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Abstract

Original Article

Introduction

Proton beam therapy  (PBT), specially using pencil beam 
scanning  (PBS) technique, is increasingly adopted as a 
superior radiotherapy technique, because of its better sparing 
of surrounding normal tissues and reduction of integral 
dose  (ID).[1,2] Several studies have reported an improved 
quality of life[3,4] and reduction of radiation‑induced cancer 
after treatment with PBT.[5,6] PBT is considered as the most 
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appropriate treatment for complex and radio‑resistant tumors, 
with 3‑years survival reported at 91% for chordomas and 
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7‑year survivals of 94% for chondrosarcoma.[7,8] These patients 
were treated with proton double scattering  (DS) technique 
alone or in combination with photon radiotherapy. In general, 
treatment planning of skull base chordoma is complex due 
to its proximity to many critical organs such as optic nerves, 
brainstem, optic chiasm, cranial nerves, cochlea, and temporal 
lobes. Quite often these organs at risk (OARs) abut with the 
target and few OARs can even be within the concavity of 
the target. Thus, the treatment planning for chordoma poses 
unique challenges, due to a) the very high dose (72‑74 Gy) 
required for an optimal tumor control, b) the dose constrains 
to the surrounding OARs.

Intensity‑modulated proton therapy  (IMPT) plans allows 
optimization of proton spots, weights, and ranges to achieve 
a highly conformal dose distribution to complex targets such 
as chordoma. IMPT can be designed either by using single 
field optimization (SFO) or multi field optimization (MFO). 
SFO plans are optimized to deliver a homogeneous dose to 
the target from each field. On the other hand, MFO proton 
plans rely on delivery of non‑uniform doses from each fields 
and can potentially reduce dose to OARs located within the 
concavity of the target.[9,10] The IMPT plans, especially MFO, 
are more susceptible to set‑up and proton range uncertainty.[9‑11] 
The traditional concept of optimization based on planning 
target volume (PTV) and planning organ at risk volume (PRV) 
is discouraged in IMPT planning due to lack of robustness 
especially for complex clinical sites such as chordomas.[9] Robust 
optimization has been suggested as a method to potentially 
solve the PTV/PRV limitations, for improved and robust 
clinical target volume  (CTV) coverage and OARs sparing, 
for both photon and proton treatments.[9‑15] A shortcoming of 
robust optimization is the calculation time which, especially 
when using Monte Carlo (MC) dose calculation algorithms, 
might increase significantly. Trento proton therapy center, 
recently introduced a hybrid‑MFO  (HB‑MFO) approach in 
proton planning, wherein PTV is generated only to compensate 
set-up errors, followed by robust optimization, with respect to 
range errors, on such PTV.[11] This approach has been selected 
to minimize the number of scenarios to be considered during 
the optimization process. However, it is not known which 
proton planning technique is most efficient and robust.

On the other hand, traditional intensity‑modulated 
radiotherapy (IMRT) plans are always optimized to PTV to 
deliver at least 95% of the prescription dose to CTV, in all 
possible set‑up error uncertainties encountered during the 
treatment. As much as the “margin recipe,” for example, 
proposed by van Herk,[16] represented a significant step 
ahead in the inclusion of geometrical uncertainties in the 
planning procedures, it is a first approximation rather than 
a complete solution to the problem. An explicit inclusion 
of geometrical uncertainties in the optimization procedures 
(“robust optimization”) for photons may provide a more 
complete approach to find the right balance between target 
coverage and OAR sparing. As a consequence, it is interesting 
to compare protons and photons dose distributions when they 

are optimized with the same approach, and robustness is also 
explicitly evaluated on the final plan.

Robust optimization has been studied for photon volumetric 
modulated arc therapy (VMAT) to mitigate motion and set‑up 
error in carcinoma lung and breast.[14,15] However, dosimetric 
impact of robust optimization has not been reported for 
chordomas treated with fixed field IMRT. Moreover, to the best 
of our knowledge, no study has been conducted to evaluate 
the robustness and efficiency of IMRT and IMPT plans in the 
same patient dataset. This paper compares SFO, MFO, and 
HB‑MFO in skull base chordomas. Furthermore, the dosimetric 
impact of robust optimization in fixed field IMRT plans were 
investigated on the same patient datasets.

