational and experimental strategy to predict drug

resistance mutations. Using BCR-ABL as a case study, we successfully recaptured the clini-

cally observed mutations that confer resistance imatinib, nilotinib, dasatinib, bosutinib, and

ponatinib. We then experimentally tested the predicted mutants in vitro. We found that

although all mutants showed weakened binding strength as expected, the binding constants

alone were not a good indicator of drug resistance. Instead, the half-maximal inhibitory

concentration (IC50) was shown to be a good indicator of the incidence of the predicted

mutations, together with change in catalytic efficacy. Our suggested strategy for predicting

drug-resistance mutations includes the computational prediction and in vitro selection of

mutants with increased IC50 values beyond the drug safety window.
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Drug resistance is a global public health problem, especially
during the treatment of infectious diseases and cancer1.
According to the World Health Organization, drug

resistance will become the leading cause of death for humans by
2050. Developing new drugs to combat issues with resistance is
thus an urgent need2. Several mechanisms account for the
increase in drug resistance in cancer, such as drug inactivation,
drug-target alterations, drug efflux, DNA damage repair, cell
death inhibition, epithelial–mesenchymal transition, and cytokine
activity3,4. Among these mechanisms, mutations in target pro-
teins that alter drug interactions are the main drivers of
resistance5–7. Tumor cells appear to adapt to nearly all types of
drugs, including blockbuster drugs such as Gleevec and Iressa8.
Modifications of drug targets via conformational changes or
altered drug interaction sites, as seen in mutations in BCR-ABL
for Gleevec resistance and in EGFR for Iressa resistance, are
frequently reported9,10.

In clinical practice, the solution to drug resistance is to develop
and use new generations of drugs11. However, the development of
new generations of drugs takes time and resources, making drug
resistance an impediment to the use of newly marketed drugs.
Drug-resistance mutations can be found by genomic or single-cell
sequencing12,13. Sequencing methods can often identify existing
resistance mutations except for some subclones with a lower
number of clones14. Drug resistance has been associated with a
variety of cellular defects, including aberrant growth factor
receptor and tumor suppressor functions. Therefore, efforts to
predict drug resistance by analyzing the transcriptome and pro-
teome are ongoing15–17. However, these methods cannot predict
the type of mutation responsible for resistance. Azam et al.18

performed an in vitro screen of randomly mutagenized BCR-ABL
to obtain a comprehensive survey of the amino acid substitutions
that confer resistance, and Corbin et al.19 performed an extensive
experimental mutational analysis of sites that might alter the
sensitivity of the ABL kinase to imatinib, demonstrating a broad
range of possibilities for clinical resistance. These experimental
screenings were able to capture some of the drug-resistant var-
iants in the laboratory. Mutations may not only confer drug
resistance but also affecting the function and stability of proteins.
Therefore, evolutionary changes in fitness landscapes caused by
different mutations have also been studied20.

Computational methods provide another way to address drug
resistance, especially the identification of mechanisms of resis-
tance. For protein targets without known three-dimensional (3D)
structures, methods have been developed to predict resistance
mutations directly from the primary sequence21. The availability
of 3D structures of drug targets involved in diseases enables the
use of molecular modeling, molecular dynamics, and protein-
inhibitor docking methods to understand the mechanisms of
resistance22–25. In 1998, Rosin et al.26 randomly mutated the
residues of the HIV-1 protease that are involved in binding
peptide inhibitors. The binding free energy of the inhibitor and
the HIV-1 protease was estimated using a rough measure of
volume complementarity, and a few important mutation sites
could be predicted26,27. Hou et al.28 and Cao et al.29 used MM/
PBSA to calculate binding free energies based on molecular
dynamics and correctly classify several experimentally known
mutations. Using alchemical free-energy calculation to validate
resistance for eight FDA-approved kinase inhibitors across 144
clinically identified point mutations, Hauser et al. classified
clinically selected mutations into resistance mutations and sus-
ceptible mutations25. Liu et al. hypothesized that multi-site
resistance mutations are synergistic and proposed a procedure
that combines Bayesian statistical modeling and molecular
dynamics to investigate the drug-resistance mutations of HIV-1
protease and reverse transcriptase30, demonstrating the relevance

of multi-site resistance mutations. Methods using sequence
information and machine learning to predict possible resistance
mutations have also been reported31,32, which were confined by
the training set used.

