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Abstract: As a submaximal exercise test, a 6-min walking test (6MWT) can be considered a suitable
index for the exercise capacity of patients with a respiratory problem. Traditionally, medical staff

manually collect cardiopulmonary information using different devices. However, no integrated
monitoring system is currently available to simultaneously record the real-time breathing sound,
heart rhythm, and precise walking information (i.e., walking distance, speed, and acceleration) during
the 6MWT. In this study, a wearable and wireless multiparameter monitoring system is proposed to
simultaneously monitor the breathing sound, oxygen saturation (SpO2), electrocardiograph (ECG)
signals, and precise walking information during the 6MWT. Here, a wearable mechanical design was
successfully used to reduce the effect of motion artifacts on the breathing sound and ECG signal.
A multiparameter detection algorithm was designed to effectively estimate heart and breathing rates.
Finally, the cardiopulmonary function of smokers was evaluated using the proposed system. The
evaluation indicated that this system could reveal dynamic changes and differences in the breathing
rate, heart rate, SpO2, walking speed, and acceleration during the 6MWT. The proposed system can
serve as a more integrated approach to monitor cardiopulmonary parameters and obtain precise
walking information simultaneously during the 6MWT.

Keywords: cardiopulmonary function; 6-min walking test (6MWT); electrocardiogram; breathing
sound; indoor walking distance

1. Background

As a submaximal exercise test, the 6-minute walking test (6MWT) can be a suitable index for the
exercise capacity of patients with respiratory problems [1,2]. The 6MWT is a simple and inexpensive
test that provides the global and integrated response of pulmonary and nonpulmonary factors [3,4].
In the 6MWT, blood pressure, heart rate, and oxygen saturation (SpO2) are monitored before and
after the test, and the 6-minute walking distance (6MWD) is recorded as an exercise capacity index [5].
6MWT provides information of functional capacity, response to therapy, and prognosis across a range
of chronic cardiopulmonary conditions. A change in walking distance of more than 50 m is clinically
significant in most disease states. A distance less than 350 m is associated with increased mortality in
chronic obstructive pulmonary disease, chronic heart failure, and pulmonary arterial hypertension [6].

In clinical applications, the degree of airflow limitation is frequently used to understand the
severity of respiratory problems [7,8]. Furthermore, respiratory and limb muscle dysfunction are
frequently observed in people with respiratory problems [9–11]. The respiratory limitation and
peripheral muscle weakness may cause physical deterioration and reduce exercise ability [12–14].
Previous studies have indicated that the exercise capacity of patients with respiratory problems may
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be a better predictor of mortality than the forced expiratory volume in one second (FEV1), body
mass index (BMI), and associated comorbidities [15]. Therefore, the 6MWT is the most commonly
used test to evaluate exercise capacity and predict functional outcomes in patients with respiratory
problems [16–18].

Some people with cardiopulmonary problems can develop abnormal breathing or arrhythmia
during the 6MWT, which can remain undetected without real-time breathing sound and heart rhythm
monitoring. Therefore, developing a system that provides both real-time breathing sound and heart
rhythm monitoring is essential.

