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Occupations and their impact 
on the spreading of COVID‑19 
in urban communities
Marian‑Gabriel Hâncean1*, Jürgen Lerner2,3, Matjaž Perc4,5,6,7, Iulian Oană1, 
David‑Andrei Bunaciu1, Adelina Alexandra Stoica1 & Maria‑Cristina Ghiţă1

The current pandemic has disproportionally affected the workforce. To improve our understanding of 
the role that occupations play in the transmission of COVID-19, we analyse real-world network data 
that were collected in Bucharest between August 1st and October 31st 2020. The data record sex, 
age, and occupation of 6895 patients and the 13,272 people they have interacted with, thus providing 
a social network from an urban setting through which COVID-19 has spread. Quite remarkably, we 
find that medical occupations have no significant effect on the spread of the virus. Instead, we find 
common transmission chains to start with infected individuals who hold jobs in the private sector and 
are connected with non-active alters, such as spouses, siblings, or elderly relatives. We use relational 
hyperevent models to assess the most likely homophily and network effects in the community 
transmission. We detect homophily with respect to age and anti-homophily with respect to sex and 
employability. We note that, although additional data would be welcomed to perform more in-depth 
network analyses, our findings may help public authorities better target under-performing vaccination 
campaigns.

The complexity of today’s society imposes difficulties in predicting and controlling the spread of epidemics1. 
For example, the coronavirus disease 2019 (COVID-19) transmission has been affected by critical factors such 
as human mobility flows2,3, sociodemographic characteristics of the human populations4,5, and the structure of 
social interactions6. Notably, researchers have long acknowledged that the spread of diseases has a networked 
structure: infections move from one individual to another, patterned by human connections7. Therefore, many 
studies have aptly brought forward network science to overcome many of the challenges imposed by the spreading 
processes of infections8,9. Understandably, scientists have employed network theoretical insights, approaches, and 
measurements10 to understand and predict infectious diseases (epidemic outbreaks11, spreading of infections, 
or design immunization strategies12). Consequently, our paper employs tools procured from network science to 
examine the role of occupations and work environments in patterning the circulation of COVID-19.

COVID-19 infection transmission occurs in various probabilities between the individuals embedded in social 
networks (via direct close contact through aerosols or droplets)13. Generally, COVID-19 transmissibility may 
be understood and modelled by exploring the topology of the networks carrying the infection14. For instance, 
individual infectiousness is often highly skewed, illustrating asymmetric individual-level network degree distribu-
tions or super-spreading15. Thus, the configurations of social networks significantly impact the relative hazard of 
infection (a person is tested positive)6. Simultaneously, the attributes of the individuals also play an essential role 
in the disease diffusion. Therefore, we advance statistical models blending network-related variables (e.g., popu-
larity, reciprocation, degree-centrality, etc.) and individual features (such as occupational features) as predictors.

Current evidence suggests that the COVID-19 disease is not uniformly distributed across occupational groups 
and, implicitly, across the members of a community16. Occupational inequalities in exposure to COVID-19 infec-
tions mark an unequal distribution of infection cases17 across various groups of employees. In the workplace 
settings, the workers’ degree of physical proximity to their colleagues and customers18 has been used to gauge 
the risk of coronavirus exposure. Based on medical records, some researchers have shown that occupations with 
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a high testing frequency (health personnel, teachers) have a low frequency of positive tests19. Remarkably, the 
existing studies addressing the occupational risk to COVID-19 infections are not built on direct data on infec-
tion rates at occupational level18 or are only following case studies20. Strikingly, to our knowledge, studies to 
estimate the impact of occupations or work settings in COVID-19 transmission throughout social networks at 
the community level are missing. In this paper, we analyse real-world individual-level COVID-19 transmission 
network data, officially recorded, in Bucharest (Romania), between August 1st and October 31st (2020), by the 
Department of Public Health Bucharest. We use this rare set of network data to assess whether individuals’ status 
in the labour market (whether they work) and supra-individual factors such as work environment (where they 
work) affect COVID-19 human-to-human network spreading in urban communities. We apply a new family of 
statistical models (relational hyperevent models6,21–24) to specify and estimate the relative hazard that an infected 
individual nominates a set of social contacts (that is alters whom someone previously interacted with) as potential 
infection origin, given his/her occupation and work setting. We control for covariates (sex and age) and various 
network effects (network configurations) in these models. We find that medical occupations have no significant 
effect on the community spread of the virus. Instead, we note common transmission chains to start with infected 
individuals who hold jobs in the private sector, and who are connected with non-active alters, such as spouses, 
siblings, or elderly relatives. In these chains, we also observe that people tend to nominate peers of similar age, 
females rather nominate males, and active people are inclined to nominate non-active individuals (children, 
university students, pensioners).

The relevance of COVID‑19 network studies for vaccination strategies.  Understanding the role 
of occupations and workplace settings in the network-wise spread of COVID-19 may have several implications. 
First, it informs decision-makers to tailor the vaccination campaign deployments better. Second, it contributes to 
the discussions on estimating the differential occupational risk of COVID-19, given the current scarcity of direct 
empirical data. Third, it may support managers in organizations to decide whether to bring the employees back 
to work or allow “work from home policies” (where applicable) during emerging waves with high transmission 
potential. Fourth, analysing real-world COVID-19 transmission network information may support the develop-
ment of new network vaccination models.

