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Abstract. Single-cell RNA sequencing (scRNA-seq) of bone 
marrow or peripheral blood samples from patients with acute 
myeloid leukemia (AML) enables the characterization of 
heterogeneous malignant cells. A total of 87 cells from two 
patients with t(8;21) AML were analyzed using scRNA-seq. 
Clustering methods were used to separate leukemia cells 
into different sub-populations, and the expression patterns of 
specific marker genes were used to annotate these populations. 
Among the 31 differentially expressed genes in the cells of a 
patient who relapsed after hematopoietic stem cell transplanta-
tion, 13 genes were identified to be associated with leukemia. 
Furthermore, three genes, namely AT-rich interaction 

domain 2, lysine methyltransferase 2A and synaptotagmin 
binding cytoplasmic RNA interacting protein were validated 
as possible prognostic biomarkers using two bulk expression 
datasets. Taking advantage of scRNA-seq, the results of the 
present study may provide clinicians with several possible 
biomarkers to predict the prognostic outcomes of t(8;21) AML.

Introduction

As the most common type of adult leukemia, acute myeloid 
leukemia (AML) is characterized by the excessive expansion 
of immature myeloblasts from leukemic stem cells (LSCs) (1). 
LSC-based gene sets have previously been selected to predict the 
clinical outcomes of AML, particularly cytogenetically normal 
AML (CN-AML) (2,3). The t(8;21) chromosomal rearrange-
ment is one of the most classic genetic abnormalities in AML, 
and results in a transcript encoding for the fusion protein acute 
myeloid leukemia 1 protein-protein ETO (AML1-ETO; also 
known as RUNX1-RUNX1T1) (4). Following conventional 
chemotherapy, patients with t(8;21) AML have a relatively 
favorable prognosis, and steady progress has been observed in 
the success of t(8;21) AML treatment (5). However, the relapse 
and long-term survival rate are less than optimal, and highlight 
the requirement for more accurate diagnostic and therapeutic 
strategies (6); elucidation of the molecular mechanisms of 
t(8;21) AML are fundamental to the development of more 
precise diagnostic and therapeutic methods.

Single-cell RNA sequencing (scRNA-seq) has been widely 
used in developmental biology and oncological research, 
primarily due to its ability to profile rare or heterogeneous 
populations of cells (7). In the present study, scRNA-seq 
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analysis was performed on 87 cells from two patients with 
t(8;21) AML. Single cells were separated into subpopulations 
with specific gene marker expression patterns; 31 differen-
tially expressed genes (DEGs) were identified from the cells 
of patient B, which were considered to be associated with 
poor patient outcome. Furthermore, three genes, namely 
AT-rich interaction domain 2 (ARID2), lysine methyltrans-
ferase 2A (MLL) and synaptotagmin binding cytoplasmic 
RNA interacting protein (SYNCRIP) were demonstrated to 
have prognostic significance in two bulk expression datasets 
of patients with t(8;21) AML (GSE37642 and GSE6891) (8,9). 
To conclude, the present study is, to the best of the authors' 
knowledge, the first to demonstrate the single‑cell transcrip-
tome profile of two patients with t(8;21) AML, and to suggest 
several possible prognostic biomarkers.

Materials and methods

Patients and specimens. Patient recruitment and sample 
collection took place at Chinese PLA General Hospital from 
January 2014 to December 2015. The present study was 
approved by The Institutional Review Board of Chinese PLA 
General Hospital, and written informed consent was obtained 
from both patients with AML. To classify the subtype and 
prognostic risk of the two patients, chromosome banding, 
immunophenotyping, flow cytometric analysis and real‑time 
PCR for the fusion genes were conducted.

Targeted DNA sequencing. Targeted DNA sequencing of bone 
marrow samples was performed as previously described (10).