2. Related Work

Several monitoring systems have been proposed to monitor the exercise capacity and bioparameters
of patients during the 6MWT. In 2009, Jehn et al. monitored the step count and three-dimensional
signal vector magnitude (SVM) of patients with chronic heart failure by using an accelerometer and
a pedometer during the 6MWT, and they attempted to obtain alternative performance parameters
gained from accelerometers related to 6MWD [19]. They showed that the step frequency and sum
of SVM may only be correlated with the high-intensity 6MWD. In 2011, Charles et al. proposed a
remote monitoring system to monitor electrocardiograph (ECG) signals and gait information from
cardiac patients during the 6MWT [20]. A miniaturized heart and activity monitor placed on a belt was
used to record single-lead ECG signals, and a nondifferential global positioning system (GPS) receiver
was used to record walking speed, elapsed distance, and location. However, the GPS technique is
impractical for an indoor 6MWT. In 2015, Juen et al. used machine learning techniques on a smartphone
to predict the walking speed and distance of patients during the 6MWT and natural free walking [21].
A smartphone accelerometer provided three-axial acceleration, which were used to estimate gait speed
and predict the 6MWD. However, this technique requires pretraining and may vary for different
individuals. In 2015, Nicole et al. proposed a calibration-free algorithm for the 6MWT to record the
total walking distance, step timing, and walking changes over time from information obtained using
the accelerometer gyroscope in the smartphone [22]. Gait was estimated using the number of foot
strikes obtained from the smartphone and a known walkway length. However, larger distance error
may occur in some conditions, including when the trial ended shortly after a turn, in populations that
do not have distinct foot strikes (i.e., shuffle gait with stroke or elderly), and those with severe gait
asymmetry. In 2016, Ruth et al. designed a remote monitoring system to monitor the heart rate and ECG
signals of older adults with heart failure during the 6MWT [23]. Moreover, two electrodes were placed
on the back of an iPhone to measure real-time, single-lead ECG signals, whereas the accelerometer
and GPS in the iPhone were used to collect 6MWD data. However, a user was required to hold this
device in their hand; therefore, this technique may be unsuitable for the 6MWT. The aforementioned
6MWT system could not provide real-time breathing sound and heart rhythm monitoring to observe
the occurrences of abnormal breathing activities and cardiac arrhythmia during the 6MWT and avoid
test risks. Moreover, they could not provide precise walking information.

Several physiological monitoring systems have also been developed to monitor cardiopulmonary
parameters. In 2014, Andreoni et al. designed a wearable monitoring device to monitor the physiological
parameters of patients with postpolio syndrome during the 6MWT to evaluate the functional efficiency
of their lower limb orthosis [24]. A commercial ECG, impedance-cardiograph (ICG) signal acquisition
model, and triaxial accelerometer were integrated into this system, and the system could be placed on
the lumbar area of the user by using an elastic belt. However, the influence of motion artifacts on the
measurement of ECG and ICG was large. Moreover, gait information estimated using the walking step
and step length was inaccurate. In 2017, Miramontes et al. proposed a mobile healthcare platform
(PlaIMoS) to monitor the cardiovascular and respiratory parameters of patients [25]. This system
comprises a wearable device, measurement station, and wireless sensor network (WSN) infrastructure.
The aforementioned wearable device was integrated with a three-dimensional accelerator, ECG
sensor, and temperature sensor. The information of vertical or horizontal positions obtained from
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the three-dimensional accelerator could be used to estimate the state of falling or standing. The
aforementioned measurement station integrated a photoplethysmography (PPG) sensor, an airflow
sensor, and a galvanic sensor to monitor the SpO2 level, breathing rate, and skin response voltage of
the user. The obtained physiological parameters were then transmitted to the nearest communication
node of the WSN. However, the cost of the WSN infrastructure increased with the increasing WSN
coverage. Moreover, only ECG and body temperature could be monitored under motion. In 2018,
Taffoni et al. proposed a wearable system for the continuous and real-time monitoring of walking
steps and cardiovascular and respiratory parameters to help people promote their health and exercise
adherence [26]. A commercial headphone with a microphone stick, a commercial PPG sensor, an
inertial-magnetic unit sensor, and a differential pressure sensor were integrated into the aforementioned
wearable system. Information was obtained using the triaxial accelerometer signal, heart rate was
estimated using the PPG signal, and breathing rate was estimated from the signal of exhalation
and inhalation obtained by the differential pressure sensor. However, the accuracy of heart rate
estimation from the PPG signal was unsatisfactory, particularly under motion. Moreover, placing
the differential pressure sensor near the nose easily was uncomfortable and inconvenient. In 2019,
Klum et al. proposed a wearable multimodal stethoscope patch for wireless biosignal acquisition
and long-term auscultation [27]. The authors presented the prototype of a wearable, Bluetooth 5.0
LE-enabled multimodal sensor patch combining five modalities: Microelectromechanical systems
(MEMS) stethoscope, ambient noise sensing, ECG, impedance neumography, and nine-axial actigraphy.
However, this system is mainly applied in sleep monitoring and general postoperative care, not in
6MWT. It also lacks walking information acquisition and interference (caused by motion) removal.