Materials and Methods

Treatment planning
Five skull base chordoma patients, previously treated at 
Trento proton therapy center using proton SFO technique, 
were selected for this retrospective dosimetric study. 
RayStation‑v6.0  (RaySearch Laboratories, Stockholm, 
Sweden) treatment planning system  (TPS) was used for 
contouring, optimization, and dose computation. In four of the 
five patients (A‑D), two CTVs were delineated ‑ CTV high 
risk (CTV‑HR) and CTV low risk (CTV‑LR) ‑ while in the case 
of patient E only CTV‑HR was defined. PTVs were generated 
with 4 mm isotropic margins around the corresponding 
CTVs: such isotropic expansion was obtained by taking into 
consideration the patient’s positioning procedures in place 
and range uncertainties reported in the literature.[17] The PRVs 
were generated by growing 2 mm isotropic margins around the 
corresponding OARs. Patients A, B, C, D were sequentially 
planned for a dose of 54 Gy RBE to CTV‑LR, followed by a 
boost dose of 20 Gy RBE to CTV‑HR. Whereas, patient E was 
planned for a total dose of 72 Gy RBE to CTV‑HR. Treatment 
plans were optimized to cover 98% volume of the CTVs by 
95% of the prescribed dose, while dose to PRVs were optimized 
to maintain clinical goals compliance for OARs [Table 1].

Photon plans
For each patient two photon based IMRT plans - nonrobustly 
optimized IMRT  (IMRT) and robustly optimized 
IMRT  (RB‑IMRT) ‑   were created in the TPS. IMRT plans 
were generated using 6 MV X‑rays from True Beam linac 
(Varian Medical Systems) equipped with Millennium 120 
MLC. In all patients, nine equally spaced fixed coplanar fields 
were used, except for Patient‑A, who received eight coplanar 
and one non‑coplanar beams. In each IMRT plan, PTVs were 
optimized for target coverage and PRVs were optimized for 
OAR sparing. In RB‑IMRT, CTVs and OARs were robustly 
optimized by introducing ±5 mm set‑up uncertainty on one 
axis at a time (i.e.,  (5mm, 0, 0),  (0, 5mm, 0),  (0, 0, 5mm), 
(‑5mm, 0, 0) etc.), using mini‑max based robust optimization 
tool available in the TPS.[10] Finally, the dose computation was 
performed using the collapse cone algorithm.
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Proton plans
Three proton plans  (SFO, MFO, and HB‑MFO) were 
optimized in the TPS for each patient. All proton treatment 
plans were simulated in the TPS for Proteus Plus 
(IBA, Louvain La Neuve, Belgium) proton therapy system 
equipped with dedicated pencil beam nozzle capable of 
delivering 70 to 230 MeV proton energy. The detailed 
characteristics of the Proteus Plus used in this study are 
described elsewhere.[18‑20] Beam arrangement used in proton 
plans is described in Table 2. In SFO technique, each beam is 
individually optimized to deliver uniform dose to PTV which 
is at a margin of 4 mm from the CTV. The MFO plans were 
robustly optimized for CTVs, with ±5 mm set‑up uncertainty 
on one translational axis at a time and a range uncertainty 
of 3.5%. In hybrid MFO technique, the CTV to PTV margin 
was reduced to 3 mm; this PTV was robustly optimized only 
for the range uncertainties of 3.5%. Details of the HB‑MFO 
approach can be found in the paper by Tommasino et al.[11] 
In every proton plan, robust optimization was performed 
using the same mini‑max approach applied for the photon 
planning,[10] whereas final dose was computed with the MC 
algorithm available in TPS.