Public authorities have implemented large-scale non-pharmaceutical interventions (NPIs) to contain the virus 
spread25. These measures (e.g., travel bans, social (physical) distancing, school closure, remote work, lockdowns) 
have been essential for fighting against the pandemic26. Expectedly, NPIs significantly affected the structure of 
human interactions27 and, subsequently, reduced disease transmission28. Unfortunately, NPIs have come with 
substantial social, economic, and health costs. NPIs seem to have differently impacted the labour market (regard-
ing unemployment and job classes)18 and ethnic groups16, creating new social vulnerabilities or deepening old 
ones17. Additionally, recent evidence has stressed that remote work is possible for only a limited number of jobs 
(this number does not exceed 40%29). Given the challenges raised by the NPIs and the tremendous pressures 
for fully re-opening the economies, a massive global interest coagulated around the possibility of vaccination30. 
Immunization by vaccination is expected to be the most important intervention for the containment of the 
COVID-19 pandemic. Recent evidence claims that COVID-19 infections are less likely in vaccinated people31. 
However, (herd) immunization through vaccination needs time to unfold due to vaccine hesitancy, supply-chain 
obstacles, and provider shortages32. To achieve global vaccine immunity, national governments and international 
bodies need to address various challenges. Namely, ensuring enough doses are available worldwide and equitably 
distributed, securing access to vaccines for vulnerable populations, and implementing an effective deployment 
of COVID-19 vaccines33.

Mass vaccination has proved efficient in achieving herd immunity for the case of many infectious diseases 
(meningitis, influenza, yellow fever)34. Nevertheless, vaccine hesitancy or opposition represents a severe threat to 
mass vaccination campaign deployments. The interplay between behaviour dynamics and social network topol-
ogy may yield essential effects on the diseases spread35. Actually, scientists and practitioners have documented 
and developed alternative strategies to mass vaccination using either observational studies or simulations7. One 
of these strategies is the network vaccination36: the individuals who should be immunized are not at random 
but selected by structural (topological) properties of the social networks. Specifically, researchers have advanced 
various variants of network vaccination: targeted vaccination (immunization schemes based on the nodes’ 
connectivity37), acquaintance vaccination (the friends of a randomly selected set of individuals are vaccinated38), 
random walk vaccination (immunization is performed by randomly visiting a social network, especially in assor-
tatively mixed networks39), or common acquaintance vaccination (the common friends of randomly selected 
individuals are immunized40).

Network vaccination strategies may represent an alternative solution to mass vaccination, especially for 
communities or countries wherein the immunization coverage rate by the vaccine (the percent of the target 
population that has received the last recommended dose) is below the projected target. An example is Romania, 
an Eastern European country accounting for 4.3% of the EU-27 population, i.e., 19.4 million (2019), and having 
a population density of 83 per square kilometres (2018). As of July 21st, 2022, Romania was next to last among 
EU/EEA countries concerning full vaccination uptake (the completion of the primary vaccination course), with 
42.3% of the population (≥ 18-year-old)41. A similar situation was reported for Bucharest, the country’s capital: 
the most recent official reports show that, within the adult population, the full vaccination uptake was 34.9% (as 
of August 5th, 2021), and the partial vaccination was 49.6% (as of February 5th, 2022)42. Hence, understanding 
the early stage of COVID-19 spread through social networks may inform local authorities to better respond to 
problematic situations at later stages (e.g., the low levels of vaccination).
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Results
Our findings show that individuals’ status in the labour market and the work environment affect the COVID-19 
spreading in the community. We have records of 6895 patients (referees) and their social contacts (13,272 refer-
rals). Table 1 renders descriptive statistics for the variables used in the statistical models: the type of the sector 
(public/private), medical sector affiliation (yes/no), status in the labour market (active or not active), and age 
classes with relevancy for the labour market (minors, adults, and pensioners).

In our dataset, most of the referees (referrals) are working in the private sector. People holding jobs in the 
medical sector (doctors, nurses, medical managers, etc.) account for 2.5% (referees) and 0.2% (referrals) in 
the total sample. A large majority of the referees (85.5%) and referrals (63.5%) are “active in the labour mar-
ket” (either employed or in search for work, that is employable). We consider minors (less than 18 years old), 
university students, and pensioners to be not active (neither working nor in search of work). The average age 

Table 1.   Descriptive statistics for variables used in the statistical modelling. *Within a total of 20,167 unique 
cases (6895 referees and 13,272 referrals), 7130 are unique cases with full information (2223 referees and 4907 
referrals) on the variables of interest (age, sector, medical sector affiliation, and status on the labor market). 
**Public = state-owned organizations, Private = private companies. ***Employable = not working but eligible to 
work.

