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Abstract

Gram-negative bacteria produce extracellular outer membrane vesicles (OMVs) that interact with host cells. Unlike
Gram-negative bacteria, less is known about the production and role of extracellular membrane vesicles (MVs) in
Gram-positive bacteria. The food-borne pathogen Listeria monocytogenes can survive under extreme environmental
and energy stress conditions and the transcription factor o® is involved in this survival ability. Here, we first
determined the production of MVs from L. monocytogenes and evaluated whether general stress transcription factor
o® affected production of MVs in L. monocytogenes. L. monocytogenes secreted MVs during in vitro broth culture.
The wild-type strain actively produced MVs approximately nine times more and also produced more intact shapes of
MVs than those of the isogenic AsigB mutant. A proteomic analysis showed that 130 and 89 MV proteins were
identified in the wild-type and AsigB mutant strains, respectively. Wild-type strain-derived MVs contained proteins
regulated by o® such as transporters (OpuCA and OpuCC), stress response (Kat), metabolism (LacD), translation
(InfC), and cell division protein (FtsZ). Gene Ontology (GO) enrichment analysis showed that wild-type-derived MV
proteins corresponded to several GO terms, including response to stress (heat, acid, and bile resistance) and
extracellular polysaccharide biosynthetic process, but not the AsigB mutant. Internalin B (InIB) was almost three
times more contained in MVs derived from the wild-type strain than in MVs derived from the AsigB mutant. Taken
together, these results suggest that o® plays a pivotal role in the production of MVs and protein profiles contained in
MVs. L. monocytogenes MVs may contribute to host infection and survival ability under various stressful conditions.
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Introduction

Listeria monocytogenes is a Gram-positive, facultative
intracellular bacterium that causes listeriosis. This organism is
well-known for its robust survival under various environmental
and energy stress conditions such as acid stress [1], osmotic
stress [2,3], and carbon starvation [4]. The general stress
transcription factor o® largely contributes to resistance
properties to these stresses. o® is important for survival of L.
monocytogenes during food processing and also plays an
important role in host infection, including survival in the
gastrointestinal tract with low acidic and high osmotic pressure,
and invasion of intestinal epithelium. Example proteins include
GadB, a product that controls expression of glutamate
decarboxylase acid stress resistance; OpuCA, similar to the
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glycine betaine-carnitine-choline ABC transporter for osmotic
stress resistance; Bsh, which contributes to bile salt resistance;
Internalin A (InlA) and Internalin B (InIB), which are required for
invasion into intestinal lumen cells; and PrfA, a master
virulence regulator [5-8]. Thus, the o® null mutant shows
reduced resistance to acid, salt, antibiotics, temperature, and
carbon starvation stresses [1,2,7,9], and it shows decreased
virulence in guinea pigs infected via the gastrointestinal route
[10].

A wide variety of Gram-negative bacterial species produce
and release spherical and bilayered nanovesicles into the
surrounding environment, called outer membrane vesicles
(OMVs). As a bacterial secretion system, OMVs contribute to
cell-free intercellular communication, detoxification  of
environmental stresses, killing of competitors, and transfer of
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bacterial effectors between bacteria or into host cells [11,12].
As an example, Pseudomonas aerugonosa OMVs contain
various virulence factors, such as peptidoglycan hydrolase,
phospholipase C, hemolysin, alkaline phosphatase, and
antibacterial factors [13], including murin hydrolase [14].
Moreover, pathogen-derived OMVs contain various toxins,
including cytolysin A from enterohemorrhagic Escherichia coli
and Salmonella typhi [15], vacuolating cytotoxin from
Helicobacter pylori [16], and Shiga toxin from Shigella
dysenteriae [17].