Plan quality and integral dose evaluation
The dosimetric outcome of the five  (3 proton, 2 photon) 
competing nominal plans of every patient were compared using 
standard dose volume indices derived from the cumulative dose 
volume histogram (DVH). For every plan, target coverage was 
reported as dose to x% of the volume (Dx%) (i.e. D98% and D95%) 
while hot spots were reported as D1%. The maximum dose to all 
serial OARs were evaluated as D1% for the brainstem, chiasm, 
spinal cord, optic nerves and temporal lobes. In the case of 
cochlea Dmean was assessed for all plans to evaluate the plan 
quality. Moreover, in order to assess the low dose bath in all 

techniques, ID was calculated for normal tissue, normal brain 
and other relevant OARs such as brain stem and temporal 
lobes in both proton and photon plans. ID can be computed 
as the product of the organ density, volume, and mean dose, 
using the equation:[21]

IDj = ρjVjDj 

where ρj, Vj and Dj are the density, volume and mean dose of 
the organ respectively, for sub‑volume j, assuming that the 
density of the organ is equal to its mean density and that all 
the sub‑volumes of the organ received mean dose D.

Robust evaluation
The robustness of every photon and proton plan was 
evaluated using an in‑house developed Python script. 
It enables us to create all possible error scenarios of 
both set-up and range uncertainties and accordingly 
study the perturbed dose distribution of the nominal 
plans. For the analysis, we decided not to use the 
same shifts we used for optimization. For each plan, 
16 error scenarios were created by introducing set-up 
uncertainties of ±3 mm along the three translational axes 
simultaneously, namely, the anterior‑posterior  (A‑P), 
superior‑inferior (S‑I), and right‑left (R‑L) directions (i.e., 
8 different shifts (3 mm, 3 mm, 3 mm) (‑3 mm, 3 mm, 3 mm) 
(3 mm, ‑3 mm, 3 mm) etc., with the about same module of 
the vector used for optimization (i.e., 2 2 23 3 3 5.2+ + = ) 
and range uncertainties were incorporated by changing 
the CT number by  ±3.5%. This resulted in 16 dose 
distributions derived from each proton plan. While in 
IMRT plans, only set-up uncertainties were introduced with 
magnitude of ±3 mm in all axes simultaneously, resulting 
in 8 dose distributions errors of the nominal IMRT plans. 
The corresponding DVH error dose distributions and 
nominal plans were exported to MATLAB (R2013a, The 
MathWorks, Natick, MA) for a final analysis. An in‑house 
MATLAB code was written to analyze the DVHs obtained 
with the 16 simulated scenarios for robustness evaluation, 
aiming to find the worst decrease (i.e., the lowest value for 
the CTV D98% or D95% among the 16 scenarios simulated), 
worst increase (i.e., the highest value for the CTV or OARs 
D1% among the 16 simulated scenarios) and mean dose for 
the cochlea  (where the worst increase in the Dmean dose 
was assessed).

Table 1: Clinical goals for organ at risk

Structure Clinical goals (Gy RBE) protons (Gy) photons
Brainstem D1% ≤60
Chiasm D1% ≤55
Spinal cord D1% ≤55
Optic nerve D1% ≤55
Temporal lobs D1% ≤72
Cochlea Dmean≤35
RBE: Relative biological effectiveness

Table 2: Beam arrangements for proton plans (gantry and couch angles are given in degrees)

Name Field‑1 Field‑2 Field‑3 Field‑4

Gantry Couch Gantry Couch Gantry Couch Gantry Couch
Patient‑A 70 350 120 5 240 355 290 10
Patient‑B 80 350 110 350 250 10 280 10
Patient‑C 80 0 110 350 250 10 280 0
Patient‑D 70 90 90 330 270 30 ‑ ‑
Patient‑E 70 0 100 330 260 30 290 0
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Results

Treatment plan evaluation
Figure 1 shows the spatial dose distribution obtained from 
the three nominal proton plans, namely SFO  [Figure  1a], 
MFO  [Figure  1b], HB‑MFO  [Figure  1c], and two photon 

plans, IMRT  [Figure  1d] and RB‑IMRT  [Figure  1e] for a 
representative patient. While the dose distributions from the 
three proton plans are similar, both photon plans showed 
significant increase in the intermediate to low dose to 
surrounding normal tissues. Table  3 represents the overall 
mean and standard deviation  (SD) of D98%, D95%, and D1% 