Protein kinases play main regulatory roles in nearly every
aspect of cell pathways. BCR-ABL is a kind of protein kinase
expressed by a fusion gene caused by a specific genetic abnorm-
ality on the chromosome 22 of the leukemia cancer cell. With
long-term of BCR-ABL expression, eventually chronic myeloid
leukemia (CML) is produced33. This fusion gene encodes a hybrid
tyrosine kinase signaling protein that is always “on,” causing the
cell to divide uncontrollably. In the late 1990s, the small molecule
kinase inhibitor STI-571 (imatinib, Gleevec) was developed by
Novartis. Although it does not eradicate CML cells, it greatly
limits the growth of clonal tumors. In 2000, Kuriyan et al.
revealed the mechanism by which imatinib inhibits the mouse
ABL kinase domain34. With the extensive use of such targeted
drugs, resistance has emerged. The majority of resistant clones are
point mutations in the kinase domain of BCR-ABL18,35. New
generations of drugs, such as dasatinib, bosutinib, and nilotinib,
which are more potent than imatinib, were later developed and
marketed36,37. A specific drug, ponatinib, was developed to target
the “gatekeeper” mutation (T315I)38.

The drug-kinase binding patterns are different and can be
divided into seven categories: binding in the ATP-binding pocket
in active conformation (type I); binding in the ATP-binding
pocket in inactive DFG-in conformation (type I 1/2); binding in
the ATP-binding pocket in inactive DFG-out conformation (type
II); allosteric binding next to the ATP-site (type III); allosteric
binding not next to the ATP-site (type IV); bivalent binding
spanning two regions (type V); and covalent binding (type VI)39.
The inhibitors of ABL mainly fall into two types. Imatinib,
nilotinib, bosutinib, and ponatinib are type II inhibitors that
binds to the “DFG-out” inactive conformation of ABL kinase.
Dasatinib binds to the “DFG-in” active conformation of ABL
kinase in the ATP pocket.

Currently, computational methods have been used to under-
stand the mechanisms of clinically identified mutations. However,
computational methods that predict drug-resistance mutations in
advance are still lacking. In the present study, we report a suc-
cessful computational and experimental strategy to solving this
problem. As BCR-ABL has already accumulated a large number
of drug-resistance mutations, and multiple generations of inhi-
bitors are available, this protein offers a good system for testing
our computational strategy and experimental validation. The
strategy is further applied to EGFR mutations to validate its
universality.

Results
Computational strategy for de novo prediction of drug-
resistance mutations. Our method employs a GA to simulate
the evolution of drug-resistance mutations (EVER). A schematic
diagram of the computational strategy is shown in Fig. 1. We first
define the residues inside the drug-binding site and translate
them back into their respective DNA codons. After random
mutation of the DNA sequence, sense mutations are translated
into mutations at the amino acid level. Then the structures of the
mutated residues are modeled and minimized using a side chain
modeling program (the Scap program is used in the current
study)40,41. The drug molecule is then docked into the mutant
structure, and its binding free energy is estimated. The docking
program AutoDock Vina is used at this step42. We assume that
mutations in the binding pocket only affect the direct binding of
inhibitors; therefore, no long-range influences are considered.
Potential mutants are selected according to the scoring function
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(Eq. (1), see below) and subjected to the next round of evolution.
The process stops when some of the convergence criteria are
reached, including when the binding of the inhibitor to the
mutants becomes weaker than its binding to ATP, or when
the mutations have converged.

To screen the most probable drug-resistance mutations, we
needed to build a suitable scoring function. In general, mutants
with weakened drug-binding ability have potential resistance. At
the same time, the biological activity of the target protein should
be maintained after the mutation. In the ABL system, we docked
ATP in the ATP-binding site in the mutant structure and
calculated the root mean square deviation (RMSD) of ATP
compared to its original position in the wild-type (wt) protein. If
the ATP-binding position deviated from the original position
with an RMSD greater than 4 Å, the mutation was discarded. The
increase in the binding energy of ATP for the target should be
within 0.3 kcal/mol. Changes in the binding energy and
binding position of ATP were integrated into the scoring
function. To prioritize single mutations, the scoring function
was normalized to the number of mutations. The scoring function

we used for ABL was defined as

Resistance score ¼ ΔEdrug
mutation � ΔEdrug

WT

jΔEATP
mutation � ΔEdrug

mutationj � RMSDATP � Nummut

;

ð1Þ
where resistance score denotes the drug-resistance potential of the
mutation, ΔEdrug

mutation denotes the binding free energy of the drug

for the mutated target, ΔEdrug
WT denotes the binding free energy of

the drug for the wt target, ΔEATP
mutation denotes the binding free

energy of ATP for the mutated target, RMSDATP denotes the
RMSD of ATP caused by the mutation, and Nummut denotes the
total number of amino acid mutations.