Gram-positive bacteria also produce and secrete membrane-
derived vesicles (MVs), but the pathophysiological function of
MVs has not been elucidated. According to recent reports,
Staphylococcus aureus [18,19], Bacillus spp. [20,21], and
Mycobacterium ulcerans [22] release MVs. MVs from B.
anthracis contain biologically active toxins, such as anthrolysin
[21] and S. aureus-derived MV components that are delivered
to host cells and induce cytotoxicity in host cells [19].

In this study, we determined whether L. monocytogenes
produced MVs during in vitro broth culture. Next, MVs derived
from wild-type L. monocytogenes and its isogenic AsigB mutant
were subjected to proteomic analysis to investigate the role of
a® in the production of MVs and in the MV proteins profiles. Our
results demonstrate that L. monocytogenes produces MVs and
that o® plays a pivotal role in the production of MVs and in the
L. monocytogenes MV protein profiles.

Materials and Methods

Bacterial strains and B-galactosidase accumulation
assay

Two L. monocytogenes strains, wild-type strain 10403S
(serotype 1/2a) and an isogenic AsigB mutant, were used in
this study. These strains were obtained from Martin Wiedmann
(Cornell University). L. monocytogenes cells were maintained
on brain-heart infusion (BHI) (BD Science, Franklin Lakes, NJ,
USA) agar or broth, and were grown at 37°C. o® activity was
measured in wild type and AsigB mutant L. monocytogenes
carrying the reporter gene fusion (o®-dependent opuCA
promoter and a /acZ reporter gene) during the bacterial growth
by measuring the specific activity of B-galactosidase. These
strains were constructed in our previous study [9]. B-
galactosidase assays were performed as described by Miller
[23]. Briefly, samples were collected at the indicated times by
centrifugation for 1 min at 6,000 g. Cells were washed with Z
buffer [23] and permeablized by vigorous voltexing for 30 s
using sodium dodecyl sulfate and chloroform, then incubated at
28°C with the o-nitrophenyl B-D-galactopyranoside substrate.
Reactions were stopped by the addition of 0.5 ml of 1M Na
,CO; and the mixes were centrifuged to remove cellular
interference before reading absorbance at 420 nm. Protein
levels were determined using the Bio-Rad Protein Assay
reagent (Bio-Rad, USA). Specific activity was defined as AA,,,
am % 1,000 min-' mg" of protein.

Isolation of MVs from culture supernatants

The extracellular MVs produced by L. monocytogenes were
prepared from bacterial culture supernatants as described
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previously [15,24]. Two bacterial strains, the wild type and
AsigB mutant, were inoculated into 500 ml of BHI broth and
grown until the optical density at 600 nm (OD600) reached 2.0
at 37°C with shaking. After the bacterial cells were removed by
centrifugation at 6,000 g for 15 min, the supernatants were
filtered through a QuixStand Benchtop System (GE Healthcare,
Piscataway, NJ, USA) using a 0.2 ym hollow fiber membrane
(GE Healthcare) to remove bacterial debris, and the samples
were then concentrated by ultrafiltration with a QuixStand
Benchtop System using a 500 kDa hollow fiber membrane (GE
Healthcare) to exclude molecules with a molecular mass < 500
kDa. The MV fractions were ultracentrifuged at 150,000 g for 3
h at 4°C, and the pellets containing the MVs were resuspended
in phosphate-buffered saline (PBS). The protein concentration
was determined using a modified BCA assay (Thermo
Scientific, Rockford, IL, USA). The purified MVs were checked
for sterility and stored at -80°C until use. Three independent
experiments were conducted to determine the extracellular MV
production from culture supernatants of the wild type and AsigB
mutant.

Transmission electronic microscopy (TEM) analysis

The purified MV samples were applied to copper grids
(Electron Microscopy Sciences, Hatfield, PA, USA) and stained
with 2% uranyl acetate. The samples were then visualized by
TEM (Hitchi H-7500, Hitachi, Tokyo, Japan) operated at 120
kv.