Categories by variables of interest* Referees Referrals

Unemployed (including unemployable)

Children (< 7-year-old) 107 (1.6%) 1388 (10.5%)

Pensioners (retired) 537 (7.8%) 1029 (7.8%)

University students 22 (0.3%) 2 (< 0.0%)

School students 331 (4.8%) 2345 (17.7%)

No formal job at the moment of the interview 49 (0.7%) 5 (< 0.0%)

Total unemployed (including unemployable) 1046 (15.2%) 4769 (36.0%)

Valid data (employed and unemployed) 2225 (32.3%) 4907 (37.0%)

Missing data 4670 (67.7%) 8365 (63.0%)

Total referees 6895 (100.0%) 13,272 (100.0%)

Employed by type of sector**

Private 757 (11.0%) 96 (0.7%)

Public 422 (6.1%) 42 (0.3%)

Total employed by type of sector 1179 (17.1%) 138 (1.0%)

Valid data (employed and unemployed) 2225 (32.3%) 4907 (37.0%)

Missing data 4670 (67.7%) 8365 (63.0%)

Total referees 6895 (100.0%) 13,272 (100.0%)

Working in the medical sector

Yes 175 (2.5%) 22 (0.2%)

No 1013 (14.7%) 120 (0.9%)

Total medical sector affiliation (Yes + No) 1188 (17.2%) 142 (1.1%)

Unemployed and unemployable 1046 (15.2%) 4769 (36.0%)

Valid data 2234 (32.4%) 4911 (37.0%)

Missing data 4661 (67.6%) 8361 (63.0%)

Total referees 6895 (100.0%) 13,272 (100.0%)

Active for the labor market (employed and employable)***

Yes 5896 (85.5%) 8432 (63.5%)

No 997 (14.5%) 4764 (35.9%)

Total active for the labor market (Yes and No) 6893 (≈100.0%) 13,196 (99.4%)

Valid data 6893 (≈100.0%) 13,196 (99.4%)

Missing data 2 (< 0.1%) 76 (0.6%)

Total referees 6895 (100.0%) 13,272 (100.0%)

Age groups (relevant categories for the labor market)

Minors (< 18 y.o.) 436 (6.3%) 3733 (28.1%)

Adults 5920 (85.9%) 8434 (63.5%)

Pensioners (retired) 537 (7.8%) 1029 (7.8%)

Total age groups 6893 (≈100.0%) 13,196 (99.4%)

Valid data 6893 (≈100.0%) 13,196 (99.4%)

Missing data 2 (< 0.1%) 76 (0.6%)

Total referees 6895 (100.0%) 13,272 (100.0%)



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14115  | https://doi.org/10.1038/s41598-022-18392-5

www.nature.com/scientificreports/

of the referees is 40.6 (S.D. = 15.2, Min = 0, Max = 97, n = 6,892) while the average age of the referrals is 33.6 
(S.D. = 21.0, Min = 0, Max = 95, n = 13,196). We follow the International Standard Classification of Occupations 
(ISCO-08) structure43 and give details about the jobs of the referees and referrals as Supplementary Information 
(Tables S1–3).

Table 2 reports the findings corresponding to the fit statistical models: the covariate model (the model specified 
solely based on node-level covariates), the network model (the model that includes only network-level variables), 
and the joint model (the model including both covariate and network effects). A detailed description of these 
models is available in the "Methods" section.

Referring to the joint model, we find that age has a positive effect on the probability of appearing as a referee 
(age of the referee). That means older persons have a higher risk of being tested positive (HR = 1.612, 95%CI 
[1.496–1.737]). On the other hand, age has no significant effect on the probability of being nominated as a contact 
(average age of the referrals) (HR = 1.020, [0.960–1.083]). However, the average age difference between the referee 
and the referrals has a decreasing effect (age difference) (HR = 0.521, [0.477–0.568]). This finding points to the 
age-homophily of contact-nomination events: older positive cases tend to nominate older contacts, and younger 
positive cases tend to nominate younger contacts. We also find that females are more likely to be positive cases 
(sex of the referee) only when we do not control for network effects, and more likely to be nominated as contacts 
(sex of the referrals) (HR = 1.113, [1.028–1.204]). Nevertheless, controlling for other effects, we find that it is anti-
homophily with respect to sex (sex difference) (HR = 1.873, [1.738–2.020]). That means females are more likely 
to nominate males and vice versa. This finding may suggest that spouses nominate their partners as contacts.

Further, persons working in the public sector are less likely to be tested positive (referee in public sector) 
(HR = 0.957, [0.927–0.987]) and less likely to be nominated as contacts (referral in public sector) (HR = 0.753, 
[0.637–0.890]). The covariate model shows that persons working in the medical sector are again less likely to be 
nominated as contacts (referral in medical sector) (HR = 0.835, [0.697–0.998]); this variable has no significant 
effect on the probability of being tested positively (referee in medical sector) (HR = 1.000, [0.974–1.027]). It is 
noteworthy that there is a substantial overlap between the medical and public sectors. Note that our models (the 
covariate and joint models) also control for which person is active. We find that active persons in the workforce 
are more likely to be tested positive (active referees) (HR = 2.276, [2.093–2.475]) but less likely to be nominated 
as a contact (active referrals) (HR = 0.493, [0.440–0.553]).

Moreover, we find anti-homophily with respect to the activity (active workforce difference). Precisely, active 
persons are more likely to nominate non-active persons (HR = 1.253, [1.128–1.392]). In summary, the findings 
reported in Table 2 suggest that typical contact-nomination events are due to working persons (mainly in the 
private sector and typically older than average) who are tested positive and then nominate non-working partners 
of the opposite sex but of similar age as contacts.

