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Abstract: Enteric symptomology seen in early-stage severe acute respiratory syndrome (SARS)-2003
and COVID-19 is evidence of virus replication occurring in the intestine, liver and pancreas. Aberrant
lipid metabolism in morbidly obese individuals adversely affects the COVID-19 immune response
and increases disease severity. Such observations are in line with the importance of lipid metabolism
in COVID-19, and point to the gut as a site for intervention as well as a therapeutic target in treating
the disease. Formation of complex lipid membranes and palmitoylation of coronavirus proteins
are essential during viral replication and assembly. Inhibition of fatty acid synthase (FASN) and
restoration of lipid catabolism by activation of AMP-activated protein kinase (AMPK) impede
replication of coronaviruses closely related to SARS-coronavirus-2 (CoV-2). In vitro findings and
clinical data reveal that the FASN inhibitor, orlistat, and the AMPK activator, metformin, may
inhibit coronavirus replication and reduce systemic inflammation to restore immune homeostasis.
Such observations, along with the known mechanisms of action for these types of drugs, suggest
that targeting fatty acid lipid metabolism could directly inhibit virus replication while positively
impacting the patient’s response to COVID-19.

Keywords: endoplasmic reticulum stress response; unfolded protein response; mTORC1; SREBP-1;
nonstructural protein; membrane protein; spike protein; envelope protein; replicative organelle; antiviral

1. Introduction

All viruses repurpose cell catabolism and anabolism to generate energy and macro-
molecules for efficient replication; however, the mechanisms and consequences of SARS-
coronavirus-2 (CoV-2) lipid metabolic reprogramming is largely unexplored. In this review,
we examine fatty acid lipid metabolism in the context of COVID-19 at the organismal, cellu-
lar and macromolecular levels. With this basis of understanding, we propose two rational
treatment options that directly target the virus’s lipid dependency as well as strengthen
the patient’s response to SARS-CoV-2 infection.

2. Digestive System Involvement in COVID-19

Mammalian cell proliferation and the formation and maintenance of their larger organ
system counterparts require an adequate supply of energy and cellular building blocks
including fatty acid phospholipids which represent the major constituent of biological
membranes [1]. Changes in membrane phospholipid composition and acyl length deter-
mine the biophysical properties of cell membranes which in turn impact larger biological
processes. Mammalian lipid absorption, synthesis and composition for maintaining sys-
temic homeostasis are controlled mainly in the intestine, liver and adipose tissues [2].
As exemplified by the hepatitis C virus (HCV), enveloped RNA viruses can alter lipid
homeostasis to enhance virus replication and increase infectivity [3]. Early presentation of
gastrointestinal symptoms recently seen in COVID-19 patients was common in SARS-2003
patients; these often include diarrhea, nausea, vomiting and abdominal pain [4–8]. Further,
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viable virus was detectable in patient stool samples and in sewage, which can contribute to
community spread [6,9–12]. As noted by the increase in serum alanine aminotransferase,
aspartate transaminase and glycemic index, SARS-CoV patients develop mild to severe
liver or pancreatic dysfunction as the disease progresses [13–15]. The extent of liver and
intestinal damage was noted upon examination of biopsies from fatal SARS-2003 cases [16].
Liver and enteric tissue showed fatty degeneration, cloudy swelling, apoptosis and dot
necrosis of hepatocytes, as well as regional hemorrhage and vascular congestion with
lymphocytic infiltration in gastrointestinal wall tissue and in hepatic and pancreatic ducts.
Transient or permanent pancreatic dysfunction seen in SARS-CoV infection [15] is the
result of β-cell damage and likely stems from β-cell inflammokine activation of autore-
active T cells and macrophages and, if extensive, can lead to fulminant and permanent
diabetes [17]. These disparate SARS-CoV digestive organ pathologies all stem from the
fact that intestinal, hepatic and pancreatic cells express one or more of the coronavirus
receptors, namely angiotensin-converting enzyme-2 (ACE2), dipeptidyl peptidase-4 (CD26)
and CD209L [18–20]. The commonality of intestine, liver and pancreatic β-cell involvement
noted in SARS-2003 and COVID-19 points to the digestive tract as a significant site of
disease with the potential to alter lipid metabolism.

3. Potential Impact of Elevated Systemic and Cellular Fatty Acid Levels in Obese
Individuals Infected with SARS-CoV-2

The number of COVID-19 patients requiring hospitalization is three-fold greater for
individuals who are morbidly obese (BMI > 40) [21]. When present as a comorbidity with
type 2 diabetes mellitus (T2DM), obesity increases patient risk of death ten-fold [14].