Proteomic analysis of MVs produced by L.
monocytogenes

Protein samples were separated by 12% sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (mini-
PROTEAN system, Bio-Rad, Hercules, CA, USA). A 10 ug
protein sample was applied to each lane, and the gels were
stained with Coomassie Brilliant Blue R-250 (Bio-Rad). In-gel
digestion was conducted in accordance with a method
described previously [25]. Gels were fractionated into six parts
according to molecular weight. Each part was digested with
trypsin (0.1 pg) for 16 h at 37°C after reduction and alkylation
of the cysteines of the proteins. Digested peptides were
extracted with an extraction solution (50 mM ammonium
bicarbonate, 50% acetonitrile, and 5% trifluoroacetic acid).
Digested peptides were resolved in 10 pl of sample solution
containing 0.02% formic acid and 0.5% acetic acid. The
peptide samples (5 ul) were concentrated on a Easy-column (L
2 cm, ID 100 ym, 120 A, C18-A1) trapping column (PROXEON,
Odense, Denmark). Peptides were eluted from the column and
directed onto a Easy-column (L 10 cm, ID 75 pym, 120 A, C18-
A2) reverse phase column (PROXEON) at a flow rate of 200 nl/
min. Peptides were eluted in a gradient of 0-65% acetonitrile
for 120 min. All MS and MS/MS spectra in the LTQ-Velos ESI
ion trap mass spectrometer (Thermo Scientific) were acquired
in a data-dependent mode. Each full MS (m/z range of 300 to
2,000) scan was followed by three MS/MS scans of the most
abundant precursor ions in the MS spectrum with dynamic
exclusion enabled. MS/MS spectra were searched with
MASCOT to identify the proteins (Matrix Science,
www.matrixscience.com). The genome sequence of L.
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Figure 1. Extracellular membrane vesicles (MVs) produced by L. monocytogenes. Transmission electron micrograph of MVs
prepared from wild-type (A) and the isogenic AsigB mutant of L. monocytogenes (B) cultured in BHI broth. (C) Arrow indicates

bilayered structure.
doi: 10.1371/journal.pone.0073196.g001

monocytogenes from NCBI (http://www.ncbi.nim.nih.gov/) and
the decoy sequence database were used as the database for
protein identification. The mass tolerance of parent or fragment
ions was 0.8 Da. Cabamidomethylation of cysteine and
oxidation of methionine were considered in the MS/MS analysis
as variable modifications of tryptic peptides.

Gene ontology (GO) enrichment analysis

GO enrichment analysis was performed using the David
service (http://david.abcc.ncifcrf.gov/) to identify the biological
functions of the identified MVs proteins derived from wild type
and AsigB mutant L. monocytogenes [26]. The GO terms
enrichment analysis of the identified MV proteins with UniProt
accessions number was performed in terms of molecular
functions (MF), biological processes (BP) and cellular
components (CC). P-values to measure gene enrichment in
annotation terms were calculated using a modified Fisher's
exact test [27,28]. P-values < 0.05 were considered significant.

SDS-PAGE and Western blot analysis

Both wild-type and AsigB mutant cells were cultured in BHI
broth at 37°C with shaking. The cells (ODg,, = 2) were pelleted
by centrifugation at 6,000 g for 10 min and washed twice with
PBS. The cell pellet and purified MVs were resuspended in
SDS-PAGE sample buffer (1 M Tris HCI pH 6.8, 10% SDS, 1%
bromophenol blue, glycerol, and 3-mecaptoethanol) and boiled
for 10 min. The samples were separated on 10% SDS-PAGE,
followed by electrotransfer onto nitrocellulose membranes
(Hybond-ECL, Amersham Pharmacia Biotech, Parsippany, NJ,
USA). The blots were blocked in 5% non-fat skim milk and
incubated with a rabbit anti-listeriolysin O (LLO) antibody
(Abcam, Cambridge, MA, USA) and mouse anti-InIB antibody,
which were produced by Cosmogene Tech (Seoul, Korea).
LLO and InIB proteins were visualized by incubation with
horseradish peroxidase-conjugated goat anti-rabbit and anti-
mouse IgG antibodies, respectively (Santa Cruz Biotechnology,
Santa Cruz, CA, USA), followed by enhanced
chemiluminescence (ECL plus; Amersham Pharmacia Biotech)
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according to the manufacturer's instructions. The band
intensities of the immunoblotted products were measured using
Imaged software (NIH, Bethesda, MD, USA).