Table 3: The overall mean and standard deviation of dose to 98%  (D98%), 95%  (D95%), 1%  (D1%) of clinical target volume 
high risk and clinical target volume low risk from the competing proton and photon plans of all five patient

Structure Plans D98%

(Gy RBE) protons

(Gy) photons

D95%

(Gy RBE) protons

(Gy) photons

D1%

(Gy RBE) protons

(Gy) photons

Nominal Worst

Decrease

Nominal Worst

Decrease

Nominal Worst

Increase
CTV‑HR SFO 58.58±8.64 56.05±5.59 62.32±9.49 55.43±6.51 77.33±1.87 77.87±2.18

MFO 61.73±6.57 56.04±6.27 65.44±6.66 56.63±6.64 78.50±3.08 79.99±3.43
HB‑MFO 63.01±7.57 56.86±6.63 66.70±7.06 57.60±7.15 78.42±3.01 79.38±2.67
IMRT 60.94±9.99 52.06±5.32 64.99±8.08 56.06±7.42 79.37±3.86 81.07±4.09
RB‑IMRT 62.04±6.97 55.04±5.49 65.06±8.08 57.55±5.51 78.04±2.51 78.03±2.34

CTV‑LR SFO 52.46±3.88 50.09±2.26 53.54±3.21 50.74±3.18 57.53±2.15 58.12±3.12
MFO 52.07±3.62 49.12±3.12 53.98±2.41 50.19±2.3 58.12±1.35 60.12±2.92
HB‑MFO 52.21±3.97 50.02±2.98 53.55±3.53 50.21±3.18 56.53±2.12 57.12±3.14
IMRT 52.43±2.55 48.40±3.59 54.90±1.95 48.08±2.3 59.12±2.12 61.12±3.23
RB‑IMRT 52.12±3.44 50.14±3.13 53.23±2.19 50.12±2.49 56.15±2.14 58.12±3.32

CTV‑HR: Clinical target volume‑high risk, CTV‑LR: Clinical target volume‑low risk, SFO: Single field uniform optimization, MFO: Multi field optimization, 
HB‑MFO: Hybrid‑multi field optimization, IMRT: Intensity modulated radiotherapy, RB‑IMRT: Robustly optimized‑intensity modulated radiotherapy, RBE: 
Relative biological effectiveness

Figure 1: Dose distribution from the three proton plans, namely (a) SFO, (b) MFO, (c) HB‑MFO and two photon plans (d) IMRT and (e) RB‑IMRT for 
one of the representative patients

d

cba
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of CTV‑ HR and CTV‑LR, from the competing proton and 
photon plans of all five patients. In agreement with our 
planning goal, all the nominal plans of both proton and 
photon provided similar target coverage and hot spot volume, 
except for SFO plans, which showed a slightly less dose to 
CTV‑HR only with mean ± SD D98% and D95% of 58.58 ± 8.64 
and 62.32 ± 9.49 Gy RBE, respectively. In all the five plans, 
HB‑MFO showed slightly better dose to CTV‑HR with 
mean  ±  SD of D98% at 63.01  ±  7.57 Gy RBE and D95% at 
66.70 ± 7.06 Gy RBE in comparison to the other plans. The 
mean D98%, D95% to CTV‑LR remains similar in all five plans.