Numerous metabolic disturbances resulting from obesity contribute to a chronic state
of low-grade inflammation and a diminished host response to viral infection [22,23]. Ele-
vated serum triacylglycerol (TAG), free fatty acids (FFA), and proinflammatory adipokines
leptin and resistin, along with TNF-α, IL-6, IL-1β, IL-18 and MCP-1 concurrent with lower
amounts of the anti-inflammatory adipokine, adiponectin, collectively weaken the innate
and adaptive immune system [24]. Following infection of an obese individual, type I inter-
feron levels are reduced, and the natural killer cell response is attenuated. This dampened
response initiates a cycle of decreased IL-12, IL-18, IFNγ and IL-2 responses, together
with lowering of the adaptive immune response [22,23]. Long-term obesity also promotes
chronic inflammation and a loss of gut mucosal integrity [25,26]. One can speculate that
compromised immune function coupled with weakened gut integrity, precipitated by
obesity, provides SARS-CoV a greater opportunity to establish primary enteric infection
and better ease of access to circulatory spread.

At the cellular level, accumulation of excess fatty acid stemming from obesity causes
chronic endoplasmic reticulum (ER) stress response and continual activation of the un-
folded protein response (UPR) pathway [27,28]. Under normal conditions, the ER provides
the cellular machinery needed for proper protein folding, maturation, and directed traffick-
ing of glycosylated and secretory proteins. The ER is also needed for calcium homeostasis
and metabolism of complex lipids. An imbalance in these ER demands activates the evo-
lutionarily conserved UPR pathway in an attempt to stem protein production, enhance
removal of misfolded protein and control the synthesis of cellular lipid [29]. When the ER
protein-folding capacity is exceeded and dysfunctional proteins accumulate, activation
of the UPR pathway attempts to restore ER homeostasis by temporarily reducing global
protein synthesis, enlarging ER volumes through endomembrane restructuring, increasing
ER-folding capacity through the up-regulation of chaperones and foldases, and increasing
protein turnover capacity through the up-regulation of ER-associated degradation (ERAD)
components and ER-specific autophagy [30,31]. If ER homeostasis is unattainable, UPR ini-
tiates cell-death programs to eliminate the defective cell for the benefit of the organism [32].
The ‘restore or die’ decision by the cell is controlled and directed by the inositol-requiring
enzyme 1 (IRE1), the activating transcription factor 6 (ATF6) and the protein kinase RNA
(PKR)-like ER kinase or PERK. At times of severe ER stress and failure to restore ER home-
ostasis, the UPR network is forced to engage in additional SOS mechanisms, including
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ER-associated degradation (ERAD), autophagy or even cell death by apoptosis. In obese
individuals, where ER stress is chronic and UPR pathways are already heightened, the
added stress on the ER caused by SARS-CoV-2 replication could easily shift UPR signaling
beyond homeostasis restoration towards apoptosis and greater tissue destruction [33].

4. The Essential Role of Lipids during SARS-CoV-2 Replication and Virion Assembly

SARS-CoV-2 replication relies on newly synthesized phospholipids or reengineered
host membrane vesicles to serve as the replicative organelle that coordinates pairing of
viral genomes and protein synthesis with virus assembly to complete the virus replication
cycle [34–37]. Coronavirus replicative organelles are comprised of 200 nm-wide double-
membrane vesicles (DMV) derived from the ER-Golgi vesicular transport system [38,39]. It
is hypothesized that DMV structures more efficiently concentrate newly synthesized viral
RNA genomes with associated virion structural proteins to better enable virus assembly
and packaging. DMV could also serve to shield viral genome RNAs from recognition and
destruction by innate cellular defense systems [40,41]. In concert with host cell ER factors
and an increase in fatty acid synthesis [37], the SARS-CoV-2 nonstructural proteins (nsp)3,
4, 6 construct the replication organelle structures [42,43]. Nsp3 was shown to initiate the
formation of large multilamellar vesicles which are then refined with the aid of nsp4 into
extensive DMV pairings and maze-like bodies. Nsp6 contributes to replication organelle
formation by potentially promoting cellular autophagy and membrane lipid recycling [44].
Once completed, replication organelles act as scaffolds for the coronavirus membrane
protein that in turn coordinates virus RNA-nucleocapsid assembly and subsequent lipid
envelopment of virion spike and envelope proteins. Assembled coronavirus particles bud
into the ER-Golgi vasculature for spike and envelope glycosylation and subsequent virion
egress through the cell’s secretory pathway and outside the cell [45].

Beyond providing a safe place for SARS-CoV-2 assembly, ER stress and activation of
the UPR pathway incurred during virus-induced organelle remodeling can be gainfully
exploited by the virus. ER UPR activation stimulates global lipid synthesis. UPR activation
of IRE1 signaling results in proper RNA splicing and translation of X-box binding protein
1 (XBP1) mRNA which in turn stimulates sterol regulatory-element binding protein-1
(SREBP-1) and transcription of anabolic lipid genes including fatty acid synthase (FASN),
acetyl-CoA carboxylase (ACC) and stearoyl-CoA desaturase 1 (SCD1) [46]. Thus UPR
activation caused by SARS-CoV can provide much needed lipid stocks during virus and
replicative organelle assembly [46]. As an added virus benefit, increased lipid stocks allow
for expanded DMV luminal volumes resulting in a decreased effective concentration of
misfolded virus proteins and preventing the possibility of UPR-induced apoptosis [29].