3. Motivation

To overcome the aforementioned issue, a wearable wireless cardiopulmonary function evaluation
system is proposed in this study. In this study, a wireless wearable multiparameter acquisition device
was developed to simultaneously monitor the real-time breathing sound, ECG signals, and SpO2
under motion. Moreover, by using the wearable mechanical design, the device could successfully
reduce the influence of motion on monitoring breathing sounds and ECG signals. To avoid differences
between the walking distance of different individuals in the aforementioned methods, radio frequency
identification (RFID) was employed for the measurement of the indoor 6MWD. A multiparameter
analysis algorithm was designed to automatically extract heart rate, breathing rate, walking distance,
and speed. Finally, the proposed system was validated, and cardiopulmonary functions of smoking
and nonsmoking groups under the 6MWT were investigated. Differences in the breathing rate, walking
distance, and speed between smoking and nonsmoking groups during the 6MWT were found to
be significant.

4. System Design and Implementation

4.1. System Architecture

Figure 1 shows the scheme of the proposed wearable cardiopulmonary function evaluation system,
which primarily included a wireless multiparameter acquisition device, an indoor walking distance
measurement device, and a host system. This multiparameter acquisition device was designed to
simultaneously monitor multiple signals, such as breathing sound, heart rate, and SpO2, under motion.
The acoustic sensor of the multiparameter acquisition device was placed on the upper right anterior
chest of the patient to acquire breathing sounds. ECG electrodes were placed on the upper right and
left chest as a primary input, and a reference electrode was placed on the lower right of the body
close to the right leg to collect the lead I ECG signal. An optical probe was attached on the ear to
acquire the PPG signal and then estimate the SpO2 of the user. To reduce the influence of motion,
this multiparameter acquisition device used a mechanical design to provide a suitable pressure for
maintaining an excellent contacting condition of the device and chest wall. The indoor walking distance
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measurement device was designed to record and monitor the walking distance, speed, and acceleration.
Moreover, the device was tied on the rear heel to monitor walking information. All raw data acquired
by the wireless multiparameter acquisition device and indoor walking distance measurement module
were simultaneously transmitted to the host system via Bluetooth. A multiparameter monitoring
program in the host system was then displayed and analyzed, and these physiological signals were
stored to assist the physician in evaluating the cardiopulmonary function of the patient.
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4.2. Wearable Multiparameter Acquisition Device

The wearable multiparameter acquisition device primarily comprised a wearable mechanical
design and wireless biosignal acquisition module. Figure 2 shows the block diagram of the wireless
biosignal acquisition module. The model mainly comprises a light-emitting diode (LED) driving
circuit, photodiode (PD) amplification circuit, frontend amplifier circuits, a microphone driving circuit,
a microprocessor, and a wireless transmission circuit. An external optical probe, which consists of a
three-wavelength LED (SMT640/700/910, EPITEX, Japan) and photodiode (PD15-22C/TR8, EVERLIGHT,
Taiwan), was used to acquire a PPG signal to estimate SpO2. The power of the LED light source
was approximately 0.1 W. In the wireless biosignal acquisition module, the LED driving circuit was
designed to provide a steady current for driving a three-wavelength LED of the optical probe, and
the PD amplification circuit was designed to amplify the light signal obtained by the photodiode
and penetrating through the human tissue. The gain of the PD amplification circuit contains a
transimpedance amplifier with the gain of 54 × 104 V/A and a low-pass filter with the cut-off frequency
of 64 Hz. Moreover, an external acoustic sensor, which comprises a stethoscope bell (HarveyTM DLX,
Welch Allyn, Skaneateles Falls, NY, USA) and microphone (JL-0627C, JEOLUEN, Taiwan), was used
to collect breathing sounds. In the wireless biosignal acquisition module, the microphone driving
circuit was designed to provide a stable driving voltage for the microphone to avoid the influence
of the voltage variation of the power source. The electrical signals of the breathing sound and ECG
signals were amplified and filtered using frontend amplifier circuits. The total gains of frontend
amplifier circuits were 1000 times and 430 times for the ECG signal and breathing sound, respectively.
The frequency bands of frontend amplifier circuits were higher than 0.1 Hz for the ECG to remove the
lower frequency interference caused by motion, and were higher than 100 Hz for the breathing sound.
After preprocessing these biosignals, they were digitized using a 16-channel 12-bit analog-to-digital
converter in the microprocessor (RX210, Renesas, Japan) at a sampling rate of 2048 Hz, and these digital
signals were sent to the wireless transmission circuit for transmitting to the host system. The wireless
transmission circuit primarily comprised a printed circuit board antenna and Bluetooth module
(Ct-BT02, Connectec, Taiwan) with a Bluetooth v2.0+EDR specification. The wearable multiparameter



