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Abstract

Background: Long noncoding RNA (lncRNA) is highly associated with inflammatory response and virus-induced
interferon production. By far the majority of studies have focused on the immune-related lncRNAs of mice and
humans, but the function of lncRNAs in porcine immune cells are poorly understood. Porcine reproductive and
respiratory syndrome virus (PRRSV) impairs local immune responses in the lungs of nursery and growing pigs,
whereas the virus triggers the inflammatory responses. Porcine alveolar macrophage (PAM) is the primary target cell
of PRRSV, thus PRRSV is used as an in vitro model of inflammation. Here, we profiled lncRNA and mRNA repertories
from PRRSV-infected PAMs to explore the underlying mechanism of porcine lncRNAs in regulating host immune
responses.

Results: In this study, a total of 350 annotated lncRNAs and 1792 novel lncRNAs in PAMs were identified through
RNA-seq analysis. Among them 86 differentially expressed (DE) lncRNAs and 406 DE protein-coding mRNAs were
identified upon PRRSV incubation. GO category and KEGG pathway enrichment analyses revealed that these DE
lncRNAs and mRNAs were mainly involved in inflammation- and pathogen infection-induced pathways. The results
of dynamic correlated expression networks between lncRNAs and their predicted target genes uncovered that
numerous lncRNAs, such as XLOC-022175, XLOC-019295, and XLOC-017089, were correlated with innate immune
genes. Further analysis validated that these three lncRNAs were positively correlated with their predicted target
genes including CXCL2, IFI6, and CD163. This study suggests that porcine lncRNAs affect immune responses against
PRRSV infection through regulating their target genes in PAMs.

Conclusion: This study provides both transcriptomic and epigenetic status of porcine macrophages. In response to
PRRSV infection, comprehensive DE lncRNAs and mRNAs were profiled from PAMs. Co-expression analysis
demonstrated that lncRNAs are emerging as the important modulators of immune gene activities through their
critical influence upon PRRSV infection in porcine macrophages.
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macrophage, mRNA-lncRNA correlation network
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Background
Next-generation sequencing of host genomes has re-
vealed that non-coding RNAs, including micro RNAs,
lncRNAs, and circular RNAs, are transcribed from most
genomes [1]. LncRNAs, defined as non-coding RNAs of
more than 200 nucleotides in length, are most often
endowed with polyadenylation, positioned in the nu-
cleus, cytoplasm or both [2, 3]. Emerging evidence has
shown that lncRNAs are involved in a variety of
biological processes including genomic imprinting, cell
proliferation and differentiation, and cellular develop-
mental processes [4]. Transcriptome-wide studies have
demonstrated that many lncRNAs exhibit highly tissue
and cell type specific expression [5, 6], indicating that
lncRNAs may be the driver of cell-specific response [7,
8]. For example, a terminal differentiation-induced
lncRNA TINCR is specifically expressed in the late stage
of human somatic tissue, which regulates the epidermal
differentiation through TINCR-mRNA base-pairing in-
teractions [9]. Several lncRNAs are tumor-specific, such
as PVT1 [10] and HAGLROS [11], regulating the expres-
sion of oncogenes and tumor suppressor genes. LncRNA
LOC646329, a cell proliferation regulator, appears low in
neocortical tissues but enriches in radial glia cells [12].
These data indicated that lncRNAs may play important
roles in lineage-specific differentiation or specialized cel-
lular function.
The innate immune system is the first line of host

defense against invading organisms. Recently lncRNAs
have been identified as the key regulators in the innate
immune response. One well-characterized lncRNA
lincRNA-Cox2 has been identified to be a regulator of
the transcription of macrophages, which can either acti-
vate the expression of IL-6 and IL-23a via the TLR2
pathway or inhibit the expression of IFN-stimulated
genes (IRF7, ISG15, IFI204, and OAS2) [13]. Another
immune-related lncRNA THRIL is highly induced in
monocyte cell line THP-1, serving as an enhancer of
TNFα and IL-6 through interacting with hnRNPL [14].
However, little is known regarding the function of
lncRNAs in porcine innate immune cells during virus
infection.
Porcine reproductive and respiratory syndrome virus