5. The Essential Role of Lipid Addition to SARS-CoV Proteins

SARS-CoV requires addition of lipid chains to conserved cysteine residues located adja-
cent to the transmembrane sections of the virus spike and envelope proteins (Figure 1) [47–49].
Lipid addition occurs through the process of cysteine palmitoylation [50]. Cysteine palmitoyla-
tion reversibly adds palmitate (C16:0), or the less common stearate (C18:0) or arachidonate
(C20:0) moieties to cysteine residues that dynamically increase a protein’s affinity for cellular
membranes and hydrophobic pockets on neighboring proteins or protein domains. Beyond
serving as a membrane tether, protein palmitoylation promotes protein shuttling between
different membrane compartments [51]. Palmitoylated proteins are often categorized by their
site of lipid addition and include ones with palmitoylated cysteines lying close to (≤20 amino
acid distance) or within a given protein’s transmembrane spanning sequence, located at the
carboxyl-terminus or near the amino-terminus, and expressing the MGC motif [52].
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quences of cysteine clusters (grey highlight) with individual cysteine residues (bold) found in or near predicted trans-
membrane domains (underlined) for human and mouse coronavirus spike, envelope and membrane proteins are shown. 
In silico predicted individual cysteines (yellow) and biochemically confirmed (purple) palmitoylation sites are shown. 
Coronavirus spike, envelope and membrane protein amino acid sequences were derived from GenBank accession IDs for 
SARS-CoV-2, NC_045512; SARS-CoV-1, AY291315; human coronavirus HUK1 genotype A, AY597011; HUK1 genotype B, 
AY884001; HUK1 genotype C, DQ415898; human coronavirus NL63, NC_005831; 299E, AF304460; human enteric corona-
virus strain 4408, FJ938067; and related murine hepatitis virus strain A59 MHV, MF618252. Coronavirus protein align-
ments with hydrophobic transmembrane locations were performed using Clustal Omega and TMHMM v. 2.0 programs, 
respectively. Identification of potential palmitoylation targets was performed using CSS-lm 4.0 and Palm-GPS algorithms 
set for high stringency. 

Palmitoylation of viral envelope proteins usually occurs on cysteine residues located 
within or near their transmembrane domain [50]. Cysteine palmitoylation is catalyzed by 
the DHHC (Asp-His-His-Cys) rich domain palmitoyl acyltransferases that reside in the ER 
and Golgi [53]. These integral membrane proteins transfer palmitate residing in the DHHC 

Figure 1. Distribution of palmitoylated cysteine residues in coronavirus structural proteins. Diagram of SARS-CoV-2 spike,
envelope and membrane proteins depicting the relative amino acid length of their ectodomain (olive green), hydrophobic
domain (blue) with internal transmembrane sequences (mustard), endodomain (teal), N-glycosylation (maroon triangle),
conserved S(I/F)RL(F/W) motif (bright green) and cysteine clusters of proven palmitoylation (red). Actual sequences
of cysteine clusters (grey highlight) with individual cysteine residues (bold) found in or near predicted transmembrane
domains (underlined) for human and mouse coronavirus spike, envelope and membrane proteins are shown. In silico
predicted individual cysteines (yellow) and biochemically confirmed (purple) palmitoylation sites are shown. Coronavirus
spike, envelope and membrane protein amino acid sequences were derived from GenBank accession IDs for SARS-CoV-2,
NC_045512; SARS-CoV-1, AY291315; human coronavirus HUK1 genotype A, AY597011; HUK1 genotype B, AY884001; HUK1
genotype C, DQ415898; human coronavirus NL63, NC_005831; 299E, AF304460; human enteric coronavirus strain 4408,
FJ938067; and related murine hepatitis virus strain A59 MHV, MF618252. Coronavirus protein alignments with hydrophobic
transmembrane locations were performed using Clustal Omega and TMHMM v. 2.0 programs, respectively. Identification
of potential palmitoylation targets was performed using CSS-lm 4.0 and Palm-GPS algorithms set for high stringency.

Palmitoylation of viral envelope proteins usually occurs on cysteine residues located
within or near their transmembrane domain [50]. Cysteine palmitoylation is catalyzed
by the DHHC (Asp-His-His-Cys) rich domain palmitoyl acyltransferases that reside in
the ER and Golgi [53]. These integral membrane proteins transfer palmitate residing in
the DHHC motif to an unreduced cysteine target residue in the acceptor protein. Of the
three coronavirus virion membrane proteins, namely spike, envelope and membrane, only
the spike and envelope proteins were shown to be palmitoylated and important in virus
replication [54,55]. Spike and envelope palmitoylation was shown to increase protein
trafficking to replication organelles and aid in assembly of the virus envelope. Detailed
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examination of the SARS-CoV-2 spike protein endodomain reveals that it can be divided
into a cysteine-rich cluster located near the viral envelope and a carboxy terminal region
containing both basic and acidic residues (Figure 1). Palmitoylation of specific cysteine
residues in the spike protein cysteine cluster for the related SARS-CoV-1 and mouse
hepatitis virus (MHV) was found to be essential for efficient virus assembly and during
initial infection when the spike protein-host cell membrane fusion event occurred (Figure 1,
purple) [49,55]. It has been hypothesized that spike protein palmitoylation adds additional
anchoring properties to the spike protein fusion domain allowing for optimum host cell
fusion and virus entry by lessening torsional strain in the spike protein transmembrane
domain [55].

