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Abstract

Due to the concerted efforts to utilize the microbial features to improve disease prediction

capabilities, automated machine learning (AutoML) systems aiming to get rid of the

tediousness in manually performing ML tasks are in great demand. Here we developed

mAML, an ML model-building pipeline, which can automatically and rapidly generate

optimized and interpretable models for personalized microbiome-based classification

tasks in a reproducible way. The pipeline is deployed on a web-based platform, while

the server is user-friendly and flexible and has been designed to be scalable according

to the specific requirements. This pipeline exhibits high performance for 13 benchmark

datasets including both binary and multi-class classification tasks. In addition, to facilitate

the application of mAML and expand the human disease-related microbiome learn-

ing repository, we developed GMrepo ML repository (GMrepo Microbiome Learning

repository) from the GMrepo database. The repository involves 120 microbiome-based

classification tasks for 85 human-disease phenotypes referring to 12 429 metagenomic

samples and 38 643 amplicon samples. The mAML pipeline and the GMrepo ML reposi-

tory are expected to be important resources for researches in microbiology and algorithm

developments.

Database URL: http://lab.malab.cn/soft/mAML

Introduction

Machine learning (ML) models have enabled key advances
in many application fields and are crucial for data-driven
medical research and translation, such as microbiome-
based disease diagnosis or prognosis (1–3). As domain

classification tasks are often context-dependent, no single
data preprocessing method and ML strategy can handle all
prediction issues. Due to the tedious nature of customizing
ML tasks by domain scientists, several well-known
automated machine learning (AutoML) systems, including
Auto-WEKA (4), Auto-sklearn (5) and Auto-Net (6) have
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emerged to address the famous CASH (automatically and
simultaneously choosing an ML algorithm and setting
its hyper-parameters to optimize empirical performance)
problem (7). While autoML systems are mature enough
to enhance the prediction accuracy, there is not yet any
work to build the autoML systems to meet the specific
requirements of microbiome-based classification tasks (8–
10). Focusing on the scenario of microbiome-associated
phenotype prediction and considering the benefit of
data preprocessing methods regarding ML estimators
(1), an autoML pipeline named mAML was developed
here to automatically generate an optimized ML model
that exhibits sufficient performance for a personalized
microbiome-based classification task.

The mAML pipeline possesses several advantages.
Specifically, (i) the mAML pipeline can efficiently and
automatically build an optimized, interpretable and robust
model for a microbiome-based classification task. (ii) The
mAML pipeline is deployed on a web-based platform (the
mAML web server) that is user-friendly and flexible and has
been designed to be scalable according to user requirements.
(iii) The pipeline can be applied to both binary and multi-
class classification tasks. (iv) The pipeline is data-driven,
and it can be easily extended to the multi-omics data
or other data types if only the domain-specific dataset is
provided.

Furthermore, we developed a microbiome learning
repository from the GMrepo database (11). GMrepo (data
repository for Gut Microbiota) is a database of curated
and consistently annotated human gut metagenomic
data, which contains 58 903 human gut samples/runs,
including 17 618 metagenomes and 41 285 amplicons
from 253 projects concerning 92 phenotypes. GMrepo
consistently processed and annotated the collected samples
and manually curated all possible related meta-data of each
sample/run. It organized the samples according to their
associated phenotypes and offered the taxonomic (genus
and species level) abundance information for all samples of
high quality. Due to the necessity of aggregating samples
across studies and appropriately handling candidate
confounders in curating classification tasks, it is reasonable
to develop a machine learning repository dedicated to
human-disease-associated microbiome-based classification
tasks from GMrepo. Hence, we present the GMrepo ML
repository (GMrepo Microbiome Learning repository), a
public repository of 120 microbiome-based classification
tasks developed from the GMrepo database, which involves
38 643 amplicon samples referring to 71 disease phenotypes
and 12 429 metagenomic samples covering 49 disease
phenotypes. The files in the GMrepo ML repository can
be downloaded and directly submitted to the mAML
server or they can be imported into the phyloseq pipeline

(12) for rapid, reproducible and interactive exploration of
microbiome data.

The source code and benchmark datasets for the mAML
pipeline are available at https://github.com/yangfenglong/
mAML1.0. The docker image of the pipeline can be pulled
from https://hub.docker.com/r/yangfenglong/dash_webse
rver. The GMrepo ML repository is freely available at
http://39.100.246.211:8050/Dataset. The source code for
the construction of the repository is available at https://
github.com/yangfenglong/mAML1.0/blob/master/datasets/
GMrepo_datasets/GMrepo.ipynb.