Results

MV production in the wild-type and AsigB mutant L.
monocytogenes

To evaluate if L. monocytogenes produces extracellular MVs,
both the wild-type L. monocytogenes and its isogenic AsigB
mutant were cultured in BHI broth and MVs were harvested
from the each culture supernatant. Both L. monocytogenes
strains produced MVs, but the wild-type strain actively
produced MVs approximately nine-times more than that of the
AsigB mutant (121+6.2 pg/l vs. 14+0.4 pg/l) (Figure 1A and
1B). Moreover, we measured o® activity in the cells during the
growth until an OD600 of 2. The specific activity of B-
galactosidase was rapidly induced after entering the stationary
phase and then showed a constant level in the wild type strain.
However, the specific activity of p-galactosidase was not
observed in the AsigB mutant L. monocytogenes (Figure S1).
We observed the shapes and sizes of MVs by TEM. The wild-
type strain produced intact shapes of MVs as compared to
those of the AsigB mutant, which produced partially wrinkled
shaped MVs (Figure 1A and 1B). MVs from L. monocytogenes
had double membrane spheres ranging from 20 to 100 nm in
diameter (Figure 1A-C).

Protein profiles in the MVs derived from wild-type and
AsigB mutant L. monocytogenes

Purified MVs were analyzed by LC-ESI-MS/MS to identify
proteins contained in the MVs. Three independent analyses
were performed for the MVs derived from wild-type and AsigB
mutant L. monocytogenes. Proteins only appearing in all three
analyses were considered identified proteins for each strain.
The analysis identified 130 proteins from the MVs of wild-type
strain and 89 from the MVs of AsigB mutant L. monocytogenes
(Figure 2). Among the proteins identified in the MVs, 84 were
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Figure 2. Venn diagram of extracellular membrane vesicle
(MV) proteins identified by LC-ESI-MS/MS. Of the 130
proteins, 46 (35%) were identified only in wild-type L.
monocytogenes MVs and of the 89 proteins, five (6%) were
identified only in the AsigB mutant MVs. Eighty-four MV
proteins were identified commonly in the wild-type and AsigB
mutant of L. monocytogenes.

doi: 10.1371/journal.pone.0073196.9g002

commonly identified in both strains (Table S1). Forty-six and
five unique proteins were identified in the MVs of wild type and
AsigB mutant L. monocytogenes, respectively (Tables S2 and
S3). Of the 46 proteins derived from the wild-type strain, 18 are
known as oB-dependent proteins in L. monocytogenes (Table
1) [5,6,29]. Overall, these identified MV proteins were
transporters, including the ABC transporter (OpuCA and
OpuCC), probable export protein (Lmo2463), and
phosphotransferase system component IID (Lmo0781); stress
response proteins, including a protein similar to Bacillus subtilis
general stress protein (Lmo0211) and catalase (Lmo2785);
metabolic proteins, including one similar to tagatose-1, 6-
diphosphate aldolase (LacD); translational proteins including
bacterial protein translation initiation factor IF-3 (InfC); and
cellular processing proteins including cell division protein
(FtsZ).

Functional classification of the proteins in MVs derived
from L. monocytogenes

A GO enrichment analysis was performed to categorize the
functions of the proteins identified in the MVs. A complete list of
all GO terms and their assigned functional groups is provided
in Tables S4 and S5. A total of 130 MV proteins from the wild-
type strain and 89 MV proteins from the AsigB mutant were
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Table 1. Extracellular membrane vesicle (MV) proteins
identified by LC-ESI-MS/MS analysis as regulated by o® in
wild- type L. monocytogenes.