Coronavirus envelope protein is also palmitoylated (Figure 1) [54,56]. Although
abundantly expressed in the ER of infected cells, only a small portion of the envelope is
incorporated into the virion structure [57]. Close association of the coronavirus envelope
protein with cell membranes and other viral envelope proteins induces ER membrane
curvature and allows nucleocapsid envelopment during virus budding into ER-Golgi
vasculature [58]. A second property of the envelope protein is the formation of a homo-
pentamer calcium ion channel expected to relieve ER stress by maintenance of calcium
homeostasis, thus preventing UPR-induced apoptosis [59,60]. When occurring in close
proximity to the envelope protein transmembrane sequence, palmitoylation may serve to
strengthen tethering of envelope protein to the DMV.

Published evidence is lacking with respect to cysteine palmitoylation of other SARS-
CoV-2 proteins intimately involved with lipid membranes, namely the virion membrane
protein and nsp3, 4 and 6. We postulate that if cysteine palmitoylation of these proteins
were essential to their function, including tethering to the viral lipid envelope or to the
DMV, the cysteine residue would be conserved among other β-coronaviruses and be lo-
cated close to or within their transmembrane sequence(s). In silico alignments of human
coronaviruses, including SARS-CoV, with the prototypic MHV membrane protein or nsp3,
4 and 6 using Clustal Omega and TMHMM v. 2.0 programs to detect cysteines located in or
near hydrophobic transmembrane spanning regions, along with identification of palmitoy-
lation potential using CSS-lm 4.0 and Palm-GPS algorithms [61–64], were performed. Our
data indicate that, while coronavirus membrane protein and nsp amino acid sequences
vary markedly among human coronaviruses and MHV, their relative positions and number
of hydrophobic transmembrane sequences are maintained (Figures 1 and 2).

The coronavirus membrane protein is a type III transmembrane glycoprotein and the
most abundant glycoprotein in the virus particle [65]. The membrane protein was shown
to coordinate the initial genome packaging within the nucleocapsid and its subsequent
integration into the virion membrane with the envelope and spike proteins [66]. Coron-
avirus membrane protein can fold into either an elongated or compact conformation for
which the long form is thought to be important in lipid membrane curvature and virus
budding, whereas the compact version likely forms under acidic conditions and during
coronavirus entry into the endosome of a new host cell [67]. In silico examination of
cysteine residues in SARS-CoV-2 membrane protein predicts palmitoylation only for a
similarly positioned cysteine residue in MHV (Figure 1). In silico analysis also uncovered a
conserved S(I/F)RL(F/W) motif located within the junction of the third transmembrane
sequence and the membrane protein endodomain (Figure 1). Based on homology with
the immunoglobulin heavy chain junction region, the S(I/F)RL(F/W) motif may provide
conformational flexibility to coronavirus membrane proteins.
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Figure 2. Distribution of potential membrane-associated palmitoylated cysteine residues in coron-
avirus nonstructural proteins 3, 4 and 6. Diagrams show relative amino acid length with predicted
hydrophobic domains (blue), internal transmembrane sequences (yellow), and consensus sites of
cysteine palmitoylation (red). Coronavirus nonstructural protein sequences were obtained from
GenBank accession IDs listed in Figure 1.

In silico examination of nsp3 revealed a conserved cysteine motif C(A)XCXK and
palmitoylation target located at the rightward end of its hydrophobic domains for the hu-
man coronaviruses examined (Figure 2). Potential nsp4 palmitoylation occurred in the first
hydrophobic domain for all the coronavirus families examined except for the SARS-CoV-2
virus (Figure 2). Surprisingly, cysteines detected in the first transmembrane domain of
SARS-CoV-1 or other human coronaviruses were replaced with aromatic residues. A BLAST
search of GenBank coronavirus taxid (8-27-2020) showed that unlike the reported pangolin
intermediary virus isolate MP789 [68], only bat coronavirus isolate RaTG13 was devoid
of cysteines and possessed 100% cDNA sequence identity with that of SARS-CoV-2 [69].
Nsp6 contained a conserved -KHKH- junction sequence demarcating the boundaries of
the 2nd and 3rd hydrophobic transmembrane domain for all coronaviruses examined, but
whose utility during infection has yet to be determined (Figure 2). Although palmitoylation
is predicted in seven hydrophobic regions of nsp6, we found no conserved palmitoyla-
tion site (Figure 2). While biochemical verification of these predicted palmitoylation sites
is warranted, the conserved palmitoylation sites are all located in or near hydrophobic
domains, thereby strengthening the argument that SARS-CoV nsp3 and nsp4 membrane
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interactions require palmitoylation for simple tethering or for more extensive ER reshaping
into multilamellar vesicles and DMV pairing.