(PRRSV) is the etiologic agent of porcine reproductive
and respiratory syndrome, which is characterized by re-
spiratory problem in growing pigs and reproductive fail-
ure in sows [15, 16]. Porcine alveolar macrophages
(PAMs) are the primary target cells of PRRSV. Macro-
phages, as a group of innate immune cells, play a central
role in monitoring viral infections including PRRSV, in-
fluenza A virus, and HIV. To successfully fight against
PRRSV infection, macrophages have evolved various
strategies to regulate antiviral responses, such as regulat-
ing the production of IFN-α/β [17]. The previous

evidence suggested that PRRSV was susceptible to IFNs
[18], whereas PRRSV-mediated suppression of IFNs pro-
duction helped the virus circumvent the host antiviral
responses [19]. Besides, the pro-inflammatory cytokines
including IL-1, IL-6, IL-8, and TNF-α mainly produced
in PAMs after virus invasion, play critical roles in infec-
tion and pathogenesis of PRRSV [20–23]. However, the
intracellular regulatory mechanisms of lncRNAs related
to these innate immune properties remain to be ad-
dressed. Here, we used PRRSV as an inflammatory
model to stimulate PAMs and explored the regulatory
role of porcine lncRNAs in innate immune responses.

Results
Expression profile of lncRNA in PAMs
To evaluate the performance of endogenous lncRNAs in
PAMs, we designed a synthetic reference pool from
three specific-pathogen-free (SPF) Landrace pigs by
RNA-seq analysis. More specifically, our pool contained
2142 lncRNAs (350 known lncRNAs and 1792 novel
lncRNAs) and 22,565 mRNAs. To predict the function
of these lncRNAs, we performed KEGG pathway analysis
of cis- and trans-regulated predicted mRNAs. The result
showed that enriched GO and KEGG pathways were
mainly related to the inflammatory response, such as
“MAPK signaling pathway”, “cytokine-cytokine receptor
interaction”, “TNF signaling pathway”, “toll-like receptor
signaling pathway”, and “Jak-STAT signaling pathway”
(Fig. 1a). To make a connection between the enriched
lncRNAs and mRNAs, we screened out the top 20 abun-
dant mRNAs. As shown in Fig. 1b, majority of the first
20 abundant mRNAs were inflammatory response-
related genes, such as Chemokine (C-X-C motif) ligand
8 (CXCL8), Ferritin light chain (FTL), S100A8, Chemo-
kine (C-X-C motif) ligand 6 (CXCL6), Cathepsin S
(CTSS), Galectin-3 (LGALS3), Elongation factor 1-alpha
1 (EEF1A), thioredoxin (trxA), Apolipoprotein E (APOE),
C-type lysozyme enzyme (LYZ), Leukocyte surface anti-
gen (CD53), Chemokine ligand x (CCLx), Superoxide
dismutase 2 (SOD2), and Chemokine (C-X-C motif) lig-
and 2 (CXCL2). These data indicate that the PAMs are
enriched in immune response-related lncRNAs and their
predicted target genes, which allow them to respond
quickly to invading organisms.

Validation the susceptibility of PAMs to PRRSV infection
To perform the functional analysis of porcine lncRNAs,
we established in vitro model of inflammation by incu-
bating PAMs with a high-pathogenic PRRSV strain
HuN4. Treated cells were then collected for RNA se-
quence analysis. To confirm whether the PAMs were
successfully infected by PRRSV, virus replication was de-
termined by TCID50 and Western blot assay. The results
showed that the virus titer obtained from PAMs
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supernatant was 5.25 log10 TCID50/ml (Fig. 2a) and the
expression of N protein was also confirmed in PRRSV-
treated PAMs (Fig. 2b and Additional file 1).

LncRNA expression profile in PRRSV-infected PAMs
Freshly isolated PAMs were treated with PRRSV HuN4
or mock, and followed by RNA-seq methodology. The
results showed that the expression levels of 86 relatively
abundant lncRNAs (FPKM > 1) were significantly altered
upon virus incubation (Fig. 3a and Additional file 2).