Robust evaluation for target
Figure 2 shows the nominal (red) and perturbed (blue) DVHs 
of a representative CTV‑HR, resulted from the no‑error and 
error introduced plans of SFO [Figure 2a], IMRT [Figure 2b] 
and RB‑IMRT  [Figure  2c] respectively. The wider spread 
of the shoulder and tail regions of the cumulative DVHs in 
IMRT plan depict lesser robustness in minimum coverage 
and maximum dose to CTV‑HR. The worst case decrease in 
target coverage (D98% and D95%) and worst case increase in high 
dose volume (D1%) resulted from the possible error scenarios 
simulated during robust evaluation is also depicted in Table 3. 
All the five competing plans except regular IMRT showed 
similar worst case mean D98% (55 < D98% <57 Gy RBE) and 
mean D95% (55 < D95% <58 Gy RBE) for CTV‑HR. The regular 
IMRT plans showed lowest mean  ± SD D98% of 52.06 ± 5.32 Gy 
RBE and largest mean ± SD of D1% of 81.07 ± 4.09 Gy RBE. 
Similar pattern of worst case decrease in mean D98% and D95% 
and increase of D1% from IMRT was observed even for CTV‑LR 
target. The worst case decrease in D98% and D95% of CTV‑HR, 
compared to nominal plans, resulted in −4.3% and −11.1% 
for SFO, −9.2% and −13.5% for MFO, −9.8% and −13.6% 
for HB‑MFO. The corresponding values from photon plans 
were ‑14.6 and ‑13.7% for standard IMRT, ‑11.3% and ‑11.5% 
for RB‑IMRT respectively. The worst case increase in high 
dose (D1%) was highest in photon IMRT (+2.1%) and lowest 
in SFO (+0.7%) plan.

Robust evaluation for organs at risks
Figure 3 represents the results of the robustness evaluation 
for select neurological OARs; brainstem [Figure 3a], optic 
chiasm [Figure 3b], and optic nerves [Figure 3c] for the same 
representative patient. The red graphs represent the DVHs 
from the nominal plans while all the perturbed blue graphs 
are from error scenarios. Table 4 represents the maximum 
dose  (D1%) related to serial organs and mean dose  (Dmean) 
related to cochlea from the competing treatment plans and 
their worst case increase in D1% (WI‑D1%) and Dmean (WI‑Dmean). 
The values represent the mean ± SD from all five patients. 
All nominal treatment plans resulted in OAR doses within 
the prescribed tolerance limits. However, in the worst case 
scenario plans, OAR doses were higher than the prescribed 
tolerance limits. In the nominal plans, HB‑MFO resulted 
lower D1% for all serial OARs and least Dmean for cochlea than 
the competing plans. The worst case analysis showed IMRT 
plans were less robust with the largest increase in D1%, while 
SFO plans showed more robustness with lowest increase 
increase in D1%. However, by applying robust optimization 
to IMRT plans  (RB‑IMRT), the worst case increase was 
reduced. In comparison to nominal plans, the highest worst 
case increase in the value of D1% for brainstem, chiasm, spinal 
cord, optic nerves, and temporal lobes were 28.59%, 41.27%, 
30.11%, 41%, and 14% for IMRT plan and, respectively, 
17.65%, 20.76%, 21%, 24%, and 7.4% for SFO plan. The 
RB‑IMRT plans resulted in more robust plans in comparison 
to the IMRT plans: with 24.6%, 28%, 25%, 26%, 8% increase 
respectively for brainstem, chiasm, spinal cord, optic nerves, 
and temporal lobes compared to the nominal RB‑IMRT plans. 
In terms of absolute dose, the worst case analysis of different 
plans showed that robustness of HB‑MFO plans was the best 
when compared to the competing nominal plans. Compared to 
the nominal doses, the worst case maximum in the mean dose 
delivered to cochlea was higher (+27.1% right; +54.2% left) 
for MFO plan and lower (+8.3% right; +32.7% left) for SFO 
plan. In terms of absolute dose, the HB‑MFO plans resulted 
in the safest values.