Sensors 2019, 19, 4656 5 of 15

acquisition device operates with a DC power supply of 3.7 V and can continuously operate for more
than 6 h with a 1400-mAh Li-ion battery. The size of this module was approximately 60 × 60 × 20 mm3.Sensors 2019, 19, x FOR PEER REVIEW 5 of 15 
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Figure 2. Block diagram of the wireless biosignal acquisition module.

Figure 3 shows the photograph of the mechanical design in the wearable multiparameter
acquisition device. It primarily consisted of a shoulder brace and an elastic band. Velcro on the
shoulder brace was used to fix the wireless biosignal acquisition module. Moreover, by adjusting
the constriction of the elastic band, the wireless biosignal acquisition module could easily fit the
chest contour of the patient to maintain a suitable contracting condition for reducing the effect of
motion artifacts.
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4.3. Indoor Walking Distance Measurement Device

Figure 4 shows the indoor walking distance measurement device. It comprised a 25-m skidproof
mat equipped with RFID tags and a wearable RFID reader. RFID tags (RF-QBK05, Guangzhou Dongxin
Intellectual Technology CO. LTD, China) were embedded into the back of a skidproof mat, and the
distance between every two tags was 9 cm. These RFID tags worked at a radiofrequency of 125 kHz.
Each tag comprised a distinct 64-bit ID and could be used to record the patient location to calculate
walking information. In this device, an RFID reader (ID-20LA, ID Innovations, Australia) was tied on
the rear heel to access data on these RFID tags for recognizing and transmitting the indoor location of
the patient to the host system through a 100-m long distance transmission Bluetooth module (DXT3C,
DinXing Technology, China). The average error of the measured walking information is 1.3%.
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4.4. Host System

In this study, a commercial laptop with Microsoft Windows 10 was used as a host platform.
A multiparameter monitoring program in the host system was developed in Microsoft C# to monitor
real-time ECG signals (heart rate), SpO2, breathing sound signals, and gait information (indoor walking
distance, speed, and acceleration).

5. System Software Design

The software architecture includes three parts: A graphics user interface (GUI), BUFFER,
and THREAD. A part of the GUI provides the ability of precisely displaying and controlling GUI
elements. BUFFER is a link-list container and was temporarily used to store received raw data.
THREAD denotes the thread of execution, which is the smallest sequence of programmed instructions
independently managed using an operating system scheduler. The proposed program comprised three
independent threads: A Bluetooth application programming interface (API), Bioanalysis, and NAudio
API [28]. The Bluetooth API was used to connect the host system to the wearable multiparameter
acquisition device and indoor walking distance measurement device via Bluetooth, and it was used
to store raw data into BUFFER. The design of the Bioanalysis thread was based on the proposed
multiparameter analysis algorithm for detecting heart rate, breathing rate, SpO2, and gait information.
Figure 5 shows the flowchart of the multiparameter monitoring program. First, the GUI allows the
user to set or operate this program. The thread of the Bluetooth API was then used to simultaneously
search for the wearable multiparameter acquisition device and indoor walking distance measurement
device. After the two devices were found, a serial port profile between the host system and two devices
was built. The Bluetooth API received raw data obtained from the two devices and stored them into
BUFFER. The Bioanalysis thread calculated heart rate, breathing rate, SpO2, and walking distance
from ECG signals, breathing sound, PPG signals, and RFID tag information, respectively. Finally, the
received breathing sound was sent to the NAudio API to play the real-time breathing sound from the
host system.
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6. Multiparameter Analysis Algorithm