Among them, 33 lncRNAs were upregulated and 53
were downregulated (fold change>2.0, P-value<0.05). To
further employ the differentially expressed (DE)
lncRNAs upon PRRSV infection, the unsupervised hier-
archical clustering analysis was used. Heat maps showed
overt self-segregated clusters in PAMs treated with
PRRSV and mock (Fig. 3b). To further verify the
accuracy of RNA-seq results, we tested four upregulated
lncRNAs (XLOC-022131, XLOC-022175, XLOC-
019295, and XLOC-007149) and one downregulated
lncRNA (XLOC-017089) by quantitative PCR (qPCR).
As shown in Fig. 3c and Table 1, XLOC-022131, XLOC-
022175, XLOC-019295, and XLOC-007149 were signifi-
cantly upregulated and XLOC-017089 was significantly
downregulated, indicating the accuracy of RNA-seq data.
We next performed GO and KEGG pathway analyses

to evaluate the function of DE lncRNAs. As shown in
Fig. 3d, the upregulated lncRNAs were primarily associ-
ated with “NF-κB signaling pathway”, “toll-like receptor
signaling pathway”, “MAPK signaling pathway”, “RIG-I-
like receptor signaling pathway”, “Jak-STAT signaling
pathway”, and “TNF signaling pathway”. The

Fig. 1 The expression profiles of endogenous lncRNAs and mRNAs in PAMs. a KEGG pathway analysis of lncRNAs in PAMs. b Top 20 abundant
mRNAs in PAMs

Fig. 2 Validation of PAMs susceptibility to PRRSV infection. a The
virus titer determined by TCID50. b The expression of viral N protein
determined by Western-blotting
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Fig. 3 DE lncRNAs in PAMs upon PRRSV infection. a Volcano plots of DE lncRNAs between mock and PRRSV-infected PAMs. Red or green points
represent the DE lncRNAs with statistical significance (P < 0.05). b Unsupervised hierarchical clustering and heat map of lncRNA expression
between mock and PRRSV-infected PAMs. Each column represents a sample and each row represents a lncRNA. Red color indicates relatively
high expression and blue color indicates relatively low expression. c Verification of lncRNAs expression in mock and PRRSV-infected PAMs.
Expression levels of four upregulated and one downregulated lncRNAs were verified by qPCR and normalized to β-actin. The results were
presented as the fold change to the corresponding uninfected control (*, P < 0.05). d and e Pathway analysis of DE lncRNAs after PRRSV infection.
The dot plots represent the enrichment of the lncRNAs in each pathway. The color of each dot corresponds to the P-value. The size of each dot
shows the number of lncRNAs. The horizontal axis represents the enrichment level of the pathways. A higher enrichment level means a larger
change after PRRSV infection when the P-values are the same. Pathway enrichment of upregulated lncRNAs (d) and downregulated lncRNAs (e)
was shown respectively. Results are representative of three independent experiments (means ± SD). *, P < 0.05. The P value was calculated using
Student’s t-test
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downregulated lncRNAs were enriched in “PI3K-Akt sig-
naling pathway”, “chemokine signaling pathway”, and
“MAPK signaling pathway” (Fig. 3e). The GO and KEGG
pathway patterns suggest that DE lncRNAs are largely
associated with the inflammation- and pathogen
infection-induced immune responses upon PRRSV infec-
tion, indicating that these DE lnRNAs may play critical
roles in regulating the virus-induced inflammatory re-
sponses in PAMs.

Gene expression signature in PRRSV-infected PAMs
Based on the analysis of RNA-seq data, we also gener-
ated volcano plots to visualize the DE profile of protein-
coding mRNAs. Totally 406 mRNAs were differentially
expressed (126 upregulated and 280 downregulated
mRNAs) in PAMs after PRRSV treatment (Fig. 4a and
Additional file 3). The hierarchical clustering analysis re-
vealed that DE mRNAs were precisely distinguished by
PRRSV-infected and mock-treated PAMs (Fig. 4b).
Furthermore, we performed the GO and KEGG pathway
analyses for DE mRNAs. Figure 4c showed that the
upregulated genes were enriched in “TNF signaling
pathway”, “cytokine-cytokine receptor interaction”, “che-
mokine signaling pathway”, “rheumatoid arthritis”, “Toll-
like receptor signaling pathway”, and “inflammatory
bowel disease”. The most downregulated genes were
enriched in pathways including “metabolic pathways”
and “complement and coagulation cascades” (Fig. 4d).
The pathway patterns determined by GO and KEGG
analyses indicate that these DE genes are dominantly

related to pathogen-induced inflammatory immune re-
sponses. Combined with lncRNA profiles, these results
implicate that the DE lncRNAs may have indispensable
regulatory functions in the DE genes in PAMs upon
virus stimulation.