Figure 2: The nominal (red) and perturbed (blue) DVHs of a representative CTV‑HR, resulted from the no‑error and error introduced plans of SFO (a), 
IMRT (b) and RB‑IMRT (c)

cba
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Table 4: The nominal maximum dose D1% to various serial organs and mean dose Dmean to cochlea from the competing 
treatment plans and their worst case increase D1% and Dmean. Units are Gy RBE for proton and Gy for photon plans

Structure Indices Techniques

SFO MFO HB‑MFO IMRT RB‑IMRT
Brain stem NM‑D1% 53.64±6.74 53.68±2.84 50.38±2.32 52.71±3.08 51.61±2.08

WI‑D1% 63.11±3.64 66.97±2.82 63.55±2.33 67.78±3.14 64.32±2.14
Chiasm NM‑D1% 52.84±1.72 52.81±1.38 50.09±1.81 50.10±3.65 50.10±1.80

WI‑D1% 63.81±3.38 66.20±2.92 63.62±2.40 70.78±4.32 64.12±3.10
Spinal cord NM‑D1% 46.65±3.00 47.02±3.70 44.55±2.30 45.52±3.70 45.10±3.10

WI‑D1% 59.20±2.46 62.87±1.32 58.69±2.30 65.14±2.52 60.10±1.84
RT‑optic nerve NM‑D1% 58.14±8.21 54.92±8.50 52.35±2.32 53.09±6.31 52.01±3.30

WI‑D1% 66.59±3.34 67.17±5.94 65.60±2.04 69.53±1.62 66.32±3.52
LT‑optic nerve NM‑D1% 51.22±2.18 51.40±3.70 49.50±1.10 49.15±2.90 50.71±3.10

WI‑D1% 63.48±5.20 64.83±1.69 63.20±1.76 69.32±3.03 64.10±1.89
RT‑temporal lob NM‑D1% 62.88±4.71 61.67±3.43 57.26±3.53 62.56±3.85 61.54±2.81

WI‑D1% 67.54±2.80 68.77±3.14 65.76±3.58 70.06±4.18 67.14±2.90
LT‑temporal lob NM‑D1% 6349±3.93 62.53±5.86 57.39±4.44 63.93±4.40 62.13±3.30

WI‑D1% 68.03±2.72 68.84±4.26 65.60±3.74 71.47±4.39 66.60±3.39
RT‑cochlea NM‑Dmean 36.63±8.19 34.47±7.25 27.45±3.08 37.27±8.34 33.12±4.89

WI‑Dmean 39.66±10.35 41.76±11.45 35.06±11.12 44.69±8.24 40.89±5.32
LT cochlea NM‑Dmean 31.77±17.3 30.97±17.40 28.84±18.8 34.74±15.10 32.12±14.35

WI‑Dmean 42.16±5.23 47.74±8.39 41.40±4.43 48.68±5.20 45.32±6.20
SFO: Single field uniform optimization, MFO: Multi field optimization, HB‑MFO: Hybrid‑multi field optimization, IMRT: Intensity modulated 
radiotherapy, RB‑IMRT: Robustly optimized‑intensity modulated radiotherapy, NM‑D: Nominal maximum dose, WI‑D: Worst case increase dose

Figure 3: The nominal (red) and perturbed (blue) DVHs for select neurological OARs; brainstem (a), optic chiasm (b), and optic nerves (c), of the 
representative patient in three planning techniques (SFO, IMRT and RB‑IMRT)

c

b

a
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Integral dose
Figure 4 shows the ID to normal tissue and few select OARs in 
both proton and photon plans. All three proton plans returned 
comparable IDs (Gy kg) to normal tissue with mean (±SD) 
of 16.7 ± 4.4 Gy kg in SFO, 14.6 ± 3.4 Gy kg in MFO and 
12.9 ± 3.0 Gy kg in HB‑MFO. As expected, almost two‑fold 
increase in ID of normal tissue was observed in IMRT with 
mean  (±SD) of 31.9  ±  6.6 Gy kg. In case of other OARs, 
comparable IDs were observed from all three proton plans. 
The absolute increase in the ID to OARs for IMRT plans 
is relatively lower: Compared to the best proton plan, a 
60%–100% increment of ID was observed in IMRT plan.