Figure 6a shows the procedure of the proposed multiparameter analysis algorithm. Figure 6b–e
show the physiological signals and outputs data after analysis algorithm processing, including the
sound signal, ECG signal, fractal dimension (FD) value of the sound signal, PPG signal, breathing
events, and R-wave events. To calculate the heart and breathing rates, raw ECG and breathing sound
signals were first preprocessed through digital filters. A high-pass filter with a frequency band higher
than 100 Hz was applied for the breathing sound signal [29] to remove 60-Hz power line interference
and other low-frequency motion interference and to reserve its essential characteristics. A low-pass
filter with a frequency band of less than 50 Hz was applied in the ECG signal to eliminate power line
interference and high-frequency noise. FD algorithms were used to calculate the FD value of breathing
sounds [30]. The FD technique is generally used to estimate the complexity of a geometrical figure
and has been widely employed to analyze transient and biomedical signals [31–34]. The variation in
the FD value reflects the instantaneous variation in breathing sounds. Therefore, during a breathing
activity, the FD value of breathing sounds increases. According to Katz’s algorithm [35], the FD value
of a curve can be given as follows:

FD =
log(n)

log(n) + log(d/L)
, (1)

where L, d, and n denote the total length of the curve, the farthest distance between the first point
and any point on the curve, and the step number of the curve, respectively. The step number can be
calculated as n = L / a, where a is the average length between any two nearest discrete points on the
curve. A first derivative approach [36] was used to detect the local maximum value of ECG signals and
the FD value of breathing sounds. If the local maximum value was higher than the provided dynamic
threshold, then it could be considered an R-wave event in ECG or breath activity. The averaged values
of ECG or FD value for the first 10 s of breathing sound were defined as dynamic thresholds for
detecting R-wave events in ECG and breathing activities. Finally, heart and breathing rates could be
estimated from detected R-wave events in ECG and breathing activities.
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the FD value of a curve can be given as follows: 𝐹𝐷 = ( )( ) ( / ), (1)
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the curve. A first derivative approach [36] was used to detect the local maximum value of ECG signals 
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High-pass 
filter

Sound signal

Low-pass 
filter

ECG signal

Fractal 
dimension

DC tracking
PPG signal Calculate

SPO2

AC part of PPG

DC part of PPG

Calculate
dynamic
threshold

Calculate
heart rate

and breathing rate

Estimated SPO2 value

Breathing rate

RFID tag 
Information Recognize  

RFID tag 
information

Indoor 
location

Calculate
walking 
distance

Calculate walking 
speed and

acceleration
Walking 
distance

Gait information

①

②

③

⑤

④

Heart rate
⑥

(a)

First
derivative
approach

Calculate
dynamic
threshold

First
derivative
approach

Figure 6. Cont.



Sensors 2019, 19, 4656 8 of 15
Sensors 2019, 19, x FOR PEER REVIEW 8 of 15 

 

 
Figure 6. (a) Procedure of the multiparameter analysis algorithm. This analysis algorithm processes 
physiological signals and outputs data, including: (b) sound signal, (c) ECG signal and R-wave events, 
(d) FD value of sound signal and breathing events, and (e) PPG signal. 

In this study, the Lambert–Beer law was used to estimate SpO2 [37,38]. Before estimating SpO2, 
the DC and alternative current (AC) parts in PPG signals must be separated. Every local minimum 
and local maximum on PPG were first detected. The first derivative approach [39] was used to detect 
the local extremes of the PPG signal. When the detected local extreme was higher than the provided 
threshold, it could be considered a local maximum; otherwise, it could be considered a local 
minimum. The provided threshold was defined as the average of data obtained within the first 0.5 s 
[40]. After detecting these local minimums and maximums on the PPG, each local minimum can be 
viewed as the baseline part of PPG, and the difference between the nearest local minimum and 
maximum can be viewed as the variation part of PPG. The ratio of R can be calculated using the 
baseline and variation parts of PPG, which can be given as follows: 

𝑅 = [ ][ ][ ][ ] , (2)

𝑆𝑝𝑂2 = 𝑎𝑅 + 𝑏. (3)

Here, 𝐼 [ ] and 𝐼 [ ] denote variation amplitudes of PPG signals for the red and near-
infrared (NIR) light wavelength, respectively, whereas 𝐼 [ ]  and 𝐼 [ ]  denote the baseline 
amplitudes of PPG signals for red and NIR light wavelength, respectively. In the calibration 
experiment, the participants were instructed to equip the designed device and a commercial pulse 
oximeter (DB11, DELBio, Taiwan) simultaneously. Next, these participants would be instructed to 
hold their breath for about 70 s to collect the varying SpO2 data. Finally, a linear regression method 
was used to obtain coefficients a and b [41] by using R values obtained from the designed device and 
SpO2 values obtained from the commercial pulse oximeter. 