Single‑cell isolation, cDNA amplification and RNA‑sequencing. 
Single cells were isolated from the bone marrow (BM) 
and peripheral blood (PB) of the two patients. Single-cell 
loading, capture and cDNA amplification were carried out 
using the C1™ Single-Cell Auto Prep system (Fluidigm). A 
total of 87 single cells were loaded into a medium-sized C1 
Single‑Cell Auto Prep integrated fluidics circuit, as previously 
described (11). Afterwards, capture, reverse transcription and 
cDNA amplification were immediately performed according 
to the manufacturer's instructions (Fig. S1). RNA was 
extracted from samples and cDNA was reverse transcribed 
(Reverse Transcription System A3500; Promega Corporation) 
from RNA with TRIzol® reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.). The reaction conditions used were as follows: 
Pre‑denaturation at 95˚C for 15 min; then denaturation at 
94˚C for 30 sec, annealing at 53˚C for 30 sec, and extension at 
72˚C for 30 sec, 28 cycles; final extension at 72˚C for 8 min. 
Sequencing libraries were constructed using the Nextera XT 
DNA Sample Prep kit (Illumina, Inc.) and sequenced using 
the HiSeq2500 platform (Illumina, Inc.). Paired-end 100-bp 
reads were quality‑ and adapter‑filtered using Trim Galore! 
software (http://www.bioinformatics.babraham.ac.uk/proj-
ects/trim_galore/; version 0.4.4).

Gene fusion prediction. For each cell, the clean reads were 
mapped to the human genome reference sequences (hg19 
version) using the STAR aligner (v2.4.1) (12), and fusion gene 
detection was performed using STAR-Fusion (https://github.
com/STAR-Fusion/STAR-Fusion; v1.3.2), which compared 

with other methods, was sufficient for fusion RNA 
prediction (13).

Quantitative‑PCR (qPCR). qPCR was performed with the 
iQ™ SYBR® Green Supermix (Bio-Rad Laboratories, Inc.) 
using cDNA from five cells from patient A (newly diagnosed) 
with potential AML1-ETO gene fusion. The following reac-
tion conditions were used: Pre‑denaturation at 95˚C for 1 min; 
then denaturation at 95˚C for 5 sec, and extension at 53˚C for 
20 sec, 40 cycles; final denaturation at 95˚C for 1 min, 60˚C 
for 1 min, 95˚C for 30 sec. GAPDH was used as an internal 
reference gene, and the primer sequences of GAPDH were as 
follows: Forward, 5'-GAG TCA ACG GAT TTG GTC GT-3' and 
reverse, 5'-TTG ATT TTG GAG GGA TCT CG-3'; and the primer 
sequences of AML1-ETO were as follows: Forward, 5'-AAC 
CAC TCC ACT GCC TTT AAC C-3' and reverse, 5'-TGG AGG 
AGT CAG CCT AGA TTG C-3'. The 2-∆∆Cq method (14) was used 
to quantify the AML1-ETO gene fusions. Due to the shortages 
of cDNA left over after the construction of the sequencing 
libraries, AML1-ETO fusion in each cell was measured using 
both the Mx3005P qPCR System (Agilent Technologies, 
Inc.) and the ABI 7500 Real-Time PCR System (Applied 
Biosystems; Thermo Fisher Scientific, Inc.).

Bioinformatics analysis. The high-quality reads were 
pseudo-aligned with the human genome reference sequence 
(Ensembl Release 72 of GRCh37) annotations using 
Kallisto (15), and quantified as transcript per million (TPM) 
using AltAnalyze (16). Expression levels were transformed as 
log2(TPM/10+1) as described in previous studies (17,18), and 
single cells were subjected to hierarchical clustering according 
to their expression levels. Principal component analysis (PCA) 
was then performed based on the results of hierarchical clus-
tering. Furthermore, unsupervised clustering was performed 
with scRNA-seq data from patient B using the SC3 pipeline 
(version 1.12.0) (19). The functions of DGEs were determined 
through a literature review (20-36). Interactions between DEGs 
were analyzed using the Gene Multiple Association Network 
Integration Algorithm (GeneMANIA; http://www.genemania.
org/; accessed July 24, 2019) (37). The Search Tool for the 
Retrieval of Interacting Genes (STRING; https://string-db.
org/; accessed July 24, 2019) was used to investigate the 
protein-protein interactions between DEGs (38).