In most previously reported drug-resistance studies, mutations
were directly introduced at the amino acid level to simulate
protein mutations. However, this may not reflect actual mutation
rates because the codons corresponding to each amino acid have
degeneracy. To solve this problem, we performed simulated
mutations at the NA level.

In cancer cells, the minimum mutation frequency is estimated to
be 0.0042% by sequencing analysis43. When cancers enter the
middle period, the possibility of drug resistance increases, likely due
to the increased frequency of mutations. In the mid-term,
the number of cancer cells in the body is estimated to be around
1013–14, and the number of actively proliferating cells is
approximately 108–9. The mutation rate of cancer cells entering
the middle period is 10−5 approximately44,45. Therefore, in our
algorithm, the number of offspring cells containing mutations is
expected to be around 103.

As the structural modeling and docking processes are
computationally expensive, in our study, the size of the genetic
population and the frequency of mutations were reduced to a
more computationally manageable level. We first randomly
generated 103 gene sequences, with each sequence producing
104 offspring. With a mutation rate of 10−4, the number of
mutations is around 103. For the simulations, we used 50 CPUs
(Xeon E5 v2. Core code: Ivy Bridge EP) and each simulation took
about 80–90 h.

EVER reproduces most of the clinically reported BCR-ABL
mutations. We carried out simulations using EVER for the first-
generation ABL inhibitor imatinib and the second-generation
drugs, nilotinib, and dasatinib. We first checked whether EVER
could be used to predict mutations conferring weakened binding
strength of the drug to the kinase while preserving the activity of
the enzyme by maintaining its ATP-binding energy. The binding
energy of ATP for ABL is stable during evolution, as constrained
by the scoring function, whereas the binding capacity of the
inhibitor for the ABL mutant decays quickly. Taking imatinib as
an example, the binding strength of the drug for the target
decreases over time (Fig. 2a), whereas the binding energy of ATP
for the target remained stable at −7.7 kcal/mol (Fig. 2b).

After the initial test, we then used EVER to predict drug-
resistance mutations for imatinib, nilotinib, and dasatinib. A
variety of clinical resistance mutations have been discovered after
each generation of drugs have been used (Fig. 3 and Supplemen-
tary Fig. 1). We compared resistance mutations that are
commonly observed in the clinic with those in the top 5% of
predicted results. The most commonly observed drug-resistance
mutations in the clinic can be found in the predicted results: the
distribution of resistance mutations in the clinic is proportional to
the predicted results. The most dominant resistance mutation
(T315I) accounted for the largest number of predicted results.

In the clinic, common resistance mutations to the first-
generation drug imatinib include T315I, Y253H, E255V, G250E,

DNA encodes residues in the binding pocket

min(EATP-Ei) ≤ 0

Translating the generated DNA sequences into 
amino acid sequences (around 104-105)

Mutant structure modeling and optimization

Sort by scoring function

Output mutation results

1,000 initial or top-ranking DNA sequences are 
used to generate 107 sequences with a random 

mutation rate of 10-4

Protein-ligand/ATP docking and 
binding energy calculation

Comparison of ATP poses in wt and 
mutant protein

DNA 
sequence pool

YES

NO

Fig. 1 Simulation process of EVER based on a mutation-only genetic
algorithm to predict drug-resistance mutations. First, residues inside the
drug-binding site are translated back into their respective DNA codons.
After random mutation of the DNA sequence, sense mutations are
translated into mutations at the amino acid level. Then the structures of the
mutated residues are modeled and minimized using a side chain modeling
program Scap. The drug molecule is then docked into the mutant structure
by AutoDock Vina, and its binding free energy is estimated. Potential
mutants are selected according to the scoring function defined in Eq. (1)
and subjected to the next round of evolution. The process stops when the
binding of the inhibitor to the mutants becomes weaker than its binding to
ATP or when the mutations have converged.
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and Q252H, which account for over 80% of all resistance
mutations46,47. EVER was used to successfully rediscover these
mutations. The three most common resistance mutations, T315I,
E255V, and Y253H, represent 57% of the top 5% of mutants, and
they also occurred in more than 70% of clinical resistance
mutations (Fig. 3a).

The second-generation drugs nilotinib and dasatinib represent
a large number of drug-resistance mutations in the clinic,
including T315I and Y253H46,48. For nilotinib, EVER was used
to rediscover the major mutations T315I, Y253H, and E255V,
which represent more than 95% of clinical resistance mutations
(Fig. 3b). For dasatinib, EVER was used to correctly predict
T315I, which occurred in more than 80% of clinically observed
drug-resistance mutations. Among the top 5% of predicted
mutants, almost all mutations occurred at the T315 site (Fig. 3c).

