
Today, hip fracture surgery represents a large quota of 
orthopedic surgeon activities and has significant clinical 
and social cost implications associated with it.1,2) For hip 
fracture treatment, which has high clinical importance 
and cost, it is very important to evaluate and predict the 
presence of prolonged wound drainage (PWD) after hip 

hemiarthroplasty (HA) and to assess risk factors.3) PWD 
after HA highly affects the recovery process and results in 
longer length of stay. Statistical and machine learning (ML) 
models such as logistic regression (LR) have been widely 
used to assess underlying complex patterns of risk factors 
in the hip.3) However, their use for predictive analysis is 
limited. 

Various studies have been conducted in the litera-
ture on ML methods related to hip fractures and femoral 
neck fractures. Yoo et al.4) developed ML models to more 
accurately determine the risk of osteoporosis of the femo-
ral neck in postmenopausal women and compared them 
with the osteoporosis self-assessment tool. Karnuta et al.5) 
used naive Bayes ML method, which provides high ac-
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curacy and responsiveness in estimating the length of stay 
and cost of hip fracture care using preoperative variables. 
Shtar et al.6) compared ML methods in designing an es-
timated rehabilitation outcomes model for patients after 
acute hip fractures. Cary et al.7) evaluated an ML model 
designed to predict mortality for those treated for the hip. 
All these studies were carried out with conventional clas-
sification methods.7) Various studies have been conducted 
in the literature on ML methods related to hip fractures 
and femoral neck fractures. All these studies were carried 
out with conventional classification methods.4-7) However, 
no study has been found in the literature on the use of 
ML method for the analysis of risk factors for PWD after 
arthroplasty. Moreover, most of the research focus on the 
best performing models, but the findings are summaries of 
comparison of models and require high-level coding skills. 
This results in limited use of ML models in the clinical 
practice. In other words, clinicians cannot use the models 
for daily decisions due to technical difficulties.

Our aim in this study was to propose advanced ML 
algorithms to detect high risk of developing PWD after 
arthroplasty. Even developed models might be used for 
assessment of risk factors, but they may have lower pre-
dictive performance. Canbek et al.3) studied risk factors 
of PWD after arthroplasty using a logistic model but the 
study did not cover predictive performance of this meth-
od. Here, using the same data, we expanded the use of 
logistic model by comparing it with advanced ML models 
such as decision trees, k-nearest neighbors (KNN) algo-
rithm, decision tree, boosted machines and stacking. Our 
hypothesis was that predictive models could be improved 
through stacking of trained models to predict PWD after 
arthroplasty. Our findings support this idea by providing 
higher accuracy and precision when compared to previ-
ously developed logistic models3) and widely used ML 
algorithms. Our findings also support that these models 
do not conflict in terms of the important risk factors such 
as surgery type, volume of fluid drained from the drain, 
blood transfusion, and morbid obesity while they perform 
better. The comparisons showed that stacking models 
achieved the best performance. Although high-performing 
ML models were developed, they were not available for 
clinical practice in most cases. We developed a web-based 
interface to increase the practical use of these models where 
the clinician could enter the measurements for the afore-
mentioned risk factors to predict the risk of having PWD 
after arthroplasty. The web interface is available at https://
biodatalab.shinyapps.io/PWDPredictoR/.

METHODS
Ethical Approval 
All procedures performed in studies involving human par-
ticipants were in accordance with the ethical standards of 
the institutional and/or national research committee and 
with the 1964 Helsinki declaration and its later amend-
ments or comparable ethical standards. This study was 
approved by the Ethics Committee of Mugla Sıtkı Kocman 
University (No. 5/01), and informed consent was obtained 
from all individual participants included in the study.

Patient Population and Sample
The data used in the study were obtained from patients 
who visited the orthopedic department of Mugla Sıtkı 
Koçman University Training and Research Hospital be-
tween January 1, 2017, and January 1, 2020, and who un-
derwent HA after proximal femur fractures. The dataset 
was created during the study as explained in detail in the 
study of Canbek et al.3) Here, we used the same dataset for 
further investigation of model development. In the data 
set, there were 21 features and 313 examples. There were 
two separate groups, 28 with fluid present and 285 with 
fluid absent. In all patients, negative pressure closed suc-
tion drains were removed under sterile conditions at the 
48th hour after surgery. Following the removal of the He-
movac drain, a sterile pediatric urine collection bag with a 
capacity of 100 mL was placed at the drain outlet. Patients 
with a daily fluid collection > 2 mL for three consecutive 
days after placement of the collection bag were considered 
as disabled cases and labeled as fluid present. Further de-
tails of data generation are available in the study of Canbek 
et al.3) Table 1 shows the descriptive statistics of the origi-
nal data set and processed data set. 