Statistical analysis. The heatmap of 31 DEGs were 
performed using the pheatmap (https://CRAN.R-project.
org/package=pheatmap; version 1.0.12) R package. The expres-
sion levels of the four marker genes were analyzed using the 
ggpubr (https://CRAN.R-project.org/package=ggpubr; version 
1.0.12) R package and Kruskal-Wallis test.

Survival analysis. The expression matrices of two GEO 
datasets GSE37642 (9) and GSE6891 (8) were downloaded 
from The National Center of Biotechnology Information 
using the GEOquery (version 2.52.0) R package (39). In 
total, 30 and 22 patients with t(8;21) AML from GSE37642 
and GSE6891, respectively, were selected for survival 
analysis. For each gene, the expression value of a selected 
probe was used to represent the expression level of the 
gene. A median, tri-sectional quantile or quartile threshold 
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of expression values was used to categorize patients 
into high- and low-expression groups. The survminer 
(https://CRAN.R-project.org/package=survminer; version 
2.52.0) R package and Log-rank test were used for visualizing 
the Kaplan-Meier estimates of survival curves.

Results

scRNA‑seq for two patients with t(8;21) AML. The two 
enrolled female patients represented the two stages of AML: 
Newly diagnosed (patient A) and relapse after hematopoietic 
stem cell transplantation (HSCT; patient B). The clinical 
information of these two patients is presented in Table I. The 
French American-British Cooperative Group Criteria (5), 
chromosomal karyotype analysis, flow cytometric analysis, 
reverse transcription and real-time fluorescent qPCR all 
suggested that both patients possessed the t(8;21) transloca-
tion, which classified them as AML type M2. A total of 
five cells from patient A were predicted to possess the 
AML1-ETO (RUNX1-RUNX1T1) gene fusion (Table SI), 
which was confirmed by qPCR (Fig. S2). These results 
based on scRNA-seq data demonstrated the existence of the 
AML1-ETO fusion in patient A. However, due to the low 
amount of data, none of the cells from patient B were predicted 
to harbor AML1-ETO fusions. Moreover, none of the known 
AML-associated somatic mutations were detected by targeted 
DNA-sequencing.

The treatment outcome for patient A was more favorable, 
as she achieved complete remission after a course of chemo-
therapy, and didn't relapse until death from another cause 
~15 months later. On the contrary, the outcome for patient B 
was poor, due to relapse after the 15th course of chemotherapy 
and a second relapse 3 months after HSCT.

Single cells were isolated from the PB and BM of the two 
patients, and 87 cells qualified for the generation of RNA‑seq 
data. With the exception of one of the cells (with a total read 
of 19 million), the total reads of the 87 cells ranged from 0.4 
to 9 million (Table SI), which was sufficient for scRNA‑seq 
analysis (10). The median reads of the patient B cells were 
relatively lower than those from patient A (Fig. S3), suggesting 
their abnormal transcriptional programs.

Separation of leukemia cell subpopulations. scRNA-seq data 
were pseudo‑aligned and quantified as TPM using Kallisto, an 
alignment‑free‑based quantification method (13). TPM values 
were then log2 transformed (after dividing by 10 and adding 1) 
as in previous studies (17,18). Hierarchical clustering by ward.
D2 linkage distance was used to separate the 87 cells into six 

groups (Fig. 1A): Cells from patient A were divided into three 
groups (A_1, A_2 and A_3), and cells from patient B were 
divided into another three groups (B_1, B_2 and B_3). As 
presented in Fig. 1B, the six groups were crudely separated 
by PCA, and the genes contributing to the separation of these 
subpopulations were examined using SC3 clustering (19). In 
total, 2,138 DEGs were detected (Table SII) and the top 50 
DEGs are presented in Fig. 1C. Among them, immune-asso-
ciated genes [major histocompatibility complex, class II, DR 
α (HLA‑DRA), major histocompatibility complex, class II, 
DR β 1, major histocompatibility complex, class I, E and neural 
cell adhesion molecule 1] and a DNA methylation-associated 
gene [isocitrate dehydrogenase (NADP(+)) 2] were identified; 
35 cells (40.2%) in clusters 2, 3 and 5 exhibited upregulation 
of these DEGs.