Identification of the regulatory function of lncRNAs in
immune responses
Correlation network is an innovative tool to better inte-
grate the co-expressed genes with the regulatory func-
tions of lncRNAs. Here the correlation analysis
encompassed 86 lncRNA nodes and 406 mRNA nodes
with significant changes in the virus-stimulated PAMs.
By using a Pearson Correlation, we identified numerous
sets of DE genes with temporal co-expression patterns
(Additional file 4). To annotate the function of DE
lncRNAs, we selected four immune-related genes includ-
ing CXCL2, IFI6, IFITM1, and CD163 as modules to un-
earth the corresponding regulatory lncRNAs.
CXCL2, as a powerful chemoattractant, is exclusively

secreted by monocytes and macrophages, involving in
neutrophil recruitment and other immune responses
during inflammation and wound healing [24]. For the
CXCL2-lncRNAs network, 17 lncRNAs positively corre-
lated with CXCL2 expression were upregulated, while 24
lncRNAs negatively correlated with CXCL2 expression
were downregulated in PRRSV-infected cells (Fig. 5a).
The CXCL2 module indicates that significantly enriched
lncRNAs may play a dual role in the macrophages for
microbial killing and initiating tissue repair [25].
Numerous IFNs stimulated genes, transcriptionally in-

duced as the downstream signaling molecule of IFNs,
can inhibit the infection of multiple viral families.
Among these antiviral genes, the IFN-inducible protein
(IFI) family and IFN-induced transmembrane protein
(IFITM) family have broad-spectrum antiviral functions.
The IFITM family consists of IFITM1, 2, 3, 5, and 6
[26], which can block the replication and infection of
enveloped viruses [27]. IFI6 can target viral replication
at the endoplasmic reticulum or distinct membranous
organelles [28]. Here, the IFI6 and IFITM1 were selected
to build the lncRNA/mRNA co-expression network. For
the IFN-inducible genes network, 27 lncRNAs positively
correlated with IFITM1/IFI6 expression were upregu-
lated, while 13 lncRNAs negatively correlated with IFIT
M1/IFI6 expression were downregulated in PRRSV-
infected cells (Fig. 5b). Our results indicate that the DE
lncRNAs associated with IFN-inducible genes have the
potential to regulate the antiviral functions in
macrophages.
CD163 has been identified as the essential receptor

that mediates PRRSV entry [29, 30]. Therefore, the
CD163-lncRNAs correlation network was analyzed. As
shown in Fig. 5c, 16 lncRNAs negatively correlated with

Table 1 Primers used for qPCR

Primer Sequence (5′-3′)

Porcine -actin-F CTTCCTGGGCATGGAGTCC

Porcine -actin-R GGCGCGATGATCTTGATCTTC

Porcine-IFI6-F GAAGACGCTCTGAGGACAAC

Porcine-IFI6-R CGGTTGTGAAGCCCAGAG

Porcine-CXCL2-F GGAAGTTTGTCTCAACCCCGC

Porcine-CXCL2-R AGCCAGTAAGTTTCCTCCATCTC

Porcine-CD163-F ATGGGCTAATTCCAGTGCAG

Porcine-CD163-R GATCCATCTGAGCAAGTCACTCCA

XLOC-017089 -F CTTAACCTACTGAGCCAAGCC

XLOC-017089-R ATGTACTTTACCAGATTTGTCATGAAA

XLOC-022175-F ACGAATAGTGAGTGTGAGGGC

XLOC-022175-R GACAGAATGACTCTACTCACACG

XLOC-019295-F GATCTCGTTGGGCTTCTCATAG

XLOC-019295-R GAGCTTCCTCTGTCATACTTGG

XLOC-007149-F CCTTGCTTCTGTTCTCCTGG

XLOC-007149-R GTTCCTCATTCTCTTCCTCGG

XLOC-002131-F GGTCTCCATGTCATTCCGATG

XLOC-002131-R TTACTCACTTGCTCTGCCAC
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CD163 expression were upregulated, while 22 lncRNAs
positively correlated with CD163 expression were
downregulated in PRRSV infected cells. The CD163
module suggests that DE lncRNAs may play import-
ant roles in PRRSV entry by regulating the expression
level of CD163.