Discussions

Chordomas are difficult to manage because of the complex 
anatomy and its proximity to sensitive OARs with relevant 
physiological functions. Complete surgical resection is rarely 
accomplished due to its proximity to critical structures. Hence, 
historically, PBT has been considered the gold standard due 
to Bragg peak characteristic (i.e., delivering virtually no dose 
beyond the target). Several authors have reported excellent 
local control with limited high‑grade toxicity.[4,7,8] Most of these 
patients were treated with double scattering (DS) technique,[4,8] 
which inherently produces dose spillage toward the proximal 
end of the target and hence, less conformal dose distribution. 
PBS has the potential to improve dose conformation around 
the target thereby reducing the dose to proximal OARs.[11] At 
the same time, radiotherapy with photons also did improve 
significantly in the past years, with intensity‑modulated 
techniques with static fields  (IMRT) and arcs  (VMAT). 
As a consequence, in our point of view, new comparative 
investigation between different proton planning techniques and 
photon IMRT in skull‑based chordomas are timely.

Our study shows how the dosimetric outcome of proton 
plans for complex and challenging chordomas is highly 
dependent on the planning approach. In nominal scenarios, 
target coverage (D98% and D95%) was compromised in all plans 
in order to respect the maximum dose (D1%) to surrounding 
serial OARs. The maximum dose  (D1%) to all serial OARs 
was comparable among all plans and was within the clinically 
acceptable limit. The target coverage (D95%) of 62.32 to 66.70 
Gy RBE, observed in different planning approaches in our 
study, is coherent with the values reported by Liu et al.[22] In a 
dosimetric study of 10 patients with base of skull chordomas, 

planned with 66 to 70 Gy RBE using IMPT, Liu et al.[22] reported 
D95% to CTV of 63.3 Gy RBE for conventional optimization 
to PTV and 64.8 Gy RBE for robust optimization to CTV. 
Among the 5 planning techniques investigated by this study, 
the new planning approach ‑ HB‑MFO ‑ resulted in a better 
target coverage and sparing of OARs. In comparison to other 
proton and photon plans, HB‑MFO delivered 2‑7.5% higher 
dose (both D98% and D95%) to target (CTV‑HR) and lower D1% 
of 4.4%–6.1% (brainstem), 0%–5.2% (chiasm), 2.1%–5.2% 
(spinal cord), 1.4%–9.9%  (optic nerve), 7.2%–10.23% 
(temporal lobe) respectively.

Treatment planning and delivery in proton PBS technique are 
susceptible to range and set‑up uncertainties: their impact on 
dosimetric outcomes depends on many factors, including the 
clinical site, beam angle, number of beams, treatment planning, 
and delivery methods. Different approaches are adopted to 
mitigate such uncertainties. Selection of appropriate beam 
directions, isotropic PTV‑based optimization, beam‑specific 
margin‑based optimization and more recently CTV‑based 
robust optimization incorporating both set‑up and range 
uncertainties, are the commonly adopted approaches to 
mitigate uncertainties. Afterward, it is necessary to verify 
the plan quality for all uncertainty scenarios in order to meet 
clinical goals. That is why robustness evaluation is considered 
as an integral component of decision making in proton 
treatment plan, and should also be considered important in 
IMRT plans. While SFO is considered to be robust, PTV‑based 
MFO strategy is reported as ineffective,[23] due to the sensitivity 
of highly heterogeneous dose distributions from each field 
to set‑up and range uncertainties. Therefore, instead of PTV 
based MFO, we adopted robust optimization based on CTV, 
taking into account both set‑up and range uncertainty in 
MFO. We also evaluateies HB‑MFO, which is the current 
standard in Trento Proton Therapy Center. The main reason for 
choosing HB‑MFO is the significant time reduction for dose 
optimization, especially when a MC dose calculation code is 
needed (i.e., HB‑MFO optimization requires to calculate and 
optimize 3 different scenarios compared to the 21 scenarios 
in the full‑MFO). In comparison to nominal case scenario, 
robust evaluation of different proton plans showed that worst 
case decrease in target coverage was comparable for MFO and 
HB‑MFO and was lower in SFO.