Comparison of predicted and clinically observed mutations
with predicted and clinically not observed mutations. We
demonstrated that EVER was used to correctly predict most of
the clinically observed drug-resistance mutations (p-c mutations).
At the same time, EVER was used to identify a number of pre-
dicted mutations that have not been clinically observed (p-nc
mutations). To develop a reliable method to predict resistance
mutations for new generations of drugs, we need to understand
why some of the predicted mutations have not been observed
clinically. In our simulation, for simplicity, we assumed that the
mutations in the drug-binding pocket do not affect protein
structure or stability. As some mutants may destabilize the pro-
tein, we first checked whether the mutant proteins maintain a
thermally stable structure by measuring both denaturation tem-
peratures using nanoDSF49,50 and secondary structures using
circular dichroism51. All mutants maintained their original sec-
ondary structures with similar denaturation temperatures to the
wt enzyme (Supplementary Figs. 2 and 3).

We then measured the binding constants of all the predicted
mutants with the corresponding drugs using isothermal titration
calorimetry (ITC) or microscale thermophoresis (MST) (Supple-
mentary Table 1 and Supplementary Figs. 4–8). For imatinib,
similar to the p-c mutants, all four p-nc mutants (Y253C, V299M,
I314V, and F382Y) showed weakened binding strength. For
dasatinib, two p-nc mutants (M318I and Y320D) also showed
weakened binding. The same phenomenon was observed for the
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nilotinib p-nc mutant F382Y. These findings confirm that
weakened drug binding alone is insufficient to identify clinically
observed resistance mutations (Fig. 4).

We further measured the half-maximal inhibitory concentra-
tion (IC50) values of the three drugs against the wt and mutant
ABL proteins. The inhibitory abilities of the drugs against the
corresponding p-c mutants were weakened with an increase in
the IC50 of at least 60-fold. However, the p-nc mutants did not
cause significant change in the IC50 (<15-fold) (Fig. 5, Supple-
mentary Table 1 and Supplementary Figs. 9–13). Considering that
the effective safe plasma concentrations for imatinib, nilotinib,
and dasatinib are 1000–3000 ng mL−1, <1500 ng mL−1, and
2.5–50 ng mL−1 52–54, respectively, the p-nc mutants can all be
inhibited by increasing the drug concentration within the safety
window.

Inhibitory activity depends not only on the binding of the drug
to the target enzyme but also on enzyme catalysis. We
experimentally measured enzymatic parameters (Supplementary
Table 1). The catalytic efficacy (kcat/KM(ATP)) of all clinically
observed resistance mutations tested increased less than fourfolds
(Y253H, E255V, and T315I). Most of the mutations had a higher

kcat and a slightly altered KM(ATP) compared to wt. In contrast, the
p-nc mutations showed broad catalytic efficacy. Among the eight
mutants tested, four of them had higher catalytic efficacy by more
than sixfold compared to wt (Fig. 6 and Supplementary Figs. 14
and 15), which may not be tolerated by cells.

Based on these computational and experimental results, we
propose a stepwise approach for identifying drug-resistance
mutations: Step 1: using EVER to identify potential resistance
mutations; Step 2: experimentally testing whether the predicted
mutant proteins are stable and have catalytic efficacy similar to
the wt enzyme; Step 3: measuring the IC50 values of the drugs
against the mutants from step 2 and compare with their safe dose
windows. If the IC50 is higher than the highest safe dose, than the
mutant is most likely drug-resistant.

Prediction of bosutinib and ponatinib resistance mutations.
We also predicted resistance mutations for bosutinib and pona-
tinib (Fig. 7). Bosutinib is a second-generation drug similar to
nilotinib and dasatinib that can fight a variety of BCR-ABL
resistance mutations in addition to T315I. Ponatinib is the only
third-generation BCL-ABL drug currently clinically available.
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(KD values for WT are all set to be 1). n= 3 biologically independent experiments.
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Although ponatinib is known to be associated with severe adverse
vascular events, it is still an approved therapy55.

Bosutinib works on a large number of single-point resistance
mutations induced by the first-generation drugs in the absence of
the gatekeeper mutation T315I. The in vitro inhibitory activity of
bosutinib is in the sub-nanomolar range56. The clinical dosage
is between 100 and 500 mg/day, corresponding to a plasma
concentration between 31.4 and 150 ng mL−1 57. We carried out
simulation using EVER with the wt kinase for bosutinib. In the
prediction results, we found a clinically observed L248V drug-
resistance mutation and the T315I gatekeeper mutation (Fig. 7a).
Subsequently, we performed KD and IC50 measurements on
bosutinib using WT and mutants of L248M (p-nc), T315I (p-c).
Both of them follow the rules that we found from imatinib,
nilotinib, and dasatinib studies (Supplementary Figs. 8 and 13).