Method

The mAML pipeline is developed completely in Python,
and the workflow is represented in Figure 1. The user can
upload the BIOM file or Table file to start the pipeline.
As shown in the demo dataset, the microbiome data
inputs should include the feature count/abundance/presence
information for the samples, the metadata for the samples
and/or the metadata for the features. The features can
represent OTUs as in 16S rRNA gene sequencing, genes
as in metagenomics and transcriptomics, metabolites as in
metabolomics, etc. The sample metadata should at least
contain the labeling information of distinct groups, also
called classes or phenotypes. The selection of different types
of phenotypes and the collapse of features into higher levels
are supported. First, the features that exhibit a prevalence
lower than the threshold of 20% by default in all classes
were filtered, as low prevalence features are usually not

Figure 1. Flowchart of the mAML pipeline. At least two files indicated

at the beginning of the pipeline should be provided. Operation steps

before training are indicated in the blue inverse-trapezoids.

https://github.com/yangfenglong/mAML1.0
https://github.com/yangfenglong/mAML1.0
https://hub.docker.com/r/yangfenglong/dash_webserver
https://hub.docker.com/r/yangfenglong/dash_webserver
http://39.100.246.211:8050/Dataset
https://github.com/yangfenglong/mAML1.0/blob/master/datasets/GMrepo_datasets/GMrepo.ipynb
https://github.com/yangfenglong/mAML1.0/blob/master/datasets/GMrepo_datasets/GMrepo.ipynb
https://github.com/yangfenglong/mAML1.0/blob/master/datasets/GMrepo_datasets/GMrepo.ipynb
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promising for use in the analysis of gut microbiota that
possesses thousands of features across samples. Second,
four feature subset selection (FSS) methods (the distal
DBA method (13), HFE (14), univariate feature selection
(15) and mRMR (16)) are adopted to handle high-
dimensional and sparse feature spaces as in microbiome
datasets. Then, the class imbalance problem is compensated
by using RandomOverSampler (the random sampling with
replacement) (17), SMOTE variants (Synthetic Minority
Over-sampling Technique) (18) or ADASYN (Adaptive
Synthetic Sampling Approach for Imbalanced Learning)
(19), as imbalanced datasets containing overrepresented or
underrepresented data can induce bias in prediction. Finally,
the pipeline will automatically determine the optimized
hyper-parameters for all classifiers, including the best
preprocessors for non-tree-based classifiers, using parallel
grid searches. The use of appropriate data preprocessing
methods such as feature scaling is important when used in
combination with normality-assumed algorithms such as
metric-based, gradient-based and distance-based estima-
tors, and it does not influence tree-based models (1). Hence,
the optimized hyper-parameters for those non-tree-based
models were explored while considering data preprocessing
methods as one of the important hyper-parameters. Nested
cross-validation (20) was used to avoid overfitting for each
model in regard to training data, and 11 candidate scoring
metrics, with accuracy as the default, were applied for
model evaluation. In total, 10 data preprocessing methods
and 13 classifiers, primarily derived from python machine
learning package scikit-learn (1), were involved. Consid-
ering the interpretation requirements for the subsequent
microbial studies, only those white-box preprocessors and
classifiers were incorporated.

Utility of mAML

Overview

To facilitate the use of the mAML pipeline, we developed
the mAML web server, which is a web-based machine
learning system that can generate models in a user-friendly,
flexible and scalable way. The main points regarding the
implementation of the server are described as follows, and
the details can be accessed on the server ‘Help’ page.

Web server implementation

Here, we will introduce the key points to navigate the server.

Submit a task

A typical classification task can be submitted to the mAML
web server by the following steps (Figure 2). First, users

Figure 2. The task submission page of the mAML server. The left column

displays the settings for each step, and the right column shows the real-

time feedback of the parameter settings.
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Figure 3. The interaction diagram for the performance of all the candidate models. The users can screen the candidate models by the scalers,

classifiers, mean training score, mean test score and standard test score.

Figure 4. Visualizations for the optimized model: the heatmap for confusing matrix (A), the classification report (B), ROC curve (C) and the histogram

for top features (D, default: 20). Note that, in the case of tree-based models, the feature importance will be provided instead of the feature’s coefficient

in the histogram.

can choose the example datasets or upload datasets of their
own to start the pipeline. Second, the input features will
be filtered at the specified threshold (by default, taxonomic
features with a percentage lower than 20% in all classes

were disregarded in this work). Third, the most relevant
features will be selected using Fizzy-mRMR (top 50 features
by default), which is general for various kinds of features.
The FSS option can be deselected if there is no need to
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Figure 5. The web server interface for the users to reuse the existing model or upload a previously trained model to make predictions.

downsize the number of features. Fourth, the unbalanced
datasets will be rebalanced using SMOTE by default, and
this option can be turned off if it is unnecessary to per-
form imbalanced learning. Finally, the default parameters
and hyperparameters of the preprocessors and classifiers
could be reconfigured, and the adding and pruning of any
preprocessor or classifier is supported. The grid search
settings for the hyperparameters can be altered in the dict
function of each classifier. By default, the pipeline will
search the optimized combination of preprocessors and
non-tree-based classifiers and simultaneously optimize the
hyperparameters for all classifiers. The parameters of nested
cross-validation, the metrics for model evaluation and the
number of parallel processes are also tunable.

When the email address is filled in and all the above
settings are confirmed, the user can start the pipeline and
it will run in the background. The status of the running
task will update automatically in the ‘Running information’
window of the ‘Web Server’ page.

Preview the result files and download

Once the run is completed, the compressed result will be
automatically sent to the predefined e-mail address or can
be downloaded from the ‘Web Server’ page of the server.