Validation of differentially expressed lncRNAs by qPCR
To verify our correlation networks, qPCR was used to
examine three significantly differentially expressed
lncRNA-mRNA pairs in PRRSV-infected PAMs. As
shown in Fig. 6a and Table 1, all three lncRNA-mRNA
pairs, including lncRNA XLOC-022175 vs CXCL2 (co-

Fig. 4 DE mRNAs in PAMs upon PRRSV infection. a Volcano plots of mRNAs between mock and PRRSV-infected PAMs. Red or green points
represent the DE mRNAs with statistical significance (P < 0.05). b Unsupervised hierarchical clustering and heat map of mRNA expression in PAMs
upon virus infection. Red color indicates upregulated expression and blue color indicates downregulated expression. Each column represents a
PAM sample and each row represents an mRNA fragment. Mock represents mock-treated PAMs and virus represents PRRSV-infected cells. c and d
Pathway analysis of DE mRNAs after PRRSV infection. The dot plots present the enrichment of the mRNAs in each pathway. Pathway enrichment
of upregulated mRNAs (c) and downregulated mRNAs (d) was shown respectively
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upregulated), XLOC-019295 vs IFI6 (co-upregulated),
and XLOC-017089 vs CD163 (co-downregulated) exhib-
ited significant changes after virus infection, which coin-
cided with the predicted correlation networks.
Additionally, the relationship between these three
lncRNAs and their neighboring genes was analyzed
based on the genomic location and transcriptome ex-
pression profile (Fig. 6b and Table 2). Sequence analysis
revealed that XLOC-22175 as a sense lncRNA located at
the CXCL2 genomic locus, suggesting that the upregu-
lated XLOC-022175 may promote the expression of

CXCL2 (Fig. 6a i). Sequence databases also showed that
both XLOC-019295 and XLOC-017089 were antisense
lncRNAs, and located near the genomic region of either
IFI6 or CD163, indicating that both lncRNAs may facili-
tate the expression of IFI6 and CD163, respectively (Fig.
6a ii and iii). Interestingly, XLOC-019295 was predicted
to be a trans-regulatory element for the expression of
distant gene IFITM1 (Table 2). Although the correla-
tions of these three lncRNA-mRNA pairs were con-
firmed by qPCR, their potential immune regulatory
function needs further investigation.

Fig. 5 Correlation between lncRNAs and CXCL2, IFI6/IFITM1, and CD163 mRNA. The red color indicates the upregulated lncRNAs while the blue
color indicates the downregulated lncRNAs. The solid lines represent positive correlation and the dash lines represent negative correlation. a
CXCL2-lncRNAs network. b IFITM1/IFI6-lncRNAs network. c CD163-lncRNAs network
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Discussion
There are numerous lncRNAs available in public data-
bases concerning their sequence, expression, and func-
tion [31–33]. The recent growth of next-generation
sequencing technology has accelerated the research pro-
gress of lncRNAs. Although tens of thousands of
lncRNAs have been discovered, only a small fraction of
lncRNAs have been found to regulate gene expression in
mouse and human. Even more noteworthy is the fact
that only 15% of mouse lncRNAs are expressed in hu-
man and vice versa, suggesting dramatic species-
specificity [34]. However, there are few databases about
porcine lncRNAs and their potential functions [35–38],
resulting in majority of porcine lncRNAs remains to be
unidentified. Macrophages, as one of the critical regula-
tors of both normal homeostasis and pathology, have
attracted much attention from researchers to investigate
the molecular mechanisms responsible for their

function. In this study, the high-throughput RNA-seq
method was utilized to investigate the detailed informa-
tion about lncRNAs in porcine macrophages. We found
2142 lncRNAs abundantly expressed in PAMs. To de-
scribe the biological functions of these lncRNAs, GO
and KEGG pathways are commonly introduced [39, 40].
GO and KEGG pathway analyses revealed that the regu-
latory signaling pathways of these lncRNAs mainly
enriched in IFNs and cytokines production, indicating
that lncRNAs may have a tight connection with immune
response in porcine macrophages.
To further determine the regulatory function of these

lncRNAs, we incubated PAMs with PRRSV to induce
the inflammation model [41]. According to RNA-seq
data, we defined a set of 86 DE lncRNAs in PAMs after
PRRSV infection. GO and KEGG pathway enrichment
analyses revealed that most DE lncRNAs and protein-
coding genes were associated with inflammatory

Fig. 6 Verification of the correlation between lncRNAs and mRNAs. a PAMs were infected with PRRSV at a MOI of 5. At 24 hpi, total RNA was
extracted and subjected to qPCR for detecting the expression levels of transcripts as indicated. (i) XLOC_022175 and CXCL2 mRNA. (ii)
XLOC_019295 and IFI6 mRNA. (iii) XLOC_017089 and CD163 mRNA. b The location of lncRNAs and target mRNAs respectively. Results are
representative of three independent experiments (means ± SD). *, P < 0.05. The P value was calculated using Student’s t-test