The received RFID tag information contains a distinct 64-bit ID. If the latest RFID tag information 
was different from the previous RFID tag information, the walking distance could be immediately 
calculated using the previously received RFID tag information. Finally, the averaged walking speed 
could be estimated from the elapsed time between two locations that was tagged off a nearest RFID 
tag every 20 s. 

 

 

(4)

(3)

(5)

(2)

(6)

(1)

Estimated R wave events

Estimated breathing events

0 1 2 3 4 5 6 7 8 9 10
-1
0
1

Time (s)

A
m

pl
itu

de
 (V

)

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3

Time (s)

A
m

pl
itu

de
 (a

.u
.)

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3

Time (s)

A
m

pl
itu

de
 (m

V)

0 1 2 3 4 5 6 7 8 9 10
0.22

0.24

0.26

Time (s)

A
m

pl
itu

de
 (V

)

Estimated R wave events

Estimated breathing events

①

⑥

②

⑤

③

④

(e)

(b)

(c)

(d)

Figure 6. (a) Procedure of the multiparameter analysis algorithm. This analysis algorithm processes
physiological signals and outputs data, including: (b) sound signal, (c) ECG signal and R-wave events,
(d) FD value of sound signal and breathing events, and (e) PPG signal.

In this study, the Lambert–Beer law was used to estimate SpO2 [37,38]. Before estimating SpO2,
the DC and alternative current (AC) parts in PPG signals must be separated. Every local minimum
and local maximum on PPG were first detected. The first derivative approach [39] was used to detect
the local extremes of the PPG signal. When the detected local extreme was higher than the provided
threshold, it could be considered a local maximum; otherwise, it could be considered a local minimum.
The provided threshold was defined as the average of data obtained within the first 0.5 s [40]. After
detecting these local minimums and maximums on the PPG, each local minimum can be viewed as the
baseline part of PPG, and the difference between the nearest local minimum and maximum can be
viewed as the variation part of PPG. The ratio of R can be calculated using the baseline and variation
parts of PPG, which can be given as follows:

R =

Ivar[red]
Ibl[red]

Ivar[nir]
Ibl[nir]

, (2)

SpO2 = aR + b. (3)

Here, Ivar[red] and Ivar[nir] denote variation amplitudes of PPG signals for the red and near-infrared
(NIR) light wavelength, respectively, whereas Ibl[red] and Ibl[nir] denote the baseline amplitudes of PPG
signals for red and NIR light wavelength, respectively. In the calibration experiment, the participants
were instructed to equip the designed device and a commercial pulse oximeter (DB11, DELBio, Taiwan)
simultaneously. Next, these participants would be instructed to hold their breath for about 70 s to
collect the varying SpO2 data. Finally, a linear regression method was used to obtain coefficients a
and b [41] by using R values obtained from the designed device and SpO2 values obtained from the
commercial pulse oximeter.

The received RFID tag information contains a distinct 64-bit ID. If the latest RFID tag information
was different from the previous RFID tag information, the walking distance could be immediately
calculated using the previously received RFID tag information. Finally, the averaged walking speed
could be estimated from the elapsed time between two locations that was tagged off a nearest RFID tag
every 20 s.
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7. Experiment Design and Procedures