6. Fatty Acid Synthase (FASN) and AMP-Activated Protein Kinase (AMPK): Potential
Antiviral Targets to Block SARS-CoV-2 Replication and Virus Assembly

When considering the use of lipid-modifying drugs as potential SARS-CoV-2 antivirals,
we defined an antiviral as one that targets specific viral proteins or interferes with a
critical step in the virus life-cycle. While sterol-altering drugs such as statins are proven
to mitigate inflammation and are currently investigated to lessen the cytokine storm in
COVID-19 patients (1 March 2020, clinicaltrials.gov), their use as COVID-19 antivirals
remains controversial [70,71]. Evidence suggests that statins may reduce inflammation
and interfere with SARS-CoV-2 interaction with the ACE2 receptor. However, statins
may also interact with currently used COVID-19 treatments including the glucocorticoid,
dexamethasone, or with protease inhibitor antivirals and reduce their potency [72]. Further,
it is unclear whether statins may exacerbate COVID-19 pneumonia [73]. We elected not
to pursue statins as antivirals seeing that they do not block virus replication for other
enveloped RNA viruses, namely hepatitis C virus and influenza virus [74–77], and we do
not expect statins to impact viral protein palmitoylation or the level of fatty acids required
during assembly of replication organelles [37].

SARS-CoV-2 along with closely related Middle East respiratory syndrome β-coronavirus
(MERS-CoV) increase PI3K/AKT/mTOR/S6K signaling activity, which is expected to in-
crease production of lipid anabolic enzymes including FASN and acetyl-CoA carboxylase
(ACC1) (Figure 3) [78,79]. FASN is the key cellular enzyme involved in palmitate synthe-
sis [80]. FASN uses acetyl-CoA and malonyl-CoA as substrates to form palmitate, which
in turn is used for the palmitoylation of proteins or further processed into more complex
lipids for the construction of viral envelopes and replication organelles. FASN inhibitors act
primarily through allosteric inhibition of FASN β-ketoacyl reductase activity, resulting in
altered lipid membrane synthesis and protein palmitoylation [81]. Acetyl-CoA carboxylase
is also a key metabolic enzyme in fatty acid biosynthesis. ACC1 converts mitochondria-
derived acetyl-CoA to malonyl-CoA, which in turn serves the dual purpose of directing
metabolic intermediates towards fatty acid synthesis or producing malonyl-CoA, and the
allosteric inhibitor of carnitine palmitoyl transferase 1 [82]. This latter enzyme acts as
the rate-limiting step in fatty acid degradation [82]. Control of fatty acid biosynthesis by
inhibiting ACC1 or FASN enzymatic activity is expected to attenuate virus production.

Beyond direct inhibition of FASN and ACC1 enzyme activities, cellular FASN and
ACC1 levels are controlled at transcription by the sterol regulatory element-binding protein
(SREBP)-1 (Figure 3) [83]. The SREBP-1-dependent lipogenic pathway is normally stimu-
lated by food ingestion, but excessively activated in the setting of obesity-linked insulin
resistance [84].