Table 2 LncRNA-mRNA pairs with Pearson Correlation coefficients > 0.9

LncRNA Correlation coefficients. Target gene KEGG name Function

XLOC_022175 0.949422683 ENSSSCG00000008959 CXCL2 cis

XLOC_019295 0.997191011 ENSSSCG00000034570 IFI6 cis

0.941706488 ENSSSCG00000014565 IFITM1 trans

XLOC_017089 0.952479684 ENSSSCG00000033146 CD163 cis
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pathways in PAMs. Since the network analysis can pro-
vide a global view of all possible lncRNAs-mRNA ex-
pression associations based on the different immune
background, here, the network analysis was used to pre-
dict the functional annotations of DE lncRNAs. We ob-
served the cooperative expression relationships between
four protein-coding genes (CXCL2, IFI6, IFITM1, and
CD163) and their predicted regulator lncRNAs. Like-
wise, other studies have also employed a similar strategy
to identify functional lncRNA signatures in different
types of cancer [42, 43].
LncRNAs are recognized as transcriptional regulators

that may be involved in cis or trans regulation of genes
located in their vicinity or at distant loci [44]. In cis, the
sense and antisense lncRNAs interact with genes tran-
scribed from the same DNA region; whereas in trans,
the interaction is with genes located at distant loci or
even at other chromosomes [45, 46]. Here, after valid-
ation by qPCR, three selected lncRNAs were showed to
have a positively correlated expression with their pre-
dicted target genes in PAMs. By using sequence align-
ment between full-length lncRNAs and nearby mRNAs,
we especially considered protein coding gene loci which
act as hosts for lncRNA transcripts. In other published
literature about lncRNA profiles upon PRRSV infection,
there is no such detailed information provided [37, 38,
47, 48]. Only Zeng et al. revealed that DE lncRNA XR_
297549.1 induced by PRRSV infection was predicted to
both cis-regulate and trans-regulate its neighboring
gene, prostaglandin-endoperoxide synthase 2 [49]. In
this study, XLOC-022175, a sense lncRNA in cis-
regulatory fashion, was predicted to be positively
correlated with CXCL2, which is mainly released from
activated macrophages and capable of attracting
CXCR2+ cells, such as neutrophils to sites of inflamma-
tion [50]. Our data also showed that IFI6 and IFITM1
were predicted to be the cis- and trans-regulated target
genes of XLOC-019295, respectively. Both IFI6 and IFIT
M1 belong to IFN-stimulated genes with antiviral activ-
ity [26]. IFITM1, a virus-restriction factor, have been
proved to restrict the replication of several viruses,
including PRRSV, PRV, PCV2, and SIV [51–53]. XLOC-
017089 was identified as an antisense lncRNA and pre-
dicted to act in cis to regulate CD163 expression, which
has been determined to be the essential receptor for
PRRSV [16, 54]. These presented data suggest that our
proposed method can better reveal the function of
lncRNAs not only through the correlation network of
different expression but also through cis or trans
regulatory mode of lncRNAs located. By using the
similar methodology, other cutting-edge studies have
indicated that lncRNAs regulate the function of their
target genes through cis- and trans-acting, such as
Xist, PTEN, and HOTAIR [43, 55, 56].

Taken together, our findings provide novel insights on
functional characterization of lncRNAs in innate im-
mune responses of porcine macrophages. However, the
detail mechanisms of these core lncRNAs need to be
further studied and established. We need precisely
characterize these lncRNAs phenotypes and identify its
functions during in vitro and in vivo infection. Technic-
ally we need conduct genetic modification systems to
answer whether lncRNAs XLOC-022175, XLOC-019295,
and XLOC-017089 play critical roles in inflammation,
antiviral response, and PRRSV infection. More specific-
ally, we will investigate whether lncRNA XLOC-022175
can regulate CXCL2 secretion to recruit neutrophils to
sites of PRRSV infection, whether XLOC-019295 plays a
duel role in host defense against infectious diseases, and
whether XLOC-017089 can modify PRRSV infection
through regulating the expression of the scavenger re-
ceptor CD163.