ML Methods Used in This Study
Linear discriminant analysis 
Ida is an approach that maximizes the ratio of interclass 
variance to in-class variance. Here, the goal is to assign 
units to their actual class with minimal error.8) The linear 
discriminant analysis (LDA) method is robust, easy to use, 
and has high prognostic accuracy.9)

Decision tree (rpart)
rpart is a tree-based algorithm consisting of a series of de-
cision tests that work with the divide and conquer method. 
However, it offers a process that is generally less time-con-
suming than other classification techniques.10) Decision 
trees are straightforward and simple.11) 

https://biodatalab.shinyapps.io/PWDPredictoR/
https://biodatalab.shinyapps.io/PWDPredictoR/
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KNN
KNN is an example-based learning method. The logic of 
KNN was to put forward with the idea that similar ex-
amples belonging to the same class have a high probability. 
The basic idea of KNN is to first select KNN for each test 
sample, then use the learned neighbors to estimate this test 
sample.12) One of the biggest advantages of the KNN algo-
rithm is that it is easy to implement and sensitive to the local 
structure of the data.13) 

Table 1. Descriptive Statistics for Wound Drainage Dataset

Variable
Fluid

Total
Absent (n = 285) Present (n = 28)

Age (yr) 81 ± 8 80 ± 8 80.91

Sex 313

   Female 183 16

   Male 102 12

BMI (kg/m2) 31.41 ± 4.01 35.72 ± 5.74 31.79

DM

   Present 78 7 85

   Absent 207 21 228

Fasting glucose (mg/dL) 110.49 ± 45.23 102.92 ± 23.85 109.81

HbA1c (%)  1.82 ± 3.10  1.53 ± 2.73 1.79

ASA score

   ASA 2 154 12 166

   ASA 3 117 15 132

   ASA 4 14 1 15

Comorbidity score

   2 60 1 61

   3 134 12 146

   4 71 13 84

   5 11 1 12

   6 5 1 6

   7 4 0 4

Antibiotic type

   Cefazolin 272 25 297

   Clindamisin 13 3 16

Preoperative anticoagulant 
status

   Not using 173 15 188

   Aspirin 80 13 93

   Low-molecular-weight  
   heparin

6 0 6

   Dabigatran 7 0 7

   Coumadin 15 0 15

   Plavix 4 0 4

Table 1. Continued

Variable
Fluid

Total
Absent (n = 285) Present (n = 28)

Morbid obesity

   BMI < 40 kg/m2 277 15 292

   BMI > 40 kg/m2 8 13 21

Fracture type

   Femur neck 104 6 110

   Trokanterik 181 22 203

Surgical approach

   Posterolateral 237 10 247

   Anterolateral 48 18  66

Cerclage presence

   Present 161 16 136

   Absent 124 12 177

Bone cement presence

   Present 108 6 114

   Absent 177 22 199

Time before operation (day)  23.31 ± 16.96  24.43 ± 11.79 23.41

Time before surgery (day)  0.67 ± 0.82  0.75 ± 0.58 0.67

Transfused blood (U: Units)  1.63 ± 1.47  4.50 ± 2.18 1.88

Input hemoglobin (g/dL) 11.26 ± 1.55 11.02 ± 1.53 11.23

Postoperative day 1 
hemoglobin level (g/dL)

 9.80 ± 1.48  8.26 ± 1.46 9.66

Hemoglobin level at 
discharge (g/dL) 

10.00 ± 1.01  9.88 ± 0.73 9.98

Volume of fluid drained 
from the drain (mL)

 294.49 ± 105.31  562.50 ± 173.00 318.46

Values are presented as number or mean ± standard deviation.
BMI: body mass index, DM: diabetes mellitus, HbA1c: hemoglobin A1c, 
ASA: American Society of Anesthesiologists physical status classifica-
tion.
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Gradient boosting machine
The general premise of the gradient boosting machine 
(GBM) approach is that a single decision tree is not strong 
enough. A decision tree algorithm is applied in GBM and 
a new decision tree is designed with the resulting error. 
This process is continued until the error is minimized.14,15) 
Since GBM is an ensemble method, it is an algorithm that 
helps reduce variance and bias.16) 