The estimates for the network model are in accord with similar previous studies6. In the network and joint 
models, we use several variables: the in-degree of the referee and referral, and the out-degree of the referral. These 
are significantly negative. Notably, the out-degree of the referee cannot be taken as a variable. As we mention 
in the "Methods" section, no person is tested positively more than once, and we remove the positives from the 
pool of possible future positives so that the out-degree of the referee is necessarily zero). These effects control for 
the property that only persons, who appear as a referee or as a referral (or as both), are included in our sample. 
Once this event has happened, their probability of participating in a future contact-nomination event decreases.

The positive coefficients of the network effects (the network and joint models, in Table 2) reveal that persons 
who jointly appeared in a past contact-nomination event (in any role) are more likely to co-appear in a future 
event. Specifically, suppose two persons A and B have been co-nominated as contacts in the past; they are more 
likely to be co-nominated by another positive case in the future (positive effect of the joint contact popularity) 
(HR = 1.110, [1.063–1.158]). Moreover, it is more likely that A nominates B (positive effect of the shared referee) 
(HR = 1.104, [1.084–1.124]). Also, suppose a person A has been tested positively and has nominated another 
person B as a contact. In that case, B is more likely to nominate A as a contact (positive effect of the reciproca-
tion) (HR = 1.111, [1.088–1.134]), and it is more likely that a third person C co-nominates A and B as contacts 
(positive effect the nominations among contacts) (HR = 1.081, [1.066–1.097]).

Finally, Table 2 reports the joint model (including both covariate and network effects). We find that quali-
tatively almost no effects change when the two sets of predictors are combined. The strongest difference is that 
persons working in the medical sector are no longer significantly less likely to be nominated as contacts. Moreo-
ver, females are still more likely to be positive cases—but this finding is, now, only significant at the 10% level.

Table 2 displays the model hazard ratios, their 95% confidence intervals, coefficients (Coef.) and their standard 
errors (SE) in brackets side-by-side. We find that the network-only model has a better fit than the covariate-only 
model (lower AIC implying better model fit) but that the combined model has the best fit of all. Thus, unless 
otherwise, the aforementioned hazard rations are subtracted from the joint model (Table 2). (Details about the 
models are available in the Supplementary Information, Tables S4–6).

Discussion
Our findings suggest that individuals’ status in the labour market and the work environments significantly 
affect the transmission of COVID-19 in Bucharest, Romania. Namely, more active older persons (mainly in the 
private sector) are tested positive. They nominate as contacts people of similar age and of opposite sex who are 
relatively not active (or particularly not in the public sector). Medical occupations have no significant effect when 
controlling for network effects. Otherwise, people with jobs in the health-care sector are significantly less likely 
to be nominated as contacts. Furthermore, people working in the public sector are less likely to be positives and 
less likely to be contacts than those in the private sector. We also find that females are slightly more likely to be 
positives and contacts (and that anti-homophily in contact-nomination is rather strong, i.e., probably spouse 
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Table 2.   Relational hyperevent model assessment: comparing the covariate, the network, and the joint 
models. ***p < 0.001; **p < 0.01; *p < 0.05; p < 0.1. The Table provides the hazard ratios (Exp(Coef.)), their 95% 
confidence intervals, the effects (Coef.) and the p value for each variable included in the models.

Covariate model Network model Joint model

Exp(Coef)
95% CI Coef (SE)

Exp(Coef)
95% CI Coef (SE)

Exp(Coef)
95% CI Coef (SE)

Age difference 0.498
(0.460–0.540)

− 0.697
(0.041)
***

0.521
(0.477–0.568)

− 0.652 (0.045)
***

Avg. age of the referrals 1.004
(0.950–1.062)

0.004
(0.029)

1.020
(0.960–1.083)

0.019
(0.031)

Age of the referee 1.746
(1.632–1.868)

0.557
(0.034)
***

1.612
(1.496–1.737)

0.477
(0.038)
***

Sex difference
(males = 1, females = 2)

2.023
(1.892–2.164)

0.705
(0.034)
***

1.873
(1.738–2.020)

0.628
(0.038)
***

Sex of the referrals 1.091
(1.019–1.167)

0.087
(0.035)
*

1.113
(1.028–1.204)

0.107
(0.040)
**

Sex of the referee 1.047
(1.006–1.089)

0.046
(0.020)
*

1.040
(0.997–1.084)

0.039
(0.021)

Referral in public sector 0.707
(0.601–0.832)

− 0.347
(0.083)
***

0.753
(0.637–0.890)

− 0.284 (0.085)
***

Referee in public sector 0.965
(0.937–0.995)

− 0.035
(0.015)
*

0.957
(0.927–0.987)

− 0.044 (0.016)
**

Referral in medical sector 0.835
(0.697–0.998)

− 0.181
(0.092)
*

0.878
(0.738–1.045) − 0.130 (0.089)

Referee in medical sector 1.000
(0.974–1.027)

0.000
(0.014)

0.997
(0.969–1.025) − 0.003 (0.014)

Active workforce difference
(Active = 1, non-active = 0)

1.182
(1.078–1.296)

0.167
(0.047)
***

1.253
(1.128–1.392)

0.226
(0.054)
***

Active referrals 0.430
(0.391–0.474)

− 0.843
(0.050)
***

0.493
(0.440–0.553)

− 0.707 (0.058)
***

Active referees 2.286
(2.117–2.468)

0.827
(0.039)
***

2.276
(2.093–2.475)

0.822
(0.043)
***

Individual contact popularity
(in-degree of the referral)