Conclusion
In summary, RNA-seq can be a useful tool to analyze
the expression profiles of lncRNAs and their regulatory
function. Here, the transcriptome analysis revealed that
a total of 86 DE lncRNAs and 406 DE protein-coding
mRNAs were mainly involved in PRRSV-induced inflam-
mation and immune responses in PAMs. Correlated
expression network analysis identified that numerous
lncRNAs participated in the innate immune responses.
Correlation analysis of DE lncRNAs revealed that the
predicted target genes of XLOC-022175, XLOC-019295,
and XLOC-017089 were related to the inflammation and
antiviral signaling pathways. These DE lncRNAs
comprised a valuable atlas that could be used to connect
lncRNAs expression with viral pathogenesis. Further
studies are required to investigate the regulatory roles of
these lncRNAs during virus infection.

Methods
A full step-by-step process can be found in
Additional file 5.

Animals, cells and viruses
Three five-week-old SPF Landrace pigs were from
Harbin Veterinary Research Institute, Chinese Academy
of Agricultural Sciences. Pigs were euthanized by
Pentobarbital sodium intravenously (100mg/kg) and
sacrificed. Immediately, lungs were collected sterilely
and primary PAMs were freshly isolated. Animal experi-
ments were approved by the Animal Care and Use
Committee of Harbin Veterinary Research Institute of
Chinese Academy of Agricultural Sciences (Approval ID:
200720–01) and experiments were performed according
to the regulations and guidelines established by this
committee. PAMs were cultured in DMEM (Life
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Technologies, USA) supplemented with 10% heat-
inactivated FBS (Hyclone), 100 U/ml penicillin, 100 μg/
mL streptomycin at 37 °C in a 5% CO2 incubator
(Thermo Scientific, USA). Marc-145 cells, a monkey
kidney cell line, were maintained in DMEM as well. The
PRRSV North American-like strain HuN4 (GenBank ac-
cession number EF635006), a high pathogenic PRRSV
strain [57] was cultured in Marc-145 cells and PAMs as
indicated.

TCID50 assay
Median tissue culture infectious does (TCID50) assay
was performed on Marc-145 cells as previously de-
scribed [57]. Virus samples were collected by centrifuga-
tion for 10 min at 8000×g and diluted by 10-fold serial
dilution. Cell monolayers were inoculated with diluted
viruses and cultured for 5–6 days until the appearance of
cytopathic effect. The virus titers were calculated by
Reed & Muench method.

Western blotting
Western blotting analysis was performed as described
previously with a slight modification [58]. PAMs were
inoculated with PRRSV or mock at a MOI of 5. At 24 h
postinfection, cells were lysed with Pierce IP lysis buffer
(Thermo Scientific, Rockford, IL). The cell lysates were
separated by SDS-PAGE under reducing condition and
transferred onto PVDF membrane. After blocking, the
membrane was incubated with the appropriate primary
and secondary antibodies. The membranes were scanned
and analyzed using an Odyssey instrument (Li-Cor
Biosciences). The blotting mAb against PRRSV nucleo-
capsid (N) protein was prepared in our laboratory. Anti-
actin mAb (C4) was purchased from Santa Cruz
Biotechnology (Santa Cruz, CA). The IRDye-conjugate
secondary antibody was from Li-Cor Biosciences
(Lincoln, NE).

Total RNA extraction and quantitative PCR
Total RNA was extracted from cells with TRIzol (Invi-
trogen, SIGMA), and was then reverse transcribed into
cDNA using PrimeScript RT reagent Kit with gDNA
Eraser by random primers (TaKaRa, Japan) according to
the manufacturer’s instructions. Quantitative PCR
(qPCR) was carried out in a QuantStudio 5 system (Ap-
plied Biosystems) using SYBR premix Ex Taq (TaKaRa,
Japan). Fold changes were determined using the cycle
threshold (ΔΔCT) method [59].

Whole transcriptome library preparation and sequencing
RNA transcripts were purified from total RNA with
oligo (dT)-attached magnetic beads and fragmented into
short fragments. First-strand cDNA and second-strand
cDNA were subsequently synthesized using random

hexamer primer. The cDNA fragments were purified
and resolved with EB buffer for terminal repair, the
addition of single nucleotide A and adapters. After size
selecting and retrieving by AMPure XP beads, the
products were used for PCR amplification to obtain the
library. Agilent 2100 Bioanalyzer and ABI StepOnePlus
Real-Time PCR System were used to assess the qualifica-
tion and quantification of those libraries. The eligible
libraries were sequenced using Illumina HiSeqTM X
TEN.