Logistic regression 
It is a traditional statistical learning method that uses a lo-
gistic link function to model a bilateral outcome based on 
patient-level risk factors.17,18)

Stacking
Stacking method presents the general architecture in 
which multiple algorithms (first-level learners) are trained 
to be combined on a second-level learner (meta learner).19) 
The basic idea is to educate first-level learners using the 
original training data set and then create a meta learner 
(here, we used an LR model) with a new dataset in which 
the outputs of the first-level learners are considered input 
characteristics.19,20) First-level learners are produced either 
by applying algorithms from different types of classifiers 
or by applying a uniform classifier, and, therefore, stacked 
models are often hybrid of various classifiers. Stacking 
method offers a better generalization ability by reduc-
ing the standard deviation and provides strong flexibility. 
However, as many algorithms are combined, the interpre-
tation of these models is not easy. In this study, LR method 
was used as the stacking method.

Implementation
We used R (R Foundation for Statistical Computing), an 
open-source software and caret, caretEnsemble, ggplot2, 
packages for implementation. The data set is divided into 
two as 75% training and 25% test. In the preprocessing 
step, subtracting the average of the predictor’s data from 
the predictor’s value (center) and scaling the average of the 
predictor’s data by the standard deviation were applied. To 
increase the accuracy of the model, a random search was 
set as tunelenght = 5 and 10 fold cross-validation was ap-
plied. After all these data preprocessing steps, the data set 
was integrated in GBM, KNN, LDA, and rpart methods. 
The predictions obtained are combined for stacking (LR) 
with equal weight. Recursive feature elimination is a good 
selection way to select key features. Recursive feature elim-
ination, the ML algorithm, can determine which features 
are important to predict the response variable. For the 
current data set, four important properties were selected 

with 10-fold cross validation. These features are fluid dis-
charged from the drain, morbid obesity, transfused blood, 
and surgical approach. Rpart tuning parameter “cp” was 
held constant at a value of 0. KNN final value used for the 
model was k = 7. GBM final values used for the model 
were n.trees = 644, interaction.depth = 8, shrinkage = 
0.018, and n.minobsinnode = 17. There are no hyperpa-
rameters for LDA.

A web-based interface that allows prediction of 
PWD after arthroplasty per patient by using the R pro-
gramming language on Shiny, an open-source R package, 
was created. In the “Calculate PWD risk” section, the 
existence of morbid obesity, type of surgical procedure, 
number of units of blood transfused, and volume of fluid 
drained of a new patient were entered and the probability 
of PWD risk after arthroplasty was given. The decision 
was made using the stacking model that was developed in 
this study. 

Performance Evaluation
The correct evaluation of these methods is very important 
in terms of concluding the study.21) The accuracy criterion 
among the evaluation performances can be explained as 
the ratio of correctly predicted answers in the model to all 
answers. Kappa is a statistical method that measures the 
reliability of agreement between two raters.22) Sensitivity 
is the ratio of predicted positive class values to all positive 
class values. Specificity is the ratio of correctly predicted 
negative class values to all negative class values. Precision 
is the ratio of the correctly predicted positive class values 
to all positively predicted class values. F1-Measure was 
developed because evaluating precision and sensitivity 
criteria together will give more accurate results. The F1-
measure is the harmonic mean of precision and sensitiv-
ity.23)