0.006
(0.003–0.011)

− 5.139
(0.309)
***

0.008
(0.004–0.014)

− 4.878 (0.306)
***

Joint contact popularity 1.116
(1.081–1.152)

0.110
(0.016)
***

1.110
(1.063–1.158)

0.104
(0.022)
***

Reciprocation 1.131
(1.111–1.152)

0.123
(0.009)
***

1.111
(1.088–1.134)

0.105
(0.010)
***

In-degree of the referee 0.229
(0.195–0.271)

− 1.472
(0.084)
***

0.307
(0.258–0.365)

− 1.182 (0.088)
***

Out-degree of the referral 0.056
(0.038–0.082)

− 2.880
(0.195)
***

0.070
(0.048–0.103)

− 2.655 (0.194)
***

Nominations among contacts 1.077
(1.062–1.092)

0.074
(0.007)
***

1.081
(1.066–1.097)

0.078
(0.007)
***

Shared referee 1.110
(1.089–1.131)

0.104
(0.010)
***

1.104
(1.084–1.124)

0.099
(0.009)
***

AIC 9375.042 8592.547 6293.281

Num. events 1179 1179 1179

Num. obs 1,250,975 1,250,975 1,250,975
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nominates spouse). The base effects have to be understood together with the other variables. If we assume that 
more males are active—and active persons are much more likely to be positives—then the positives are more 
likely male. Just if two individuals are both active and one is male and the other female, then the female is slightly 
more likely to be positive than the male.

Scientists have given health-care workers (HCWs) special attention given reported nosocomial spread and 
depletion of staff numbers44. Evidence from the early stage of the pandemic has generally indicated HCWs as 
the occupational group with the highest risk of exposure to COVID-19 infections45. Later findings may seem, 
however, contradictory. Some studies claim that people working in the medical sector hold a pivotal role in 
spreading the disease2. Others, on the contrary, do not report strong evidence for patient-to-HCWs (or HCWs-
to-patients) transmission chains. For instance, a large observational study performed in the Netherlands46 has 
claimed that childcare, education, and health-care workers display lower test positivity than public transport 
workers, driving instructors, or hairdressers. A cross-sectional study performed on workplace data in Qatar has 
attributed the lowest positivity rate to the health-care workplace settings47. Structured interviews and whole-
genome sequencing of SARS-COV-2 performed on a sample of 1,497 HCWs, in the south of the Netherlands48 
did not support widespread nosocomial transmissions as the infection source. Inversely, this study has indicated 
that the infections among HCWs were caused by community transmission. Additionally, a lack of strong evidence 
for patient-to-HCW transmissions has been reported in a retrospective cohort study among Massachusetts 
HCWs49. Our study is consistent with these aforementioned investigations and others50. Precisely, we did not 
find a significant effect for medical occupations in the virus transmission chains.

Existing studies are intrinsically affected by various factors such as the pandemic stage (when the data have 
been collected), the employed research methods, the cultural variation. As cross-country comparative research51 
or longitudinal studies52 are rare, comparing the cumulated evidence is challenging. Some scientists have advo-
cated that the disparities among occupations in terms of infection rates may be directly linked to the nature of 
jobs (exposure to disease and proximity to colleagues and clients) and their surrounding settings (the density 
of daily contacts, the ventilation of the rooms)16. Clear evidence and a large accord among researchers are, 
however, still missing. Occupations greatly vary from multiple perspectives52: fluctuations in the number of 
performed tests, availability of protective equipment, organizational procedures, etc. Our study emphasizes the 
importance of active (working) people in the COVID-19 transmission chains, which is in line with previous 
evidence reported, for instance, in Poland53.

We hope to contribute to the currently active debate concerning the impact of occupations on the COVID-19 
spreading in the community. We document transmission chains wherein people holding jobs in the private sec-
tor (COVID-19 positive cases) are connected to non-active alters of different sex (likely their spouses). Further 
research is required to confirm whether these transmission chains directly connect working settings to domestic 
households. Additional work is needed to have a more in-depth understanding of why the private sector has 
sustained a resurgence in the transmission of novel coronavirus disease. The diverseness of the private sector may 
explain different practices concerning the application of the COVID-19 preventive measures. While, conversely, 
the uniformity of the public sector may have been more efficient in implementing measures for containing the 
virus spread. In this respect, our results may be deemed important to the debate on whether COVID-19 should 
be classified as an occupational disease.

Our paper displays at least two elements of originality. To our knowledge, this is the first study to address 
the role of occupations in the transmission of COVID-19 in an urban community by using network data as 
empirical evidence. Further, we use an innovative, recently developed family of statistical modelling (relational 
hyperevent modelling). By applying this methodology, we can gain further insights into the mechanisms of the 
virus spread. Namely, we can assess the impact of people’s attributes (e.g., occupations) and the effect of the 
shape of their social networks.