RNA-seq data analysis
Clean reads were obtained by removing reads with adap-
tors, reads with unknown bases (N bases more than 5%),
and low quality reads (bases qualities lower than 10).
Next, HISAT [60] tools were used to map clean reads to
the indexed reference transcriptome. Gene expression
levels were normalized using FPKM method by RSEM
[61, 62]. Differentially expressed genes were screened by
Edge R [63] with the criteria of fold change ≥2 and
FDR ≤ 0.01.

Function prediction of lncRNAs
To determine the expression profile of lncRNAs, RNA
transcripts were reconstructed and identified by mapped
reads using StringTie [64] and cuffcompare [65]. The
known lncRNAs were acquired by comparing the assem-
bled transcripts with annotated lncRNAs from NCBI,
Ensembl, and UCSC. To predict new lncRNAs, we only
retained transcripts longer than 200 nucleotides, more
than one exon, and optimum expression threshold of
FPKM > 0.5 in at least one sample. The software CNCI
[66], CPC [67], and txCdsPredict were used to predict
the protein-coding potential of new transcripts with
default parameters. Only transcripts that did not pass
the protein-coding score test (CPC score < 0, CNCI
score < 0, txCdsPredict score < 500) were predicted as
new lncRNAs. The expression level of lncRNA was cal-
culated using FPKM within the software RSEM. Tran-
scripts with an FDR < 0.01 and fold change ≥2 were
identified as significantly DE lncRNAs using EdgeR. The
potential target genes of DE lncRNAs in cis- and trans-
regulatory effects were predicted. The neighboring
protein-coding genes were predicted as the cis target
genes. To predict trans target genes, according to the
FPKM values of the different expression of lncRNAs and
mRNAs in all the samples, the Pearson Correlation coef-
ficient between the lncRNAs and the mRNAs were cal-
culated, and the threshold for positive correlation was
set to Pearson Correlation > 0.8.

Differential expression analysis of lncRNAs and mRNAs
For each sample, FPKM was a normalized estimation of
both mRNA and lncRNA based on RNA-seq data.
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FPKM was calculated from the number of reads that
mapped to each particular gene sequence taking into ac-
count the gene length and the sequencing depth. By
using DESeq [68] package in R language and t-test,
mRNA and lncRNA differential expression analyses were
performed for all pairwise comparisons between PRRSV-
infected groups and mock-treated groups. A corrected
P-value < 0.05 by Student’s t-test with Benjamini-
Hochberg FDR adjustment was used as the cut-off for
significantly DE genes.

Heatmap and functional annotation of differentially
expressed transcripts
To show fold changes of the DE transcripts between
groups, hierarchical heatmaps were clustered by the one
minus Pearson Correlation method and generated by
MORPHEUS (https://software.broadinstitute.org/
morpheus). To gain insight into the functions of DE
transcripts, the associated GO terms were identified
using DAVID Bioinformatics Resources (version 6.7,
http://david.abcc.ncifcrf.gov/). Specifically, GeneRatio
and BgRation were used to classify the GO category.
DAVID software was used to analyze the signaling path-
ways of DE genes according to KEGG. Two-sided
Fisher’s exact test and x2 test were used to select signifi-
cant pathways, and the FDR was calculated to correct
the P-value.

LncRNA-mRNA correlation network
The lncRNA-mRNA correlation network was con-
structed by correlation calculation based on the values
of the normalized signal intensity of specific expression
in the DE genes. For each pair of lncRNA-mRNA, the
Pearson Correlation was calculated to determine the sig-
nificance of correlation and the correlation value cut-off
was 0.8. Correlation degrees of lncRNAs and mRNAs
were calculated by counting their correlated counter-
parts. The P-value denoted the significant level of gene
co-expression and the threshold of significance was P-
value < 0.05.

Statistical analysis
For next-generation sequencing data, all the experimen-
tal condition was independently repeated three times
and in each of three biological repetitions, three tech-
nical replicas were made. Clean reads were analyzed by
Edge R and the criteria of fold change ≥2 and FDR ≤
0.01. Correlation network data were calculated by
Pearson Correlation coefficient and the correlation value
cut-off was 0.8 and the threshold of significance was P-
value < 0.05. All statistical data were expressed as
mean ± standard deviation (SD) of three independent ex-
periments and analyzed using Student’s t-test. A P-value
of < 0.05 was considered statistically significant.
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