Ponatinib works on all single mutations induced in response
to the first- and second-generation drugs, and is recommended
for treating patients with the T315I mutation58. The in vitro
inhibitory activity of ponatinib is in the sub-nanomolar range.
The clinical dosage is between 15 and 45 mg/day, corresponding
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Fig. 6 Half-maximal inhibitory concentrations and enzyme kinetic
constants of ABL mutants and drugs. All data are normalized to the
catalytic efficacy of wt ABL and the corresponding half-maximal inhibitory
drug concentrations (red star). The drugs generally have high IC50 values
against the p-c mutants (orange), while the IC50 values against the p-nc
mutants (blue) are similar to the wt enzymes.
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to a plasma concentration of between 14 and 110 ng mL−1 55.
Unlike the first- and second-generation drugs, no single strong
resistance mutations in the kinase domain that directly evolved
from the wt enzyme were found after ponatinib treatment. Most
of the reported compound mutations include T315I (as one site)
or mutations that developed from T315I (e.g., I315M)59.
Molecular dynamics showed that the binding of ponatinib to
ABL causes conformational changes60. It was also suggested that
the binding of ponatinib to ABL may be driven by entropic
changes61, making ponatinib a difficult case for EVER, as it is
unable to handle large conformational changes (Fig. 7b). We
carried out two EVER simulations—one for the wt kinase and the
other for the T315I mutant—to test whether EVER could be used
to yield meaningful results for ponatinib.

The complex structures of ponatinib bound to wt BCL-ABL59

or the T315I mutant62 (in which the kinase is in the inactive
conformation) were used in the simulations. For the simulation
with wt protein, after three rounds of evolution, unlike the
simulations for imatinib or dasatinib, no dominant mutations
developed (Supplementary Fig. 16). This finding is in accordance
with the fact that ponatinib works against almost all single
mutations derived directly from wt ABL. In the simulation for the
T315I mutant, the evolutionary process converged quickly during
the second generation. The single-site drug-resistance mutation,
I315M, dominated the results. The IC50’s of ponatinib to I315M
and wt ABL was 4 μM and 0.44 nM, respectively, that is about
7000-fold weakened inhibition of the drug to I315M compared to
wt ABL (See Supplementary Table 1 for detailed data). I315M is
the only strong single-site mutation resistant to ponatinib in the
clinic to date38 (Fig. 5e). As the mRNA codon for Thr315 in ABL
is ACU, two mutations are needed to produce an AUG (Met),
which explains why T315M is not easily observed in simulations
with the wt kinase. In contrast, only a single mutation will change
an AUU (Ile) into an AUG (Met); thus, simulations starting from
T315I can easily produce the I315M mutation. As the current
version of EVER was designed to search for strong single-site
mutations, compound mutations resistant to ponatinib will be
studied in the future.

EVER application in other systems. We further tested EVER in
another kinase system: the tyrosine kinase domain of epidermal
growth factor (EGFR). As our current scoring function was
designed for kinase inhibitors, for systems other than kinase, the
scoring function will need to be tuned. EGFR mutations are the
most common drivers of non-small cell lung carcinoma63. The
main mutations are codon deletions at positions 746–750,
changes in the ATP-binding angle, and the L858R point muta-
tion, which enhances kinase activation. EGFR inhibitors were

developed for the above EGFR mutations, such as gefitinib, afa-
tinib, dacomitinib, and osimertinib. As the last three inhibitors
are covalent inhibitors, we chose gefitinib, a reversible competi-
tive inhibitor to test EVER. We used EVER to predict resistance
mutations for gefitinib using the same computational settings and
parameters as we did for BCR-ABL inhibitors. EVER successfully
predicted the common clinically observed resistance mutations of
G719R, G796C/D/R/S, and C797S (Fig. 8). This shows that our
scoring function is reasonable, and the algorithm has certain
universality.

However, the gatekeeper mutation, T790M, in the EGFR
system, did not dominate in the results. It was found that the
resistance mechanisms triggered by T315I in ABL and T790M in
EGFR are different. The T315I mutation blocks the binding of the
drug to the target protein by the longer side chain of Ile, while
T790M achieves drug resistance by altering the ATP binding
affinity and catalytic efficiency of EGFR64. As EVER currently
cannot handle changes in catalysis, it is understandable that
T790M did not show up.