To examine the identity of cells based on the scRNA-seq 
data, single-cell consensus clustering (SC3) was performed (19) 
using raw read counts of the cells from both patients. As 
presented in Fig. 2A, 36 patient A cells were separated into 
three groups: The majority of cells in the A_2 group (9 in 13) 
were in cluster 1, the majority of the cells in the A_1 group 
(5 in 7) were in cluster 2, while the cells in the A_3 group 
were not evenly distributed in cluster 3 (n=9), cluster 2 (n=5) 
or cluster 1 (n=2). As shown in Fig. 2B, 51 cells from patient 
B were separated into 3 groups: The majority of cells in the 
B_1 group (11 in 12) were in cluster 3, cluster 2 comprised 
mainly of cells in the B_2 group, and all cells in the B_3 
group were in cluster 1. The cells were previously separated 
into distinct subpopulations using hierarchical clustering 
(Fig. 1A), which was highly consistent with the results of PCA 
(Fig. 1B). The results of SC3 clustering (using read counts) 
were also concordant with those of hierarchical clustering 
using log2(TPM/10+1).

Additionally, 3 and 31 DEGs with P<0.01, corrected for 
multiple testing using the ‘holm’ method (19), were identified in 
cells from patients A and B, respectively. The identified DEGs 
were upregulated in 11 of the patient A cells (30.6%) and 27 of 
the patient B cells (52.9%) in cluster 1 (Fig. 2A and B, respec-
tively). The 3 DEGs in the patient A cells were not reported to 
be associated with AML, whereas the 31 DEGs in the patient 
B cells were primarily enriched in cancer-related functions 
from a literature review (Table I). There were differences 
between the cellular composition and transcription patterns of 
different tissues (including BM and PB), which has been previ-
ously described (40). The major subtypes and proportions of 
PB mononuclear cells from a healthy donor are >80% T cells, 
~6% NK cells, ~6% B cells and ~7% myeloid cells; while the 
major subtypes of BM mononuclear cells (BMMCs) from a 

Table I. Clinical information of two patients with acute myeloid leukemia.

Name Age, years Sex Tissue Blast, %a Stage at analysis Karyotype

Patient A 74 Female PB 81 New diagnosis 46,XX,t(8;21)
Patient B 29 Female BM 94 Relapse after HSCT 46,XX,t(8;21)

aPercentage blast value was from PB samples of both patients. PB, peripheral blood; BM, bone marrow; HSCT, hematopoietic stem cell 
transplantation.
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healthy donor are >50% T cells, ~20% B cells, ~10% mono-
cytes and ~20% myeloid cells (40). Specifically, the level of 
blast cells and immature erythroids in the BMMCs of a healthy 
donor is ~15%; whereas, in patients with AML this could be 

50-80% (40). The previous study also suggested that cells 
from BM could predict the status of patients with AML (40). 
Therefore, in the present study, only patient B cells from BM 
were used in the following analyses.

Figure 1. Subpopulations of 87 acute myeloid leukemia single cells. (A) Hierarchical clustering separated single cells into six groups. (B) A total of six 
groups were separated with each other in PCA. (C) SC3 clustering of 87 single cells demonstrated the gene expression features of six groups. PCA, principal 
component analysis.
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Marker‑based classification of cell subpopulations from 
patient B. CD34, CD38, mast/stem cell growth factor 
receptor Kit (KIT or CD117) and HLA-DRA have been 
used to sort LSCs or hematopoietic stem/progenitor cells 
in different leukemia samples (41-44). Therefore, these 
four markers were selected to broadly classify the cell 
sub-populations from patient B. The expression levels of 
these four markers (Kruskal-Wallis; P=2.4x10-8), CD34 
(Kruskal-Wallis; P=4.6x10-5), KIT (Kruskal-Wallis; 
P=0.00039), HLA-DRA (Kruskal-Wallis; P=0.00399) and 
CD38 (Kruskal-Wallis; P=0.00136) were significantly 

different between the cells of three clusters (Fig. 3B-F). The 
expression levels of these four genes were low in the cells 
of cluster 3, suggesting an inactive state (Fig. 3A and B). 
The expression levels of 31 DEGs in cluster 3 were also 
low as a result of SC3 clustering (Fig. 2B). Cells in cluster 
1 expressed high levels of CD34 (Fig. 3C), KIT (Fig. 3D) 
and HLA-DRA (Fig. 3E), suggesting that these cells were 
‘positive blasts’ (44). Significantly lower expression levels 
of CD34 and KIT were observed in cluster 2 compared 
with cluster 1 (Fig. 3C and D), suggesting that these were 
non-leukemic cells. These results not only demonstrate the 