Some limitations of this study are worth noting. Firstly, the observed human-to-human transmission network 
covers a time window of only three months (August 1st– ctober 31st, 2020). This time interval corresponds to a 
moderate level of stringency measures in Romania54 (e.g., school reopening, organization of political elections, 
lack of internal movement restrictions, remote work was not mandatory). Lacking data about the earlier part of 
the pandemic prevents us from assessing its impact on the time window analysed here. Future work may reveal 
whether and how official measurements affect the role of occupations and work settings in the virus spreading. 
Secondly, we analyse epidemiological information collected by the public health authorities (i.e., only the offi-
cially recorded cases). The corresponding dataset contains a consistent share of missing data, preventing us from 
performing a more diverse statistical analysis. Authorities should consider improving their data collection tools 
through future collaborations with academia. Also, our results are relevant only for the “population” of officially 
COVID-19 confirmed cases. Given the complexity of the COVID-19 community spread, we avoid reckoning 
representativeness for “all” COVID-19 cases that may have covertly existed at the time. Despite these limita-
tions, our findings may be generalized to communities with similar occupation, age, and sex distributions, anti-
COVID-19 measures, and similar cohabitation behaviour: similar household socio-demographics6. Additionally, 
our findings may be informative for future research on different waves, stringency measures and virus variants.

We build on previous studies claiming COVID-19 cases are not uniformly distributed across occupational 
groups. Yet, we move forward by addressing occupations, not in isolation, but as interconnected. Namely, we 
statistically mix people’s attributes with their network position in the transmission of COVID-19. That allows 
unveiling the role of occupations within the networked circulation of the virus. For the time interval that we 
analysed, we did not find a significant effect for medical occupations in the virus transmission chains. Probably 
because, at this stage, healthcare workers were better trained to use Personal Protective Equipment effectively, 
had more supplies, and had been largely infected in the previous pandemic stages. Also, we learn that people 
working in the private sector exhibited a pivotal role in virus diffusion. These findings may suggest that the 
impact of occupations on the networked circulation of the virus changes from one wave to another. All things 
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considered, modelling the COVID-19 networked transmission as an occupational and not as an individual 
problem may provide new insights for public health authorities and company managers. Namely, it may have 
various implications: for the ongoing under-performing vaccination campaigns in Bucharest (Romania) and 
other related urban communities worldwide, for future studies focused on different stages of the pandemic, and 
for managers planning remote work policies within organizations.

Methods
In this observational study, we use data that illustrate how COVID-19 infections may have spread from one 
individual to another in Bucharest (Romania) between August 1st and October 31st, 2020. The dataset includes 
all officially COVID-19 confirmed cases in the indicated time window. We have records for 6895 patients and, 
also, for the people they interacted with (13,272 social contacts) before the onset of the COVID-19 symptoms 
(i.e., Whom did you interact with three days before the first COVID-19 symptoms?). In our study, the patients are 
dubbed as referees while their nominated contacts, referrals. There are 454 actors that appear both as referees 
and referrals (dubbed as brokers). Namely, these individuals appear in the dataset collection as patients per se 
and social contacts for other patients.

Our real-world COVID-19 human-to-human transmission network data55 is procured from the Department 
of Public Health Bucharest (DPHB, Ministry of Health, Romania). DPHB is the local public health authority 
responsible for officially collecting, recording and reporting evidence on COVID-19 cases. Subsequently, this 
evidence is used for developing public health policies and interventions. To improve the interpretability of the 
data and the accompanying results, it should be noted that, at the time of the data collection, vaccination was not 
in place in Romania. The first vaccinated person was reported on December 27, 2020, according to the Romanian 
authorities. Consequently, our analysis corresponds to a pre-vaccination context and, therefore, vaccination 
information is not available in the dataset received from DPHB. The authors of this paper were not part of the 
official data collection process. Therefore, we cannot provide insights and details about the intricacies of the pro-
cedures employed by DPHB to provide the official records of COVID-19 in Bucharest. For this reason, we limit 
to only acknowledging that we use official COVID-19 pandemic data issued by a local official authority. And, 
in extension, the epidemiological information includes all the COVID-19 cases officially reported in Bucharest, 
in the indicated timeframe. Therefore, for accuracy, our results are relevant for this special population of “offi-
cially” reported cases and not for “all” COVID-19 cases that may have existed at the community level between 
August 1st and October 31st 2020. Furthermore, our statistical analysis is limited to official evidence and to the 
variables available in the dataset that was procured from DPHB. In this respect, other variables which may have 
been useful for understanding the pandemic context in Bucharest are not accessible to us (e.g., the number of 
people who tested negative and their socio-demographic profile). Also, we cannot gauge the representativeness 
of our data as previous studies or official reports on the virus spread in Bucharest (Romania) are not available 
(e.g., information about the COVID-19 prevalence by occupations).

In our analysis, we use several covariates such as sex (male or female), age, and major occupational groups: 
the sector type (public or private), whether a person works in the health-care industry (yes/no), and whether 
they are active or not (pensioners, minors, university students). We derive these major occupational groups from 
the job information collected by the public health authorities in their epidemiological survey. We employ the 
International Standard Classification of Occupations (ISCO-08). For instance, the ISCO-08 one-digit structure 
is: armed force occupations; managers; professionals; technicians and associate professionals; clerical support 
workers; service and sales workers; craft and related trade workers; plant and machine operators, and assemblers; 
elementary occupations (see Tables S1–3, Supplementary Information). Remarkably, at the time of the data 
collection, healthcare workers were not routinely tested as a special occupational group. This situation filters 
out potential biases due to different existing COVID-19 testing practices by occupation. Additionally, we know 
the day when a referee was confirmed officially as a positive case. And, we include in the analysis the network 
configurations embedding the referees and the referrals. Finally, we test in the statistical models these structural 
configurations as network effects. Figure 1a provides a glimpse of the analysed dataset structure.