Under conditions of low energy demand and sufficient fatty acid stores, SREBP-1
resides in the ER in an inactive form as a stable complex with the SREBP-cleavage activat-
ing protein (SCAP) and the insulin-induced gene protein (INSIG) [85]. INSIG bound to
SREBP-1 maintains SREBP-1 in the ER and prevents SREBP-1 transport and proteolytic
processing/maturation in the Golgi. During times of insufficient cellular fatty acids, INSIG
is ubiquitylated and degraded, allowing SREBP-1-SCAP transport to the Golgi complex,
whereby SREBP-1 is proteolytically processed by site-1 and site-2 proteases (S1P, S2P).
Upon proteolytic maturation, SREBP-1 is translocated to the nucleus for transcriptional
activation of FASN and ACC genes [86]. In cases of T2DM or obesity, where chronic
elevation of insulin leads to continued increases in lipid synthesis, mechanistic findings
indicate that cellular INSIG levels were reduced [87]. With heightened levels of insulin
there is also increased PI3K production of phosphatidylinositol (3,4,5)-triphosphate (PIP3),
activation of Akt (AKR mouse thymoma) kinase and increased nuclear SREBP-1 levels
via Akt activation of the mammalian target of rapamycin (mTORC1) signaling complex
(Figure 3) [88]. mTORC1 is comprised of the mTOR kinase, the adapter protein regulatory-
associated protein of mTORC1 (Raptor), the mammalian lethal SEC13 protein 8 (MLST8,
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also called GβL), as well as its inhibitory subunits, proline-rich Akt substrate-1 (PRAS1)
and Akt target domain-interacting protein (DEP) TOR. One of the most important sensors
involved in the regulation of mTORC1 activity is the tuberous sclerosis complex (TSC)
heterodimer (TSC1 and TSC2). TSC acts as a GTPase for the Ras-related GTPase, Rheb (Ras
homolog enriched in brain). As a Rheb-specific GTPase, TSC negatively regulates mTORC1
signaling by converting Rheb into its inactive GDP-bound state. Insulin stimulation and
Akt direct phosphorylation inactivates TSC GTPase to promote GTP-Rheb activation and
increase mTORC1 signaling activity. Akt also increases mTORC1 activity by phosphorylat-
ing PRAS40 (proline rich Akt substrate 40 kD), normally a negative regulator of mTORC1.
mTORC1 promotes phosphorylation of lipin-1, a phosphatidic acid phosphatase and S6-
kinase activity. The normally dephosphorylated lipin-1 resides in the nucleus and limits
“free form” SREBP-1 nuclear levels. Lipin-1 acts by sequestering nuclear SREBP-1 away
from its lipid gene responsive elements [89]. Upon lipin-1 phosphorylation, freed SREBP-1
can now target the lipid gene responsive elements. Activated S6-kinase phosphorylates the
ER SREBP-1 complex to enhance SREBP-1 Golgi transport and proteolytic maturation [90].
In cases of T2DM or obesity, where chronic insulin elevation leads to increased lipid syn-
thesis and a lipid-rich environment, one would expect the SARS-CoV to more readily form
replication organelles and increase virus production.
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phosphorylation of S6K1 and lipin-1. Activated S6K1 acts on ER-resident SREBP-1 resulting in SREBP-1 transport to the
Golgi, proteolytic maturation by S1P and S2P, with eventual nuclear entry and transcriptional activation of fatty-acid
anabolic genes FASN and ACC1. mTORC1 activation of lipin-1 results in release of perinuclear-bound SREBP-1 for further
transcriptional activation of fatty-acid anabolic genes. AMPK blocks fatty acid synthesis by acting directly on the ACC1
enzyme, or indirectly by lowering cellular FASN and ACC1 enzymes through deactivation of mTORC1 or by preventing ER
SREBP-1 transport/maturation to/at the Golgi and ultimately preventing lipid gene transcription.

To counteract the insulin-induced increase in lipid synthesis and to maintain the cell’s
proper ATP to fat storage ratio [91], cellular AMPK turns down lipid synthesis directly
through phosphorylation of the rate-limiting enzyme ACC1 and indirectly through in-
terruption of mTORC1 signaling and subsequent SREBP-1 processing (Figure 3). AMPK
inhibits mTORC1 signaling by phosphorylating TSC2 and converting Rheb into an inactive
GDP-bound state, thus switching off Akt stimulation of mTORC1. AMPK also phosphory-
lates Raptor which leads to 14-3-3 protein binding and mTORC1 inhibition [92]. AMPK
also directly blocks the SREBP-1 signaling pathway by phosphorylating both SREBP-1 and
INSIG. INSIG phosphorylation blocks INSIG ubiquitination and degradation resulting in
SREBP-1 retention in the ER [93]. AMPK phosphorylation of SREBP-1 prevents SREBP-1
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proteolytic processing/maturation and ultimately lipid gene transcription [94]. As SREBP-1
controls its own transcription, any increase in INSIG stability or prevention of SREBP-1
maturation would also act as a negative feedback control to further reduce overall SREBP-1
levels and ultimately cause a reduction in lipid enzymes and lipid synthesis [95].

A reduction in lipid biosynthesis through AMPK’s actions is expected to attenuate
coronavirus replication organelle formation as well as viral protein palmitoylation and
virus production (Figure 3). As an added benefit, AMPK’s action on mTORC1 will reduce
cellular NFκB activity along with both cellular and systemic inflammatory responses and
T-cell activation [96], which should diminish or mitigate aberrant inflammatory responses
often seen in severe SARS-CoV-2 infection [97].