Figure 2. Distributions of acute myeloid leukemia cell subpopulations in each patient. (A) SC3 clustering of 36 single cells from patient A demonstrated the 
gene expression features of three groups. (B) SC3 clustering of 51 single cells from patient B demonstrated the gene expression features of three groups.
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functional identities of the cell sub-populations, but also 
confirmed the accuracy of SC3 clustering.

Functions and interactions of the 31 DEGs. Numerous 
genes among the 31 DEGs were associated with hema-
tological malignancies (Table II). Internal tandem 
duplication of receptor-type tyrosine-protein kinase FLT3 
(FLT3) and partial tandem duplication of lysine methyl-
transferase 2A (MLL) are the most common mutations in 
AML (with frequencies of 30-45% and 5-10%, respectively, 
in CN-AML), and are associated with poor therapeutic 
outcomes (20,21). Specifically, lymphoid‑specific helicase 
and enhancer of polycomb homolog 1 were associated 
with epigenetic regulation in hematopoiesis (22), ring 
finger protein, LIM domain interacting (RLIM) was asso-
ciated with the ubiquitylation of AML1-ETO and protein 
PML-retinoic acid receptor α (23), and programmed cell 
death 4 was associated with related signaling pathway (24) 
in myeloid leukemia. MLL (KMT2A) was associated with 
fusions and acute leukemia (25), and La ribonucleoprotein 
domain family member 4B (26), jumonji domain containing 
1C (JMJD1C) (27) and SYNCRIP (28) were associated with 
LSC self-renewal. Additionally, FLT3 (29), DEAH-box heli-
case 15 (DHX15) (30) and JMJD1C (31) were with risk or 
survival in acute leukemia, FANCD2 was associated with 
drug resistance in leukemia (32), ARID2 was associated 

with hematopoietic stem cell (HSC) function (33), CDC28 
protein kinase regulatory subunit 1B was associated with 
multiple myeloma (34), EPC1 was associated with the devel-
opment of T-cell leukemia (35). Furthermore, the functions 
or variations of JMJD1C (31), RLIM (23) and DHX15 (36) 
were associated with t(8;21) AML.

The interactions between these 31 DEGs were also exam-
ined (Fig. 4). The results of both gene-gene and protein-protein 
interaction analyses suggested that the DEGs are functionally 
related.

Possible biomarkers for rapid prediction of prognostic 
risk in t(8;21) AML. Potential prognostic biomarkers from 
the 31 DEGs of the patient B cells were investigated, 
which included the DEGs between ‘positive blasts’ and 
other cells. The dataset GSE6891 (8), containing both the 
overall survival (OS) and event-free survival information of 
22 patients with t(8;21) AML, and the dataset GSE37642 (9) 
with the OS information of 30 patients with t(8;21) AML, 
were selected to determine the prognostic significance of 
the identified DEGs. The expression values of ARID2, MLL 
and SYNCRIP could predict the OS outcomes of patients 
with t(8;21) AML in both datasets with P≤0.052 (Fig. 5). 
High expression levels of ARID2 and MLL indicate a poor 
outcome, whilst high expression of SYNCRIP suggests 
a more favorable outcome (Fig. 5). The expression values 

Figure 3. Expression patterns of four markers in cell subpopulations from patient B. (A and B) Whole expression patterns of four markers in three cell subpopu-
lations. Expression patterns of (C) CD34, (D) KIT (CD117), (E) HLA-DRA and (F) CD38 in three cell subpopulations. Expression values are presented in 
log2(TPM/10+1) scale, that is, TPM was log-transformed after dividing by 10 and adding 1. KIT, mast/stem cell growth factor receptor Kit; HLA-DRA, major 
histocompatibility complex, class II, DR α; TPM, transcript per million.
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of various genes in either dataset GSE37642 (Fig. S4) or 
GSE6891 (Fig. S5) could also predict the OS outcomes of 
t(8;21) AML. In summary, the present results from the two 
bulk expression datasets supported the conclusions from the 
scRNA-seq data.