In the current practice of photon IMRT, uncertainties are 
usually dealt by providing margins around the CTV and 

Figure 4: The integral dose to (a) Normal tissue, normal brain, (b) brain stem, right temporal lobe, left temporal lobe from both proton and photon plans
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critical organs, thus creating PTV and PRV, as recommended 
by the International Commission on Radiation Units and 
Measurements  (ICRU) report 83.[24] Although CTV to PTV 
margin represented a significant step ahead in the inclusion 
of geometrical uncertainties in the planning procedures, it is 
a first approximation rather than a complete solution to the 
problem. An explicit inclusion of geometrical uncertainties in 
the optimization procedures for photons may provide a more 
complete approach to find the right balance between target 
coverage and OAR sparing. In agreement to other studies,[25] 
we also found that even after assigning margins, variations 
arise in the delivered dose received by the tumor and OARs. 
We found a slightly lower robustness in both targets and OARs 
for IMRT, compared to the SFO, MFO and HB‑MFO proton 
plans. On the contrary, the worst case scenario in robustly 
optimized IMRT plans resulted in a maximum of 6 to 7% 
CTV coverage improvement and a maximum 4% (brainstem), 
13.3% (chiasm), 9.8% (spinal cord), and 14% (optic nerve) 
decrease in the D1% of the serial OARs. This led us to state 
that robustly optimized IMRT plans are less sensitive to set-up 
uncertainties in comparison to not robustly optimized ones. 
Similar observations were reported by Miura et al.[26] Their 
phantom based study in PTV, they showed that nonrobust 
volumetric‑modulated arc therapy  (VMAT), are less robust 
than robustly optimized CTV‑based VMAT plans for set up 
uncertainties. Our study points out the need to consider robust 
optimization‑based IMRT plans and also that robust evaluation 
should be performed before clinical selection of IMRT 
and proton plans. However, we have also found significant 
differences in the low dose areas between the IMRT and MFO 
techniques. The ID calculated for normal tissues was higher in 
IMRT plans, confirming the suitability of MFO proton plans 
over IMRT.

A message clearly emerging from our data, which we believe 
has to be shared with the scientific community, is that 
robustness evaluation metric showed significant differences, 
both in terms of target and OARs sparing, between the nominal 
plan approved by the clinician and the worst case scenarios. 
This is true both for photon and proton plans: ‘robustness 
metric’ is not a peculiarity of proton therapy. On the other 
hand, it is extremely important to define a benchmark for the 
worst scenarios, in order to understand what a safe variability 
is (i.e., a spinal cord D1% of 65 Gy of a worst case scenario 
compared to 45 Gy of the nominal one: still safe or requires 
a plan re‑optimization?). We believed that the use of standard 
IMRT as a benchmark (because of its level of diffusion) for 
proton plans could be a reasonable approach, but also using 
robust analysis results from patients already treated with 
protons (i.e., with follow‑up data on toxicity and tumor control) 
could be an interesting solution, as proposed by Malyapa 
et al.[27] Another important consideration must be made when 
robustness is applied to OARs and not only to the target. 
The OARs constraints, reported in the QUANTEC papers,[28] 
are all based on the nominal DVH and no robust analysis of 
that constraints was taken into account. Some limitations of 

our study must be carefully considered: (1) only five clinical 
cases are included, (2) different intensity modulated photon 
techniques  (i.e., VMAT, Tomotherapy, Cyberknife, etc.,) 
can give different results, and (3) even with the same IMRT 
technique, we can use other optimization algorithms/cost 
functions which can have a different impact on plan robustness. 
Further investigation on large patient datasets of various 
clinical sites will help in drawing a more concrete conclusion.

Conclusion

Based on the five cases presented in the current study, all proton 
planning techniques (SFO, MFO and HB‑MFO) were robust 
both for target coverage and OARs sparing. Standard IMRT 
plans were less robust than proton plans in regards to high 
doses to neurological OARs. However, robust optimization 
applied to IMRT resulted in improved robustness in both target 
coverage and high doses to OARs. Robustness evaluation may 
be considered as a part of plan evaluation procedure even in 
IMRT.
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