Discussion
In this study, we have developed a computational algorithm,
named EVER, to predict drug-resistance mutations. EVER con-
sists of three main steps—defining the binding-site sequence,
modeling, and docking of the protein-inhibitor, and scoring—to
simulate the emergence of drug-resistance mutations. For protein
targets with the structure of the protein–drug complex available,
EVER can be applied to predict potential mutations induced by
the drugs. There were previous studies on BCR-ABL drug resis-
tance mutations by experimental screening or by computational

Fig. 7 Distribution of predicted bosutinib resistance mutations for patients with wt ABL and of ponatinib resistance mutations for patients with
the T315I mutation. a L248V is a relatively unique clinical resistance mutation, and T315I is the gatekeeper mutation. b M290K/V299M are usually
accompanied by multiple site mutations. Most mutations in the “other” type only occurred once in the three independent runs. n= 3 biologically
independent experiments.

Fig. 8 Distribution of predicted gefitinib resistance mutations for
patients with wt ABL. C797S, G796C/D/R/S, and G719R are the major
mutation types clinically observed. n= 3 independent simulations.
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retrospective analysis (summarized in Supplementary Table 2).
However, computational methods to predict BCR-ABL drug-
resistance mutations in advance were not reported. EVER can de
novo predict drug-resistance mutations without any training
process, and can be used to predict drug-resistance mutations for
newly marketed drugs.

The scoring function can be tailored for different target sys-
tems. For protein kinase ATP competitive inhibitors, we designed
the scoring function to consider the binding energies of both the
drug and ATP to the target, as well as the binding pose of ATP.
The rationale of constructing this scoring function is the fol-
lowing: (1) Drug resistance mutations should weaken drug
binding. However, only the differnce in drug binding to mutant
and wt kinase (the nominator term in the scoring function)
cannot guarantee that the mutant kinase remains active (thus be
clinically observable). (2) In order to make sure that the kinase
remains active after mutation, we introduced the denominator
term by considering the difference between ATP and the drug
binding, as well as the binding pose change of ATP. We have tried
to only use the drug binding energy difference term as the scoring
function and many of the top-ranking mutants cannot bind ATP
correctly (data not shown).

The goal of evolution is to weaken drug binding while main-
taining constant ATP binding. This kind of scoring function
design can be generally applied to inhibitors that compete with
cofactors for binding. Our results indicate that the scoring
function designed works effectively. The computational evolu-
tionary process reached its termination by three of four rounds of
mutant generation.

In the ABL system that we tested, EVER was able to reproduce
most of the strong single-site mutations for all three generations
of drugs that have been used in the clinic. We further carried out
experimental studies to understand why some of the predicted
mutants were not observed in the clinic and to define the
characteristics of the predicted and clinically observed mutations.
We found that clinical mutations do not obviously change the
activities of the enzymes (within threefold). Predicted mutations
that significantly increase the activities of enzymes have not been
observed in the clinic, which is consistent with reports that the
activities of enzymes in living organisms are strictly regu-
lated65,66. We have also found that simply decreasing drug
binding strength is not enough to produce drug resistance, as the
enzyme activity change also needs to be considered. To ensure
that the enzyme is active, the ATP-binding strength must be
calculated at the same time. Currently, it is not practical to
include computations on enzyme catalysis, as these calculations
are too computationally expensive. Our suggestion is to make
predictions without considering enzyme catalysis first and then
test the predictions experimentally in vitro. In the ABL system,
we found that the IC50 value is a good predictor of clinical
mutants.

The current version of EVER can be used to simulate single-
point mutations. For multi-point mutations, scoring function
need to be tuned and conformation changes should also be
considered. EVER is not suitable for non-competitive inhibitors
or allosteric inhibitors67, or inhibitors targeting downstream
signaling nodes68. As EVER is based on molecular docking and
restricted by the computing power, only the amino acid residues
that directly interact with drugs can be predicted and analyzed.
Amino acid mutations that are far away from the interaction
region cannot be treated. The enzyme catalytic process is also not
considered in the current version of EVER. However, with rapid
increase of computing power and the development of more rapid
and accurate simulation methods for conformation sampling,
binding free energy calculations, and enzyme catalysis, we expect
more accurate predictions of drug-resistance mutations in the

future. Target selectivity of drugs is a considerable issue as many
kinase inhibitors are promiscuous. Understanding the regulatory
mechanisms of disease-related molecular networks to which the
target belongs also provides key information for more accurate
predictions of drug-resistance mutations.