Discussion

scRNA-seq of AML undergoing allogeneic HSCT has been 
previously conducted (40); however, to the best of the authors' 
knowledge, investigations into the malignant development 

Table II. A total of 13 differentially expressed genes were associated with the progression of leukemia.

Author, year Gene symbol Full name Role in leukemia (Refs.)

Prasad et al, 2014 HELLS Helicase, lymphoid specific Specifically expressed in hematopoietic (22)
   progenitor cells
Prasad et al, 2014;  EPC1 Enhancer of polycomb Lowly expressed in leukemia cells, involved (22,35)
Nakahata et al, 2009  homolog 1 in chromosomal translocation in ALL
Kramer et al, 2008 RLIM Ring finger protein, LIM A substrate of E3‑ligase SIAH‑1,  (23)
  domain interacting contributing to the ubiquitin-dependent
   degradation of AML1-ETO and protein
   PML-retinoic acid receptor α fusion proteins
Espadinha et al, 2017 PDCD4 Programmed cell death 4 A tumor suppressor, was repressed by (24)
   phosphorylated STAT5 and microRNA-21 in
   chronic myeloid leukemia and AML models
Prasad et al, 2014;  MLL Lysine methyltransferase 2A Highly expressed in the lymphoid lineage,  (22,25)
Meyer et al, 2018 (KMT2A)  chromosomal rearrangements of MLL are
   associated with acute leukemias, and display
   a bad outcome
Zhang et al, 2015 LARP4B La ribonucleoprotein Involved in LSC maintenance, and may (26)
  domain family member 4B regulate the cell cycle of LSCs
Zhu et al, 2016;  JMJD1C Jumonji domain A coactivator for RUNX1-RUNX1T1,  (27,31)
Chen et al, 2015  containing 1C mediates of MLL-AF9- and HOXA9-driven
   LSC function
Vu et al, 2017 SYNCRIP Synaptotagmin binding Interacts with MSI2 indirectly, controls the (28)
  interacting cytoplasmic myeloid LSC program
  RNA protein
Thiede et al, 2002;  FLT3 Fms related tyrosine Internal tandem duplication of FLT3 results (20,29)
Cheng et al, 2018  kinase 3 in the failure of leukemia treatment and
   contribute to a poor prognosis; significantly
   upregulated in AML and ALL, reduces
   survival rates
Pan et al, 2017;  DHX15 DEAH-box helicase 15 Regulates cell apoptosis through NF-κB (30,36)
Christen et al, 2019   signaling pathway, associated with poor
   prognosis in AML, with mutations in t(8;21)
   AML
Yao et al, 2015 FANCD2 FA complementation May confer leukemia resistance to adriamycin (32)
  group D2 via enhanced DNA interstrand crosslink repair
Liu et al, 2018 ARID2 AT-rich interaction Required for the maintenance of HSC (33)
 (BAF200) domain 2 homeostasis, ARID2 deficiency accelerates
   the progression of MLL-AF9-induced leukemia
Walker et al, 2019 CKS1B CDC28 protein kinase Amplification (≥4 copies) of CKS1B was (34)
  regulatory subunit 1B observed in high-risk multiple myeloma

ALL, acute lymphoid leukemia; AML1-ETO, fusion protein acute myeloid leukemia 1 protein-protein ETO; AML, acute myeloid leukemia; 
LSC, leukemic stem cell; AF9, protein AF-9; HOXA9, homeobox protein Hox-A9; MSI2, musashi RNA binding protein 2; NF-κB, nuclear 
factor-κB; HSC, hematopoietic stem cell.



XIONG et al:  scRNA-seq IN t(8:21) AML 1285

Figure 4. Gene-gene and protein-protein interaction networks of 31 differentially expressed genes. (A) Co-expression network and (B) genetic network from 
Gene Multiple Association Network Integration Algorithm. Nodes indicate genes and lines indicate interactions.
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of t(8;21) AML are limited. In the present pilot study, the 
single-cell transcriptomes of two patients with t(8;21) AML 
were profiled, and the cells were separated into sub‑populations 
with different gene expression patterns.