Category Protein Name Description [Reference]
Glycine betaine/carnitine/choline ABC
Transporters OpuCA L .
transporter (ATP-binding protein) [6]
Glycine betaine/carnitine/choline ABC
OpuCC e
transporter (osmoprotectant-binding) [6]
Lmo2463 Probable export protein [6]
Phosphotransferase system (PTS)
Lmo0781
component 11D [29]
Similar to Bacillus subtilis general stress
Stress Lmo0211 .
protein [29]
Lmo2785 Catalase [5]
Metabolism Lmo1694 Epimerase, NAD-dependent family
Lmo0539 Similar to tagatose-1, 6-diphosphate aldolase
(LacD) [29]
Lmo1694 Similar to CDP-abequose synthase [29]
Lmo0722 Similar to pyruvate oxidase [29]
. Lmo1785 Bacterial protein translation initiation factor
Translation
(InfC) IF-3 [5]
Cellular Lmo2032 . .
Cell division protein [5]
processes (FtsZ)
Conserved hypothetical ATP-binding domain
Unknown Lmo2673
[6]
Lmo0953 Hypothetical protein [29]
Lmo1257 Hypothetical protein [29]
Lmo1261 Hypothetical protein [29]
Lmo0796 Conserved hypothetical protein [29]
Lmo2673 Conserved hypothetical protein [29]

commonly categorized in 48 significant GO terms (Table S4).
The most significantly enriched GO terms related to molecular
functions in both strains included binding; ATP, ribonucleotide,
drug and rRNA binding; ligase activity, structural molecule
activity and DNA topoisomerase. The most significantly
enriched GO terms related to biological processes in the both
strains included cellular processes, metabolic processes;
cellular protein, macromolecule and organic acid metabolic
processes; and translation. Some of the significantly affected
cellular components in both strains were the cytoplasm,
organelles, cytosolic ribosomes, and the macromolecular
complex. Besides the 48 overlapped significant GO terms in
the MV proteins derived from both strains, 22 significant GO
terms were enriched only in the wild-type L. monocytogenes
(Table S5). As shown in Figure 3, the most significant affected
GO terms related to biological processes were metabolic
processes; cellular macromolecules, amines, cellular amino
acids, DNA, extracellular polysaccharide metabolic processes;
biosynthetic processes; macromolecules, carbohydrate and
extracellular polysaccharide biosynthetic processes; stress
response, protein folding, tRNA aminoacylation, and amino
acid activation. The most significantly enriched GO terms
related to molecular functions were binding; unfolded proteins,
RNA and protein binding; GTPase activity, and antioxidant
activity.
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Figure 3. Distribution of significant Gene Ontology (GO) terms from extracellular membrane vesicle (MV) proteins that

were categorized only in wild-type L. monocytogenes.
doi: 10.1371/journal.pone.0073196.9g003

Identification of virulence factors InIB and LLO in the L.
monocytogenes MVs

The major virulence factors, InIB and LLO, needed for entry
of L. monocytogenes into host epithelial cells and for vacuolar
lysis, respectively, were identified in both wild-type and AsigB
mutant L. monocytogenes MVs. InIB is regulated by both the o®
transcription factor and the positive regulatory factor A (PrfA),
whereas LLO is regulated only by a PrfA [30]. Western blot
analyses were performed to determine whether InIB and LLO
were secreted from bacteria via MVs and whether their
secretion was affected by oB. Twenty pl of cell lysate (CL) and
MVs (1.65 pg for InIB and 20 ug for LLO) from the wild-type
strain and AsigB mutant were separated on 10% SDS-PAGE
and immunoblotted with anti-InIB and anti-LLO antibodies. As
shown in Figure 4, InIB was 6.5 times more highly expressed in
the wile-type cell lysate than in the AsigB mutant cell lysate,
and InIB was almost three times more contained in MVs
derived from the wild-type strain than in MVs derived from the
AsigB mutant. However, the LLO level between the wild-type
strain and AsigB mutant was not different in either cell lysates
or MVs.