7. Potential Use of Orlistat and Metformin in Controlling SARS-CoV-2 Protein
Palmitoylation and Organelle Assembly

There are a number of experimental compounds in (pre)clinical testing that inhibit
FASN [81] or activate AMPK [98], and could serve as potential anti-SARS-CoV antivirals.
However, only FASN inhibitor, orlistat, or AMPK activator, metformin, sold under the
brand names Xenical and Glucophage, respectively, are approved for widespread clini-
cal use and have well-established safety profiles. Orlistat is prescribed for treatment of
obesity and obesity-related T2DM [99–102]. Orlistat is a saturated derivative of endoge-
nous lipstatin isolated from Streptomyces toxytricini, which covalently binds to the active
site of the thioesterase domain of FASN and directly inhibits FASN enzymatic activity
(Figure 3) [103,104]. The recommended orlistat dose is one 120 mg capsule taken orally 3×
daily during fat-free meals [105]. While the primary site of orlistat accumulation is within
the gut, most of the medication (95–97%) is unabsorbed and excreted in feces; however,
early clinical studies have detected low but measurable levels of orlistat in the serum when
doses were prescribed above the recommended 120 mg [106]. Metformin is a biguanide
derivative widely used to treat T2DM [107]. Metformin was shown to be clinically superior
in reducing glucose levels with little induction of hypoglycemia or weight gain and to
reverse hepatic steatosis, improve insulin sensitivity, and improve atherosclerosis and
cardiovascular dysfunction [107]. Metformin’s mechanism of action was once thought to be
mitochondrial, involving complex I of the electron transport chain for increased AMP and
activation of AMPK [107]. However, more recent findings show that metformin activates
the AMPK cascade via the formation of v-ATPase/Ragulator complex in association with
liver kinase B1 (LKB1) and axis inhibition protein 1 (AXIN1). Once formed, this larger
complex leads to AMPK activation and the switching off of mTORC1 (Figure 3) [108].
While metformin’s actions on AMPK and mTORC1 also lead to changes in glucose and
protein metabolism, mitochondrial biogenesis and mitochondrial autophagy that may
impact SARS-CoV-2 replication, we focused on metformin’s action on lipid metabolism.
Metformin’s action through AMPK reduces lipid storage, increases fatty acid oxidation,
inhibits glycolysis and blocks lipogenesis. We expect metformin, acting through AMPK,
to turn down palmitate synthesis and virus protein palmitoylation directly through phos-
phorylation of the rate-limiting enzyme ACC1. We also expect AMPK to reduce overall
fatty acid synthesis and replication organelle assembly by interrupting mTORC1 signaling
and subsequent SREBP-1 processing (Figure 3). In addition, orlistat’s direct inhibition of
FASN enzymatic activity should impair palmitate production and ultimately, viral protein
palmitoylation (Figure 3).

7.1. Insights from Other Lipid-Dependent Viruses for Use of Orlistat and Metformin in
COVID-19 Treatment

In other viral settings, orlistat and metformin were shown to inhibit replication of
several flaviviruses [109–112], as well as hepatitis B virus and HCV [113–117], coxsack-
ievirus B3 and varicella-zoster virus [118,119]. For these viruses, orlistat was shown to
inhibit lipid-vesicle restructuring, viral genome replication, virion protein palmitoyla-
tion [109–111,118] and virus entry [113,114]. Metformin was shown to decrease lipid
(palmitate) synthesis [119], viral RNA transcription and protein synthesis [115,116], as well
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as virus-dependent glycolysis, while increasing IFN production and blocking inflammatory
cytokines [112,117]. From these observed antiviral mechanisms, orlistat and metformin
are expected to decrease FASN and activate AMPK, respectively, for a predicted inhibi-
tion of viral replication organelle formation, and to block spike, membrane and envelope
palmitoylation and subsequent virus assembly. Orlistat and metformin may also enhance
innate cellular immunity by promoting IFN expression and suppressing deleterious IL-6
and TNFα (Figure 4).
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7.2. Potential Clinical Utility of Orlistat and Metformin in COVID-19 Treatment

Orlistat was shown to decrease IL-6 and TNFα in diabetic patients [120], and to
reduce systemic inflammation and pancreatitis-induced death in obese (ob/ob) mice as
measured by a lower mortality incidence and decreased serum levels of TNFα, MCP-1 and
IL-6 in an acute pancreatitis mouse model [121]. Orlistat was shown to reduce intestinal
microsporidiosis caused by Enterocytozoon species, as seen by a decrease in fecal spores
and spore infectivity [122]. Like the lipid dependency of RNA viruses, orlistat-treated
mice exhibited a direct inhibition of microsporidia viability through inhibition of spore-
dependent phospholipid synthesis and prevention of parasitophorous vacuoles required
during Enterocytozoon spore development.

Clinical and animal studies in a variety of disease settings lend strong support for
metformin as a SARS-CoV antiviral. Metformin activation of AMPK to enhance IFN
signaling, decrease proinflammatory cytokines and restore immune homeostasis could
abrogate cytokine storm severity in COVID-19 disease [123,124]. While clinical testing
of metformin as a systemic immunometabolic drug is ongoing [125], use of metformin
has already demonstrated reduced inflammation in patients and reduced insulitis in
mice. Metformin has been shown to inhibit autoreactive and proinflammatory cells and
to restore immune homeostasis [126], as well as to reduce IL-6, TNFα and intracellular
adhesion molecule-1 (ICAM-1) in women with polycystic ovary syndrome [127], and to
lower asthma-related hospitalization and asthma exacerbation in diabetic patients [128].
Metformin’s lowering of asthma events is postulated to act through AMPK and attenuate
eosinophilic-driven inflammation [129,130]. Metformin was shown to reduce non-alcoholic
fatty liver disease and intestinal inflammation in murine models [131,132].