Essentially, our data comprises time-stamped contact-nomination events of the form (t, P, {C1, …, Ck}). This 
tuple shows that at time t, the confirmed positive case P (referee) nominates the k contacts C1, …, Ck (referrals) 
when being interviewed by health authorities. In a nutshell, we estimate the effect of various covariates (including, 
but not being limited to, occupational classes) on the relative risk of observing these contact-nomination events 
via Cox proportional-hazard models. There are three fundamentally different types of possible effects, which 
we interpret in different ways. First, the impact of covariates of the positive case P can reveal which persons are 
more or less likely to be tested positively. Such findings can serve as a proxy for effects that increase or decrease 
the infection risk. (We recall that our data reveals infections only in a one-sided manner. If a person is tested 
positive, this indicates that this person is indeed infected—up to the margin of false positives, which is relatively 
low. However, if a person is not tested positive, this indicates that this person is either not infected or infected 
but not tested—or is a false negative). Second, the effect of covariates of the contacts C1, …, Ck can reveal which 
persons are more likely to be nominated as contacts. Such findings can reveal possible sources of infection (if the 
positive case got the virus from one of her contacts) or persons who got possibly infected by P. Finally, explana-
tory variables combining covariates of the positive case P and her contacts C1, …, Ck—such as the average age 
difference between P and C1, …, Ck, or the number of contacts that are in a different occupation class than P—can 
reveal who is more or less likely to be nominated by whom, giving a more detailed understanding of possible 
transmission paths. To provide an example of the distinction between these types of effects, we foreshadow the 
finding that in our data, active persons are more likely to be tested positive, less likely to be nominated as contacts 
and that contact-nomination ties are more likely between persons of different activity levels (anti-homophilous 
effect of working activity in contact nominations). In contrast, contact-nomination events reveal homophily 
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with respect to age so that older positive cases are more likely to nominate older contacts and younger positives 
are more likely to nominate younger contacts.

Estimating the relative risk of contact-nomination events (t, P, {C1, …, Ck}) has to take into account that 
the implied dyadic ties (P, C1), …, (P,Ck) are non-independent by design since they are all originating from the 
same positive case P. For instance, a positive case may list here an entire group of work-colleagues as contacts, 
and it would be invalid to treat them all as independent instances in a proportional hazard model. Relational 
hyperevent models (RHEM) tackle this intrinsic non-independence by treating the entire hyperevent (t, P, {C1, 
…, Ck}) as one single instance whose hazard is specified dependent on covariates that are functions of the entire 
hyperedge (P, {C1, …, Ck}). In a hypergraph, a hyperedge constitutes a relation between any number of nodes. In 
contrast, in a graph, an edge always precisely connects two nodes. We denote as a hyperevent a hyperedge with 
a time-stamp (which indicates when the interaction takes place). In Fig. 1, we illustrate COVID19 spreading 
both in the form of a graph and of hypergraphs. Moreover, RHEM can control for various network dependencies 
in contact-nomination data. For instance, if a positive case P nominates the contacts C1, C2, …, then it is likely 
that P, C1, and C2 are “close” in some unobserved (latent) social space56. In turn, this increases the likelihood 
that C1 nominates P and/or C2 if C1 is interviewed as a confirmed positive case. The previous work6 has shown 
that such network effects are indeed very strong in contact-nomination networks.

We extend the application of RHEM6 in two ways. First, we estimate the effect of additional covariates tak-
ing into account the major occupational classes of people. Second, we extend the core RHEM by also assessing 
predictors of the risk of being tested positively. While the previous work6 conditioned on the positive case P 
of an observed contact-nomination event (t, P, {C1, …, Ck})—and estimated the conditional probability that 
P nominates the contacts C1, …, Ck, rather than an alternative set of contacts C1’, …, Ck’—in our models the 
positive case is also treated as a random variable. Thus, our models seek to explain why a contact-nomination 
event involves the observed hyperedge (P, {C1, …, Ck}), rather than an alternative hyperedge (P’, {C1’, …, Ck’}) 
where the alternative positive case P’ can be different from the observed positive case P. The benefit from this 
model extension is that we can also assess the effect of predictors on the risk of being tested positively—not just 

Figure 1.   Illustration of a human-to-human COVID-19 transmission network. Positive cases (referees) are in 
orange, and referrals (contacts) are in white. Blue-bordered nodes mark females while black-bordered mark 
males. Geometric shapes correspond to occupational classes: squares designate people in the private sector, 
triangles mark people in the public sector, and circles are not-active individuals (minors, pensioners, university 
students). Arrows mark the direction of the elicitation process: pointing from the referee (positive case) to the 
referral (nominated contact). Node size is proportional to age. The image displays (a) dyadic and (b) hypergraph 
representations of the transmission network. In Fig. 1b, the hypergraphs (contact-nomination events) are 
attached time-stamps to show their position in time. Overlapping areas mark nodes belonging to more than one 
hypergraph.
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the effect of predictors on being nominated as contact. As it turns out in our empirical analysis, some covariates 
can have a qualitatively different effect on the probability of being tested positively than on the probability of 
being nominated as contact.