Among the 31 identified DEGs in cells from patient B (the 
treatment outcome for whom was poor), several genes were 
identified to be associated with leukemia; the prognostic signif-
icance of three of these genes, ARID2, MLL and SYNCRIP, 

Figure 4. Continued. Gene-gene and protein-protein interaction networks of 31 differentially expressed genes. (C) Protein-protein interaction networks. Nodes 
indicate proteins and lines indicate interactions.

Figure 5. Kaplan-Meier survival curves of t(8;21) patients with acute myeloid leukemia from datasets GSE37642 (n=30) and GSE6891 (n=22) using genes ARID2, 
MLL and SYNCRIP. Overall survival curves using ARID2 for (A) GSE37642 and (B) GSE6891. (C) Event-free survival curve using ARID2 from the dataset 
GSE6891. Overall survival curves using MLL for (D) GSE37642 and (E) GSE6891. (F) Event-free survival curve using ARID2 from the dataset GSE6891. 
Overall survival curves using SYNCRIP for (G) GSE37642 and (H) GSE6891. ARID2, AT-rich interaction domain 2; MLL, lysine methyltransferase 2A; 
SYNCRIP, synaptotagmin binding cytoplasmic RNA interacting protein.
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was validated in two t(8;21) AML datasets. ARID2 is a tumor 
repressor that plays important roles in the maintenance of HSC 
homeostasis, and ARID2 deficiency accelerates the progression 
of MLL-protein AF-9-induced leukemia (33). Chromosomal 
rearrangements of MLL are associated with acute leukemia, 
and subsequently result in poor patient outcome (25). Together 
with musashi RNA binding protein 2 indirectly, SYNCRIP 
regulates the myeloid LSC program, and is required for the 
survival of leukemia cells (28). The prognostic significance of 
ARID2 and MLL determined in the present study are consis-
tent with those presented in the literature (25,33), while that of 
SYNCRIP was the opposite, which may due to the tissue differ-
ence and requires further validation in the future. Furthermore, 
the functional and prognostic significance of the other various 
genes require future experimental clarification.

scRNA-seq is a powerful technology that is frequently 
used in cancer research, and the flow cytometric targeting of 
cell surface antigens has been used to isolate tumor cells in a 
number of previous studies (17,45). In the present study, the 
presence of ‘positive blasts’ was predicted using marker genes 
as indicated in a previous study (44). Different gene-based 
stemness scores have been developed to determine the risk of 
AML. The weighted sum of a subset of LSC-related genes has 
been used to determine the prognosis for AML in a number 
of previous studies, and a sufficient number of datasets and 
samples were used for training and validation. However, the 
LSC-related scores only perform well in CN-AML (2,3). In 
the present study, three prognostic biomarkers were identi-
fied in AML with an abnormal chromosomal karyotype. 
This differs from previous studies (2,3); the candidate genes 
were analyzed from the high-throughput sequencing data of 
single cells, rather than selected from microarray expression 
data of bulk cells, and the biomarkers in the present study are 
applicable to AML with a t(8;21) translocation.

There are some limitations to the present pilot study. Besides 
second relapse, the BM samples at other time points, such as 
new diagnosis, first relapse and after HSCT, were not collected 
from patient B and the patient has subsequently died. Therefore, 
it was not possible to track the clonal evolution of t(8;21) AML 
by taking advantage of scRNA-seq in the present study. A larger 
number of patients at different disease progression stages, and a 
larger number of collected cells may better illustrate the clonal 
evolution and development of t(8;21) AML. Additionally, due 
to the availability of resources, the dataset used for biomarker 
validation was not very large. Specific genomic variations, such 
as single nucleotide variants (40) and copy number variants (17), 
may be inferred in the assistance of genomic sequencing 
methods in future work. The present study provided evidence 
that scRNA-seq plays an important role in the study of t(8;21) 
AML and suggested that strategies promoting scRNA-seq may 
be valuable techniques for hematological malignancy therapy.
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