Consideration of metformin use as an anti-SARS-CoV antiviral to alleviate enteric
pathology stems from its ability to decrease gut microbiome dysregulation and chronic
bowel inflammation in T2DM [133] and inflammatory bowel disease [134]. In addition,
metformin decreases the frequency of pathogenic Th17 cells and increases the frequency
of beneficial regulatory T cells [134,135] through activation of AMPK and subsequent
reduction in activated NFκB [132]. Metformin may reduce SARS-CoV inflammatory signals
in infected cells by altering AMPK-dependent signaling and down-stream suppression of
cytokine gene activation.



Viruses 2021, 13, 90 11 of 18

7.3. Therapeutic Application of Orlistat and Metformin

The optimal daily dose recommended for metformin is 2000 mg. When taken orally
and during meals, like orlistat, the primary site of accumulation is within the gut, with
elimination in the urine and feces [107]. A review of potential drug toxicity indicates
that orlistat is well-tolerated; however, COVID-19 patients may need to be monitored for
rare occurrence of orlistat-induced hepatic injury [136,137]. In rare cases (4.3/100,000),
metformin may decrease lactate uptake by the liver, thereby increasing the risk of lactic
acidosis. Its use in patients with severe renal insufficiency, acidosis, congestive heart failure,
liver disease and hypoxemia should be monitored [138].

It has been suggested that metformin use during COVID-19 treatment may increase
SARS-CoV infectivity by augmenting the level of cellular ACE2 (by approximately 0.8-
fold) [139,140]. This increase may outweigh the benefits of preventing SARS-CoV-induced
lung inflammation and damage [141,142] or, in our view, metformin’s inhibition of lipid
synthesis and virus replication. In added support for metformin use to treat COVID-19, we
note that SARS-CoV-1 spike protein employs the metzincin protease family member TNF-
α-converting enzyme (TACE) to cleave ACE2, which then enables virus entry [143–145].
Prevention of TACE protease activity attenuates SARS-CoV infection [144]. Since metformin
can inhibit other metzincin family members, namely metalloproteinase (MMP)-2 and
MMP-9 [146], one might infer that metformin acts in a similar inhibitory fashion on TACE
protease to prevent ACE2 cleavage and virus entry. The higher levels of cellular ACE2
seen following metformin treatment may in fact reflect uncut and dysfunctional ACE2
SARS-CoV receptors.

Potential drug interactions with currently proposed COVID-19 treatment modalities
can easily be avoided with simple dietary changes, increased dosage or offsets in time of
drug administration (i.e., fat-soluble vitamins, cyclosporine A, https://clinicaltrials.gov,
search term “COVID-19”, 1 March 2020).

8. Conclusions and Future Directions

Approved medicines such as orlistat and metformin that act respectively on FASN
and AMPK, and which are expected to inhibit virus replication and assembly or to promote
gastrointestinal integrity and decrease deleterious systemic inflammation, merit serious
consideration for clinical testing as anti-COVID-19 therapies (Figure 5).

In support for our hypothesis that metformin may be useful in COVID-19 manage-
ment, work by Zhu et al. (2020) indicates that individuals using drugs to control their
T2DM diabetes faired markedly better in hospitalization outcomes compared to those
who did not use drugs [147]. Upon further examination of the authors’ data (Zhu et al.,
Table 2), we noted that COVID-19 patients using metformin faired best overall (27.3%) [147].
Although the small sample size did not allow for statistical significance using Z-test for pro-
portions, the data trend did show that metformin use improved hospitalization outcomes
more than (>) the anti-T2DM alpha-glucosidase inhibitors (26.7%), > thiazolidinediones
(22.2%), > sulfonylurea (20.1%), > meglitinides (20.0%), > dipeptidyl peptidase-4 inhibitors
(20.0%) and > insulin (12.1%). Subsequent studies examining metformin use in diabetic
individuals hospitalized for COVID-19 infection showed an association with a lower risk
of death [148,149].

Clinical studies for orlistat use and COVID-19 outcomes await further investigation.
However, a yet to be published review of orlistat effectiveness in lowering HCV viral load
in the phase 4 clinical study (NCT00207311, clinical trials.gov) may give clearer medical
guidance and a possible clinical path forward to effectively treat SARS-CoV-2 infection
using orlistat.

https://clinicaltrials.gov
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If used in conjunction with other antivirals and anti-inflammatory drugs, orlistat
and/or metformin may further suppress SARS-CoV-2 replication through overall lowering
of lipid synthesis for a reduction in replication organelles and prevention of viral protein
palmitoylation, thereby lowering immune-induced morbidity in high-risk and affected
patients. One may envisage clinical prophylaxis using orlistat or metformin in patients
following a positive test for the disease and at an early stage in their disease progression. If
incorporated judiciously with other COVID-19 antivirals, both drugs may act synergistically
with these antivirals to hasten patient recovery before the need for more invasive intensive
care management.
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