Methods
Generation of mutants according to a specific mutation ratio. We used a
genetic algorithm (GA) algorithm as the mutation strategy for offspring generation.
In the first generation, 103 gene sequences were randomly generated; each sequence
produced 104 offspring with a mutation rate of 10−4. As the structural modeling
and docking processes are computationally very expensive, the size of the popu-
lation and the frequency of mutations were reduced to a computationally man-
ageable level. In the GA algorithm, population size was controlled by deleting the
lowest-ranking individuals, allowing only the top 5% of individuals containing
mutations. If the eligible sequence number exceeded 1000, then the top 1000
mutant sequences were selected. The original sequences with the highest scores
were used to fill the population if the eligible sequence number was less than 1000.
The DNA sequence of each individual was translated into a protein sequence,
which was then subjected to protein structure modeling and molecular docking.
The final evaluation score of a mutant was calculated, according to Eq. (1). The
genetic evolution was considered complete when the top-ranked mutant yielded a
lower binding affinity to the drug than to ATP.

Side chain packing calculations. We used the program Scap (http://honig.c2b2.
columbia.edu/scap/) to model the structures of the protein mutants40,41. A Perl
script was used to call the Scap module, with the aim to convert the mutated
residues into the corresponding variation in protein structure. Scap is used to build
side chain conformations using its coordinate rotamer libraries. As we do not want
the mutation to change the protein structure significantly, we chose an AMBER
force field with a heavy atom model and a mixed side chain rotamer library. The
other parameters were set to the default values, which allowed a relatively stable
mutant protein conformation. We used the Scap program to generate structures of
thousands of residue mutations.

Protein-drug docking. We used the AutoDock Vina program (http://vina.scripps.
edu/index.html, version 1.1.2) to build the drug-mutant and ATP-mutant struc-
tures and calculate the binding scores69. Default AutoDock Vina parameters were
used. The superposition module in Schrödinger70 was used to calculate the RMSD
of ATP in the crystal structure and in the mutants.

ABL structures. During the simulation, we used different ABL crystal structures
for different compounds. The structure of ABL complexed with ATP was derived
from the ATP-peptide conjugate complex (PDB code: 2G1T) with the protein in an
inactive conformation71. The structure used for imatinib was 2HYY with the
complexed protein in an inactive conformation72. The structure used for nilotinib
was 3CS9 with the complexed protein in an inactive conformation73. For dasatinib,
we used 2GQG with the complexed protein in an active conformation48. Ponatinib
was designed for the T315I mutant. It avoids steric hindrance with the side chain of
isoleucine. 3IK3 (with a T315 mutation) complexed with ponatinib was also used.
The mutant protein 3IK3 adopts an inactive conformation62. The wide-type pro-
tein structure in this case was obtained by mutating I315 back to T315.

EGFR structures. The structure of EGFR tyrosine kinase domain in complex with
ATP was derived from the thiophosphoric acid O-[(adenosyl-phospho)phosphor]-
S-acetamidyl-diester complex (PDB code: 2GS6) with the protein in an active
conformation74. The structure used for gefitinib was 4I22 with the complexed
protein in an active conformation75.

Compounds and substrates. Imatinib (MW493.6), nilotinib (MW529.52), dasa-
tinib (MW488.01), and ponatinib (MW532.56) were purchased from Selleck
(https://www.selleck.cn/). The substrate peptide was obtained from GL Biochem
(Shanghai) Ltd. and had a sequence of Lys-Lys-Gly-Glu-Ala-Ile-Tyr-Ala-Ala-Pro-
Phe-Ala-NH2 (Directory peptide Cat # 86721).

Expression and purification of ABL and mutants. The kinase domains of human
c-ABL (residues 222–500, NM_005157.5) were subcloned into the NdeI and XhoI
restriction sites of the pET-28a vector76. The plasmids were transformed into Escher-
ichia coli BL21 (DE3) cells, plated on LB agar containing kanamycin (50 μgmL−1), and
grown overnight at 37 °C. The next day, the colonies from the plates were resuspended
in expression media (LB agar containing kanamycin, 50 μgmL−1). Cultures were grown
to an OD600 of 1.2 at 37 °C and cooled for 1 h with shaking at 16 °C prior to induction
for 22 h at 16 °C with 0.1mM IPTG. Cells were harvested by centrifugation at 7000 × g
at 4 °C for 15min and stored at −80 °C. The bacterial pellet was resuspended in Buffer
A [50mM Tris (pH 8.0), 500mM NaCl, 20mM imidazole] for immediate purification
using nickel ion affinity chromatography. Elution of the protein from the column was
achieved using a Buffer B gradient [50mM Tris, 500mM NaCl, 500mM imidazole
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(pH 8.0)], which increased from 0% to 100% over 15min. The eluted protein was
concentrated to 2mL and subjected to gel filtration using an S200 column77,78. The
buffer used for the gel filtration was Buffer C [50mM Tris, 500mM NaCl (pH 8.0)].
The protein was eluted at 55min. The purity of the protein was verified by SDS-PAGE.