In this study, the institutional review board (IRB 103-3295A3) approved the clinical experiment,
Chang Gung Medical Foundation, Taiwan, and the informed consent was signed. The 6MWT was
performed at National Chiao Tong University, Taiwan. Participants were consecutively monitored
for physiological signals by using conventional devices, namely a pulse oximeter (SB100, Rossmax,
Taiwan), a blood pressure monitor (ES-P370, Terumo, Japan), and the proposed system during the
6MWT. Each participant was monitored using the conventional devices and the proposed system for
48 h. According to the American Thoracic Society guidelines [42], the 6MWT must be performed
indoor along a flat, straight walking course of 30 m and must be supervised by a trained doctor. During
the test, the participant must walk on 25-m skidproof mat and move back and forth. In this experiment,
smoking participants had been smoking for more than 2 years. The age of participants was higher
than or equal to 20 years, and they could walk independently for 6 min. In this study, 15 smoking
participants (14 men and 1 woman, mean age: 26.47 ± 2.2 years) and 15 nonsmoking participants
(15 males, mean age: 24.53 ± 1.3 years) were recruited.

8. Results

8.1. Performance of the Proposed Algorithm in Detecting Heart and Breathing Rates

In this section, the performance of the proposed multiparameter analysis algorithm in estimating
heart and breathing rates was first evaluated. Figure 7 shows a randomly selected result of detecting
breathing events and R waves in ECG. Experimental results show that breathing events and R waves
in ECG could be effectively detected using the proposed algorithm. Tables 1 and 2 show that the
binary classification test was used to evaluate the performance of the proposed algorithm, and related
parameters were defined as follows: A true positive indicates that the activity event was accurately
detected as an activity event; a false positive indicates that nothing was wrongly detected as an activity
event; a true negative indicates that nothing was accurately detected as nothing; and a false negative
indicates that an activity event was wrongly detected as nothing. Here, a total of 3532 breathing
events and 22,742 R waves, which were extracted from 15 nonsmoking people and 15 smoking people
during the 6MWT, were used for the test. The sensitivity, positive predictive value, and accuracy were
89.85%, 96.48%, and 87%, respectively, for detecting breathing events and 100%, 100%, and 100 %,
respectively, for detecting R waves. The proposed algorithm exhibited an excellent performance in
detecting breathing events and R waves and could effectively estimate breathing and heart rates.
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Figure 7. (a) Raw signal of breathing sound and estimated breathing events, and (b) raw signal of ECG
signal and estimated R-wave events.
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Table 1. Performance of the proposed method in detecting breathing events.

Estimated Breathing Events

Real Breathing Events

+ – Total

+ 3073 (TP) 347 (TN) 3420

– 112 (FP) 0 (FN) 112

Total 3185 347 3532

Table 2. Performance of the proposed method in detecting R-wave events.

Estimated R Waves

Real R Waves

+ – Total

+ 22742 (TP) 0 (TN) 22742

– 0 (FP) 0 (FN) 0

Total 22742 0 22742

8.2. Differences Between Multiphysiological Parameters of Different Groups During the 6MWT

In this section, differences between the multiphysiological parameters of smoking and nonsmoking
groups during the 6MWT are presented. Figure 8 shows changes in the average breathing rate, heart
rate, walking distance, walking speed, and SpO2 value of smoking and nonsmoking groups during the
6MWT. Experimental results show that the breathing rate, heart rate, and walking distance of both
smoking and nonsmoking groups increased with time. Here, the breathing rate of the smoking group
was significantly higher than that of the nonsmoking group. The heart rate of the smoking group was
higher than that of the nonsmoking group. Moreover, after walking for 4 min, the walking distance
and speed of the smoking group were significantly lower than those of the nonsmoking group. The
SpO2 value of both smoking and nonsmoking groups decreased with time, and the difference between
the SpO2 values of different groups was not evident.
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Figure 8. Changes in (a) breathing rate, (b) heart rate, (c) walking distance, (d) walking speed, and
(e) SpO2 between different groups during the 6MWT. Here, * denotes that the difference between
smoking and nonsmoking groups is significant (p < 0.05).
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9. Discussion