RESULTS
Stacking Models Perform Better Than Traditional ML 
Methods
Model 1: stacked learning with linear discriminant analy-
sis, KNN, decision tree, and gradient boosted machine
We trained, validated, and tested each model mentioned in 
the methods. We also developed a stacked model of LDA, 
KNN, rpart, and GBM on a logistic meta learner. The per-
formance evaluation based on accuracy, F1, kappa, preci-
sion, sensitivity, and specificity for LR, LDA, KNN, rpart, 
GBM, and stacking models are given in Fig. 1. Overall, the 
stacking (accuracy = 0.89, f1 = 0.84, kappa = 0.81, preci-
sion = 0.88, sensitivity = 0.80, specificity = 0.98) algorithm 
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performed better than other algorithms. Stacking method 
is a two-stage classification method. In the event that the 
basic classifiers used in the first step learned a certain re-
gion of the feature space incorrectly, the meta-stage classi-
fier detected this undesirable situation and corrected this 
wrong training, outstripping other methods in terms of 
evaluation criteria from other methods. The logistic model 
widely used for risk factor assessment has the lowest per-
formance in terms of all metrics (accuracy = 0.83, f1 = 0.46, 
kappa = 0.41, precision = 0.33, sensitivity = 0.75, specific-
ity = 0.91). Although rpart (accuracy = 0.87, f1 = 0.84, 
kappa = 0.73, precision = 0.84, sensitivity = 0.84, specific-
ity = 0.88) and GBM (accuracy = 0.87, f1 = 0.84, kappa = 
0.73, precision = 0.84, sensitivity = 0.84, specificity = 0.88) 
provided promising results, stacking of these algorithms 
overperform them in terms of accuracy, kappa, preci-
sion, and specificity. The stacking model 1 did not achieve 
better results in terms of F1 and sensitivity. In order to 
increase the detection ability of Model 1, we developed a 

several models that combine set of these algorithms. The 
results of Model 2 given in the next section are the highest 
performing model among those where we combine GBM, 
KNN, and LDA on a logistic meta learner. 

Model 2: stacked learning with linear discriminant analy-
sis, KNN, and gradient boosted machine
As a result of removing the rpart from the stacking model, 
we achieved the best performance (accuracy = 0.96, f1 
= 0.97, kappa = 0.78, precision = 0.98, sensitivity = 0.96, 
specificity = 0.89) when compared to high-performing 
GBM (accuracy = 0.87, f1 = 0.84, kappa = 0.73, precision 
= 0.84, sensitivity = 0.84, specificity = 0.88) and model 1 
(accuracy = 0.89, f1 = 0.84, kappa = 0.81, precision = 0.88, 
sensitivity = 0.80, specificity = 0.98). The results of GBM, 
KNN, LDA, and stacking algorithms are given in Fig. 2.

Model 2 Can Be Used for Detecting High-Risk Patients
The risk assessment for PWD after arthroplasty can guide 

Lr Lda Knn Rpart Gbm Stacking

1.00

0.75

0.50

0.25

P
e
rf

o
rm

a
n
c
e

v
a
lu

e

Algorithms

0

Accuracy
F1
Kappa
Precision
Sensitivity
Specificity

0.830.83

0.460.46
0.410.41

0.330.33

0.750.75

0.910.91

0.830.83

0.460.46
0.410.41

0.330.33

0.750.75

0.910.91
0.940.94

0.660.66
0.630.63

0.570.57

0.80.8

0.950.95

0.870.87
0.840.84

0.730.73

0.880.88

0.840.84 0.840.84

0.880.88

0.730.73

0.840.84
0.870.87

0.840.840.840.84

0.890.89
0.840.84

0.810.81

0.880.88

0.80.8

0.980.98 Criteria

Fig. 1. Performance comparisons for model 1. Accuracy, F1, kappa, precision, sensitivity, and specificity results for logistic regression, linear discriminant 
analysis, k-nearest neighbors, decision tree, gradient boosted machines, and stacking model 1. Stacking model uses a logistic meta learner to stack 
linear discriminant analysis, k-nearest neighbors, decision tree, and gradient boosted machines. Results show that decision tree, gradient boosted 
machine, and stacking model 1 achieved similar performance and outperformed the others.