The user can preview the interaction diagram (Figure 3)
for the performance of all the candidate models on the
server. For each task, the pipeline automatically outputs the
visualization results for the optimal model, including the
heatmap of the confusing matrix (Figure 4A), the classifica-
tion report (Figure 4B), the ROC curve (Figure 4C) and the
histogram of top features (Figure 4D, default: 20), which
can be investigated in further study.

The result is reproducible within a container started
based on the docker image or via the webserver. An exam-
ple result is represented on the ‘Example Result’ page of
the server.

Make new predictions

The user can feed new data to the existing model or upload a
previously trained model to get new predictions (Figure 5).

Performance of mAML

The performance of the pipeline was investigated by per-
forming analyses on 13 human microbiome datasets that
are publicly available and appropriate for benchmarking,
which involve 7 binary classification tasks (21) and 6 multi-
class classification tasks (22). These datasets, including 11
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Figure 6. The performance comparison of the mAML proposed models against the baseline (A). The labels are connected abbreviations with an

underline between the name of the database and the metric used in the original study (B).

amplicon datasets and 2 metagenomic datasets, vary across
microbiome-related phenotypes and cover 2471 samples,
which can be retrieved from the ‘Metagenomics data’ page
of the server or GitHub repository.

The models proposed by mAML outperform most of
the models in the original studies (Table S1, Figure 6),
confirming the robustness and reliability of this method.
Since only the ‘white box’ preprocessors and classifiers are
involved in the prediction, the optimized model selected for
each task is interpretable and the top features indicated by
the model merit further study. The detailed results for the
candidate models and optimized model of each task are
available at the GitHub repository.

GMrepo ML repository

Furthermore, we developed a GMrepo ML repository
(GMrepo Microbiome Learning repository) from the
GMrepo database to facilitate the utilization of mAML
and expand the microbiome learning repository related
to human disease. The framework of the GMrepo ML
repository construction is presented in Figure 7, and the
details are described as follows.

We downloaded the metadata for all samples that passed
the QC procedure (QCStatus = 1) from the GMrepo web-
site and retrieved the taxonomic abundance information
(including the genus and species level) for all the metage-
nomic and amplicon samples respectively using the RESTful
APIs of GMrepo. Taxa with the scientific name labeled
as unknown or Others were deleted from the taxonomic
abundance table since they are not meaningful features.
Taxonomic lineage and tree were retrieved according to the
NCBI taxonomy id of each taxon by using the ETE3 python
module. Then, four files (taxonomic abundance table, meta-
data table, taxonomic lineage table and taxonomic tree
file) were obtained for all the metagenomic and amplicon
samples respectively, as represented in Figure 7. Each file

Figure 7. Framework of the GMrepo ML repository construction. Opera-

tion steps are indicated in the blue inverse-trapezoids. Files with names

in bold are all contained in the repository, and they can be retrieved

from the ‘Metagenomics data’ page of the server or from the GitHub.

was then divided into subfiles according to different pheno-
types, and only those phenotypes with healthy control sam-
ples are preserved. Totally, the repository involves 12 429
metagenomic samples covering 49 disease phenotypes and
38 643 amplicon samples referring to 71 disease pheno-
types. For each phenotype, the taxonomic abundance table
and metadata table can be directly submitted to the mAML
server to build an optimized model for disease prediction.
By using the phyloseq R package (12), all the subfiles files
from each phenotype can be taken as components to build
the phyloseq-class object (phyloseq.RData), which can be
imported into the Shiny-phyloseq web application (23)
for subsequent interactive exploration of microbiome data.
Additionally, the GMrepo ML repository is also provided as

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa050#supplementary-data
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BIOM format, which is a general-use format to represent
biological data and is currently supported by almost all
state-of-the-art software in the field of microbiome.

The users can apply the mAML pipeline to their inter-
ested datasets in the GMrepo ML repository. The datasets
can also be merged with their own samples to perform meta-
analysis. Moreover, multiple feature types such as metabo-
lites and metatranscripts are encouraged to be integrated
with the taxonomic or functional features from metage-
nomics to build a multi-omics-feature based model to the
target disease.

Conclusion

Considering the tedious work and context-dependent
nature of manually performing the microbiome-based
classification tasks, we developed an autoML pipeline,
namely mAML, which can rapidly and automatically gen-
erate an optimized and interpretable model with sufficient
performance for binary or multi-class classification tasks
in a reproducible way. The pipeline is deployed on a web-
based platform, and the mAML server is user-friendly and
flexible and has been designed to be scalable according to
user requirements.

We highlight the reliability and robustness of mAML
with its high performance on 13 benchmark datasets. Being
data-driven, the mAML pipeline can be easily extended to
the multi-omics data of microbes and other data types if
only the domain-specific feature data are supplied. More-
over, we constructed the GMrepo ML repository of 120
microbiome-based classification tasks for 85 disease phe-
notypes, which facilitates the application of mAML and
is expected to be an important resource for algorithm
developers.

Supplementary Data
Supplementary data are available at Database Online.
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