Discussion

We first demonstrate production of MVs from culture
supernatants of food-borne Gram-positive pathogen L.
monocytogenes. This result supports reports of MV production
in other Gram-positive bacteria, such as S. aureus [18,19],
Bacillus spp. [20,21], and M. ulcerans [22]. The production and
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release of MVs into the extracellular milieu appears to be
conserved among both Gram-negative and Gram-positive
bacteria. Interestingly, OMVs or MVs released from pathogenic
bacteria contribute to bacterial pathogenesis, as they are
involved in the delivery of toxins or virulence factors to
eukaryotic cells [11,21,31]. We demonstrated that the general
stress transcription factor o® played a pivotal role in MV
production of L. monocytogenes. Furthermore, a proteomic
analysis demonstrated that MVs derived from the wild-type
strain contain important virulence factors needed for host
infection. The GO enrichment analysis showed that the
functional categories of proteins contained in MVs were
significantly different between the wild-type strain and AsigB
mutant. Therefore, our results extend the role of L.
monocytogenes o® in the bacterial secretion system through
MV production.

Wild-type L. monocytogenes produced about nine times
more MVs than the AsigB mutant. Moreover, unlike the wild-
type strain-derived MVs, which showed round-shaped
nanovesicles, MVs derived from the AsigB mutant were
deformed (Figure 1A and 1B). Similarly, enterotoxigenic E. coli
produces more OMVs than nonpathogenic E. coli [32] and loss
of yfgL, an encoded lipoprotein involved in the synthesis and/or
degradation of peptidoglycans, causes reduced production of
OMVs in adherent-invasive E. coli [33]. Although these findings
were obtained from Gram-negative bacteria, we infer that
Gram-positive L. monocytogenes o® may be related to
increased production of MVs to promote survival under harsh
environments or during infection. In  addition, L.
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Figure 4. Western blot analysis of Internalin B (InIB) and Listeriolysin O (LLO) in the cell lysate and MVs. (A) Samples were
separated on 10% SDS-PAGE and immunoblotted with anti-InIB and anti-LLO antibodies. CL, L. monocytogenes cell lysate; MVs,
membrane-derived vesicles. (B) Band intensities were measured using image analysis software.

doi: 10.1371/journal.pone.0073196.g004

monocytogenes ©® possibly contributes to monitoring and
maintaining cell wall integrity by regulating certain genes [7,9].
In this study, both L. monocytogenes were grown in BHI broth
until the stationary growth phase and this energy stressed
condition may have affected cell envelope function, particularly
in the AsigB mutant, which may have caused the deformity in
the MVs. The shapes of the MVs from L. monocytogenes were
bilayered spherical vesicles, which was the same as MVs
released from other Gram-positive bacteria, but the size was
more similar to S. aureus MVs (20—100 nm in diameter) [18,19]
than B. anthracis MVs with average diameters of 50-300 nm
[21].

We conducted a proteomic analysis with purified MVs
derived from L. monocytogenes to understand the
pathophysiological role of MVs. About 1.5 times more proteins
were found in the wild-type strain-derived MVs than in the
AsigB mutant-derived MVs. The major virulence factors IniB
and LLO were identified among the commonly identified 84 MV
proteins produced from both the wild-type strain and AsigB
mutant (Table S1). InIB is required for adhesion and invasion of
L. monocytogenes into host cells [34,35], and this protein is co-
regulated by both o® and PrfA, which is directly regulated by o®
[30,36]. The pore-forming toxin LLO is essential for escape of
L. monocytogenes from a phagosomal compartment into the
cytosol and is also required for productive cell to cell spread
[30,37,38]. The immunoblotting data showed that InIB was
three higher times in wild-type strain-derived MVs than in AsigB
mutant-derived MVs, whereas LLO, which is regulated only by
PrfA, was contained in MVs from both strains with similar
amounts (Figure 4). These results suggest that MVs from L.
monocytogenes contain important virulence proteins like other
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pathogenic bacteria-derived MVs, such as B. anthracis MVs
[21] and S. aureus MVs [18], and o® also contributes to the
secretion of virulence factors contained in MVs.