Lr Lda Knn Gbm Stacking

1.00

0.75

0.50

0.25

P
e
rf

o
rm

a
n
c
e

v
a
lu

e

Algorithms

0

Accuracy
F1
Kappa
Precision
Sensitivity
Specificity

0.830.83

0.460.46
0.410.41

0.330.33

0.750.75

0.910.91
0.940.94

0.660.66
0.630.63

0.570.57

0.80.8

0.950.95

0.880.880.870.87

0.730.73

0.840.84 0.840.840.840.84

Criteria
0.960.96

0.970.97

0.780.78

0.980.98
0.960.96

0.890.89

0.940.94

0.660.66
0.630.63

0.570.57

0.80.8

0.950.95
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clinicians to take preventive actions for the patients with 
high risk. We developed a web-based interface for patient-
by-patient evaluation in the clinical setting. The result of 
the tool is shown in Fig. 3A for a hypothetical patient A for 
illustrative purposes. The risk of PWD for this patient was 
tested on the best ML model (model 2). The patient was 
morbidly obese (body mass index > 40 kg/m2), underwent 
posterolateral surgery, and was transfused with five units 
of blood, and the liquid discharged from the drain was 
550 mL. The tool predicted 93.6% risk for this particular 
patient. Fig. 3B shows another hypothetical patient B for 
illustrative purposes. The risk of PWD for this patient was 
tested on the best ML model (model 2). The patient was 
not morbidly obese (body mass index < 40 kg/m2), under-
went anterolateral surgery, and was transfused with three 
units of blood, and the liquid from the drain was 450 mL. 
The tool predicted 8.2% risk for patient B. 

DISCUSSION
It is not clear why some patients develop PWD after ar-
throplasty. Although the exact source is unknown, some 
authors think that PWD develops as a result of hematoma 
or seroma formation.24) Despite the similarity in the bio-
chemical content of serum and transudative disability flu-
id, Canbek et al.,25) upon further proteomic analysis, found 
that PWD contained lymph-specific proteins. Especially 
in the field of orthopedics, increasing postoperative com-
plications and economic cost rates necessitate a predic-
tion of the risk of developing PWD. Today, an orthopedic 
surgeon needs accurate predictions of the outcome of their 
patients’ disease, so high-performance methods are vital 
to support prevention of PWD. To this end, we developed 
several high- performing ML algorithms in this study. 

Canbek et al.3) showed the amount of fluid drained from 
the drain, blood transfusion, surgery type, and morbid 
obesity are of great importance. We found that the risk fac-
tors determined by the new models were compatible with 
the literature. Moreover, advanced models we developed 
have higher predictive ability when compared to tradition-
al predictive models such as logistic model. We suggest 
that the method we developed can be used as a decision 
support tool for the pre-evaluation of risk factors. We also 
developed an interface for this purpose. The interface can 
be used as a decision support tool in the clinical setting.

It has been shown that there is a significant relation-
ship between morbid obesity and fluid volume from the 
drain in patients with PWD after arthroplasty.26) Ahmed 
et al.27) reported that hypertensive patients were more dis-
abled than normotensive patients in their study, and they 
attributed this to prolongation of bleeding. Although the 
exact source of the injury is not known, it is thought that 
bleeding and hematoma from the vessels in the operation 
area may cause disability.28) Finally, PWD fluid analysis 
has been shown as lymph fluid accumulating in the sur-
gical field after major surgical procedures such as PWD 
and HA. The results shown as risk factors for PWD with 
the new modeling we found are consistent with the recent 
literature. One of the most important risk factors is the use 
of low-molecular-weight heparin in the literature.26) How-
ever, in our case, all patients were using low-molecular-
weight heparin. So, the existence/nonexistence of this risk 
factor could not be evaluated. 

Our study has several limitations. Our models rely 
on one center dataset. Our model development pipe-
line can be fed by other datasets such as studies for large 
cohorts and multicenter studies to cover a wide range 
of population characteristics. It should be noted that al-

A B

Fig. 3. Illustrative examples of prediction of prolonged wound drainage (PWD) after arthroplasty for patient A (A) and patient B (B). Patient A has 
higher risk of developing PWD when compared to patient B due to increased body mass index, surgery type, increased amount of blood transfused, and 
increased amount of liquid from the drain.
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though stacking algorithms can help improve prediction 
performance, interpreting with these models is not an easy 
task. We used separate models for risk assessment and rec-
ommended the use of the most successful level one model. 
In addition, linear regression and decision tree regression 
were applied to predict the volume of mean drainage out-
put (mL), and significant results could not be obtained.

In the study, stacking models were developed to pre-
dict PWD after arthroplasty. First, we developed individ-
ual linear discriminant analysis, KNN, decision tree, and 
gradient boosted machines models. Then, a meta learner 
(logistic) was used to stack linear discriminant analysis, 
KNN, decision tree, and gradient boosted machines mod-
els. We found that model 2 outperformed other methods. 
Model 2 was integrated into a Shiny web-based interface 

to help clinicians use the model for their daily practice.
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