Technically, model estimation proceeds by comparing observed events (t, P, {C1, …, Ck}), with alternative 
hyperedges (t, P’, {C1’, …, Ck’}), on which contact-nomination events could have been observed but are not (“non-
events” or “censored instances”) in a CoxPH model. Since the number of possible hyperedges is exponential in 
the number of nodes of the network, we apply case–control sampling57,58 by drawing 1000 non-events for each 
observed event uniformly at random. The sampling of non-events and computation of explanatory variables 
is made with the software eventnet59. Parameter estimation is done with the function coxph in the R package 
survival60.

We fit three main models. A model that is based only on the covariates age, sex, active, public, and medical (the 
covariate model), a model specified only via network effects (the network model), and a joint model that combines 
all explanatory variables (the joint model). The only variable for which we imputed missing values is sex. We have 
chosen to do so since this variable is not related to the core objectives of this article and since the distribution 
of sex in our sample (more precisely, in the sub-sample for which this variable is not missing) is roughly equal 
to the distribution in the entire population of Bucharest (53% females in our sample versus 52.3% in the entire 
population). Thus, we believe that imputed values (setting missing sex variables to 53% female) have a minor 
effect on our analysis. In parallel, we also fit our statistical models using another procedure of imputation for 
missing data on sex (i.e., this time, we randomly imputed the missing data; see Table S7 in the Supplementary 
Information). The two imputation techniques only slightly (or insignificantly) influence the estimates for our 
predictors of interest (their interpretation remains the same), which marks a sign of robustness in our findings.

On the other hand, sex was missing surprisingly often in our study and, therefore, would have resulted in a 
disproportionate reduction of instances. Perhaps this variable was not deemed necessary by health authorities. 
Variables characterizing the occupational classes were also frequently missing—but since these are related to the 
core research questions, we did not impute values.

We drop an instance from the analysis if it has a missing value in one (or several) of the variables (excluding 
sex for which we use imputed values). Even though different models are specified by different sets of variables 
and thus could be fitted to varying sets of instances, we drop an instance from all models if it has any missing 
value for any variable. Fitting models to the same set of instances ensures that we can compare model fit via 
information criteria. We standardized all variables to mean zero and standard deviation equal to one to get 
standardized coefficients.

Although theoretically, a person could be tested positive more than once in the observation period of three 
months, this did not happen to any instance. We, therefore, take this structural feature into account by removing 
positive cases from the pool of persons that could be positive cases in the future. In other words, once a person 
experiences a tested-positive event, this person is removed from the risk set (the set of persons that could be tested 
positive) right after the event. However, note that such a positive case remains in the risk set of being nominated 
as a contact by another positive case afterwards.

Referring to the fit of our statistical models (see Results section, Table 2), we report both the hazard ratios 
(Exp(Coef)) with their corresponding 95% confidence intervals as well as the coefficients (estimates) and their 
standard errors (SE). These details are expected to provide rapid insights on the magnitude of the impact and 
on the behaviour of the predictors of interest.

To clarify the statistical modelling procedure, the unit of analysis in our study is the relational event (contact-
nomination event); briefly, the instance wherein a patient nominates at least two contacts. Out of 6895 contact-
nomination events, we included 1179 in the analysis. The other events had to be dropped since some covariate 
that we used in the analysis—and that was not sex (which we imputed)—was missing for either the referee or for 
so many contacts that fewer than two contacts were left. (In our analysis, some of the statistics use the difference 
in covariates among the contacts and for fewer than two contacts differences are undefined. We also dropped 
contact-nomination events in which just one contact has been nominated, for the same reason. Our covariates 
are age, public sector (sector type), medical sector, and active (status on the labour market). By “active” we refer 
to people who are both employed and employable (no job but eligible to work). The sector type variable makes 
a clear distinction between state-owned organizations and private companies. Additionally, we worked with a 
dataset in which we have records for 6895 unique referees and 13,272 unique referrals. Out of these 20,167 unique 
cases (referees and referrals), we can identify 7130 unique cases with full information on the variables of interest 
(age, sector type, medical sector affiliation, and status on the labour market). That is 2223 unique referees and 
4907 unique referrals—with full information. Even if our unit of analysis is represented by the relational events 
(i.e., n = 1179), details about the number of cases (with and without full information on the variables of interest) 
may be deemed relevant for contextualizing the statistical analysis.

It is noteworthy that, in our study, we do not model the incidence of COVID-19 in the population (Bucha-
rest, Romania). That is our statistical models (with our data) cannot explain who (among the population) will 
be COVID-19 infected earlier, who later, and who not at all. Instead, our models condition on an infection 
event and then explain which infected person (referee) is linked to which set of contacts (referrals). Hence, our 
models explain the relation: who is linked to whom via case-contact relations. Our models thus can explain 
possible pathways of infection (between cases and their contacts). Overall, we have records of 20,167 unique 
cases (among which 6,895 are infected people and 13,272 are their contacts). Within our data, when we observe 
a contact-nomination event (A,{B,C,D}), our models seek to explain: (1) why is A the infected case (rather than 
another person in our sample) and (2) why does A nominate the set of contacts {B,C,D} (and not another set 
of possible contacts in our sample). Our analysis is necessarily restricted to our sample of confirmed positive 
cases and their contacts. But the case-contact links among this sample of persons are considered random and 
are explained by our model.
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