Several healthcare monitoring systems [24–26] have been developed to monitor cardiovascular
and respiratory parameters. A comparison between the proposed system and different monitoring
systems is provided in Table 3. In contrast to the aforementioned system, the proposed system
could simultaneously monitor real-time ECG, SpO2, and breathing sounds under motion. Moreover,
the RFID technique was used in the proposed system. It could effectively provide more precise
walking information and avoid variations among different individuals. The proposed multiparameter
analysis algorithm could automatically extract heart rate, breathing rate, walking distance, and
speed. It exhibited an excellent performance in detecting breathing events and R waves. Finally, the
proposed system was successfully applied for monitoring the cardiopulmonary function of smoking
and nonsmoking groups during the 6MWT. Experimental results showed that the breathing rate of the
smoking group was significantly higher than that of the nonsmoking group. Moreover, compared with
the nonsmoking group, the walking distance and speed of the smoking group significantly decreased
after walking for 4 min. In general, the exercise capability can be considered a crucial index related to
cardiopulmonary function [43]. Therefore, the poor exercise capability of the smoking group could be
reflected by the significantly shorter walking distance and speed of the smoking group during the
6MWT. The significantly higher breathing rate of the smoking group may reflect inferior pulmonary
function [44]. However, the heart rate of the smoking group was slightly higher than that of the
nonsmoking group. Although the SpO2 value of both smoking and nonsmoking groups gradually
decreased with time, the difference between the SpO2 values of different groups was negligible.
Because no participants had cardiopulmonary disease or anemia, the physical energy consumption of
the smoking group during the 6MWT may be insufficient to generate unobvious differences between
the heart rate and SpO2 value of different groups.

Table 3. System comparison between the proposed system and other systems.

Andreoni et al.
[24]

Miramontes et al.
[25]

Taffoni et al.
[26] Proposed System

Physiological
Parameters

ECG, ICG, and
Lower-Limb
Acceleration

ECG, SpO2, Skin
Temperature, Fall

Detection, Breathing
Rate and Skin

Response

Breathing Rate,
Heart Rate, Body

Movement,
Walking Step

SpO2, ECG,
Breathing Sound,

Breathing Rate, and
Walking

Information

Measurement
Under Motion Yes No Yes Yes

Sensors
Triaxial

Accelerometer,
ECG Electrodes

ECG Electrodes, PPG
Sensor, Triaxial
Accelerometer,

Temperature Sensor,
Airflow Sensor, and

Galvanic Sensor

PPG Sensor, SDP
Sensor, IMU

(Accelerometers,
Gyroscopes, and
Magnetometers)

ECG Electrodes,
PPG Sensor, RFID

Sensor, and
Stethoscope

Power Supply Battery Battery Battery Battery

Size (cm3) 11.7 × 7 × 2.3 - - 6 × 6 × 2

Transmission
Mode Bluetooth Wireless Sensor

Network Bluetooth Bluetooth

Applications 6MWT Cardiopulmonary
Function Monitoring

Cardiopulmonary
Function

Monitoring

6MWT,
Cardiopulmonary

Function
Monitoring

Disadvantages
Influence of Motion

on Measurement
Gait Information

Higher Cost
Transmission

Architecture, Limited
Range of Activities.

Influence of
Motion On Heart
Rate Estimation

Requirement of
RFID Placement

Monitor Breathing
Sound Under

Walking
No No No Yes
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10. Conclusions

In this study, a wearable cardiopulmonary function evaluation system was developed for
simultaneous, real-time monitoring of breathing sounds, ECG, and SpO2 during the 6MWT.
To effectively measure the indoor walking distance and speed, RFID was used to overcome the
concern of parameter variation among different individuals mentioned in previous studies. Moreover,
the mechanical design in this system could effectively reduce the influence of motion artifacts on
measuring breathing sounds and ECG signals. A multiparameter analysis algorithm was successfully
developed to obtain heart rate, breathing rate, walking distance, and speed automatically. Experimental
results showed that the proposed system exhibited an excellent performance in estimating these useful
physiological parameters, which are related to cardiopulmonary function in the 6MWT. Finally, the
proposed system was used to investigate the cardiopulmonary functions of smoking and nonsmoking
groups during the 6MWT. Experimental results indicated that the breathing rate, walking distance,
and walking speed of the nonsmoking group during the 6MWT were significantly higher than those
of the smoking group. Therefore, the proposed system can serve as a more integrated approach for
monitoring cardiopulmonary parameters and precise walking information simultaneously during
the 6MWT. Moreover, this system can be applied in other clinical or cardiopulmonary researches in
the future.
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