Among the 46 MV proteins identified only in the wild-type
strain, many proteins (39%, 18/46) were identified as regulated
by o8 Notably, OpuCA and OpuCC, which are osmolyte
transporters, importantly contribute to L. monocytogenes
survival in the lumen of the small intestine and the duodenum
with increased osmotic pressure [3,39,40], or under low
temperature conditions [41]. In addition, stress response,
metabolism, translation and cellular process-related proteins
were identified (Table 1). From these results, we demonstrated
that L. monocytogenes a® is involved not only in the containing
of virulence proteins but also in the containing of stress-
protecting proteins in MVs.

In the GO enrichment analysis using both L.
monocytogenes-derived MVs, the most significantly enriched
GO terms included binding (MF) and metabolic and cellular
processes (BF) in both the wild-type strain and AsigB mutant
(Table S4), whereas information storage and processing such
as transcription and translation, metabolism, and multi-
organism processes are the most enriched GO terms in S.
aureus-derived MVs [18]. The most significantly affected
cellular component (CC) in both L. monocytogenes strains was
the cytoplasm, which was similar to that observed in the two
proteomes of S. aureus-derived MVs [18,19]. Besides the
commonly categorized 48 significant GO terms in MV proteins
produced from both L. monocytogenes strains, MV proteins
derived from the wild-type strain were categorized into 22 GO
terms (Table S5). The GO term for the stress response
included nine stress response related proteins, including Kat
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(catalase), which contributes to growth of L. monocytogenes
under low temperature [42]; CIpC (endopeptidase Clp ATP-
binding chain) and ClpB (ATP-dependent Clp protease), DnaJ
(heat-shock protein Dnad), and DnaK (heat-shock protein
DnaK), which are needed for heat shock [43]; UvrA
(excinuclease ABC), which is required for acid and bile
resistance in L. monocytogenes [44] and ReA, which
contributes to acid and bile salt stress as well as adhesion and
invasion of Caco-2 cells in L. monocytogenes [45]. Moreover,
two proteins, Lmo1084 (similar to DTDP-L-rhamnose
synthetase) and Lmo1081 (similar to glucose-1-phosphate
thymidyl transferase) of the extracellular polysaccharide
biosynthetic process were categorized into biological
processes. Extracellular polysaccharide is an important
component of biofilms, which are structured communities of
microorganisms enveloped with self-produced biopolymer
known as extracellular polymeric substances [46]. OMVs are a
definite component of P. aeruginosa biofilms [47]. In the GO
term analysis, we demonstrated that wild type L.
monocytogenes-derived MV proteins had important functions
for survival under various stressful environmental conditions,
adhesion and invasion of intestinal epithelial cells, and serving
as biofilm components, but those were not observed in the
AsigB mutant.

In conclusion, we have provided important data about the
new protein secretion system of L. monocytogenes via MVs.
Wild-type strain-derived MVs contained a higher amount of
major virulence factor InIB than AsigB mutant-derived MVs,
and these MVs also significantly contained stress response
proteins regulated by oB, which play pivotal pathological
functions during infection. Our results provide the first
observation that transcription factor o® contributes to the
number of MVs produced and the kinds of proteins contained in
the MVs. The challenge for future studies is to understand how
the MVs specifically contribute to pathogenesis in vivo.

Supporting Information

Figure S1. Growth and o©® activity of wild-type L.
monocytogenes and AsigB mutant.
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