For the mutants, primers were designed based on the predicted mutations and
synthesized by GENEWIZ. Mutations were made using the Fast Site-Directed
Mutagenesis kit from TIANGEN, according to the manufacturer’s instructions, and
verified by DNA sequencing. The mutant proteins were expressed and purified
following the expression and purification of the wt protein.

In vitro kinase inhibition assay. To assess the ability of the drug to inhibit the wt
and mutant kinases, we used the ADP-Glo Kinase Assay kit from Promega79,
which measures the amount of ADP produced in the reaction. The inhibition rates
of the drugs at different concentrations were calculated by comparing the amount
of ADP produced with and without the drug. Data were analyzed using the Hill1
model in the OriginLab2018 software package.

In vitro enzyme activity assay. ITC experiments were carried out using an
ITC200 instrument (Microcal Inc.). ITC has been demonstrated to directly mea-
sure the kinetics and thermodynamic parameters (kcat, KM, ΔH) of enzymatic
reactions80. A one-step method was used to measure the enzymatic parameters.
The BCR-ABL concentration was in the nanomolar range, with the ATP/substrate
concentration at least three orders of magnitude higher than the enzyme con-
centration and above the KM [BCR-ABL (10 nM) and substrate (1 mM) in the cell,
and ATP (1 mM) in the syringe].

The thermal change (Q) is proportional to the reaction enthalpy (ΔH) and the
number of moles of product (n), whereas the moles of product equal the total
volume (V) multiplied by the concentration [P]:

Q ¼ n � ΔH ¼ V � ½P� � ΔH: ð2Þ
According to Eq. (3), the ΔH of the reaction can be obtained by integrating the
curve of the Method 1 experiment

ΔH ¼
R1
t¼0

dQ
dt dt

V ½S�t¼0

: ð3Þ

The rate of product formation (dP/dt) is related to the heat (dQ/dt) generated at
the same time by the following relationship

v ¼ dP
dt

¼ 1
V � ΔH � dQ

dt
: ð4Þ

Then the data were fitted to the Michaelis–Menten equation. Data were analyzed
using the enzyme activity model in the Origin software package provided with the
instrument.

Quantitative measurement of binding constants for kinase mutants and
inhibitors. ITC and MST were used to measure the binding constants of the drugs
to the protein targets81,82. The binding constants of the drugs to ABL and its
mutants were measured using ITC whenever possible. ITC experiments were
carried out using an ITC200 instrument (Microcal Inc.). Both the final drug
solution and protein solution contained 2% DMSO. ITC measurements were
performed at 30 °C in 20 mM MES (pH 6.4), 50 mM NaCl, and 2% DMSO. We
diluted the drug solution (400–500 μM) into the protein solution 10-fold. Data
were analyzed using the single binding-site model in the Origin software package
provided with the instrument.

As the binding of nilotinib and ponatinib to ABL produced nondetectable levels
of heat, their binding was measured using MST83,84. MST experiments were carried
out using a Monolith NT.115 system (nanoTEMPER) in phosphate-buffered saline
buffer. The His-tagged dye was incubated with the protein for 30 min, and the
mixture was then centrifuged at 15,000 × g for 10 min at 4 °C. Different drug
concentrations were mixed with the proteins at a 1:1 (v/v) ratio and transferred to
Monolith NT.115 capillaries. Data were analyzed using MO.Affinity analysis
software.

Statistics and reproducibility. The computational simulation for each drug was
repeated independently for three times. The top 5% ranked mutants were selected
for statistic analysis. The protein denaturation temperature, secondary structure,
binding constant (KD), and half-inhibition concentration (IC50) data were all
measured independently for three times.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data are available in the main and supplementary files. Source data are available in
Supplementary Data 1. Data for all figures, Supplementary figures, and computational
output, can also be downloaded at https://github.com/PKUMDL-AI/EVER/tree/master/data/
.

Code availability
The Scap program is available from:http://honig.c2b2.columbia.edu/scap/. The
AutoDock Vina program is available from http://vina.scripps.edu/index.html, version
1.1.2 The code for EVER algorithm is available from https://github.com/PKUMDL-AI/
EVER/tree/master/code/.
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