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Background: Lung squamous cell carcinoma (LUSC) generally correlates with poor
clinical prognoses due to the lack of available prognostic biomarkers. This study is
designed to identify a potential biomarker significant for the prognosis and treatment of
LUSC, so as to provide a scientific basis for clinical treatment decisions.

Methods: Genomic changes in LUSC samples before and after radiation were firstly
discussed to identify E2 factor (E2F) pathway of prognostic significance. A series of
bioinformatics analyses and statistical methods were combined to construct a robust
E2F-related prognostic gene signature. Furthermore, a decision tree and a nomogram were
established according to the gene signature and multiple clinicopathological characteristics
to improve risk stratification and quantify risk assessment for individual patients.

Results: In our investigated cohorts, the E2F-related gene signature we identified was
capable of predicting clinical outcomes and therapeutic responses in LUSC patients,
besides, discriminative to identify high-risk patients. Survival analysis suggested that the
gene signature was independently prognostic for adverse overall survival of LUSC patients.
The decision tree identified the strong discriminative performance of the gene signature in
risk stractification for overall survival while the nomogram demonstrated a high accuracy.

Conclusion: The E2F-related gene signature may help distinguish high-risk patients so as
to formulate personalized treatment strategy in LUSC patients.

Keywords: LUSC, E2F pathway, gene signature, prognosis, risk score
INTRODUCTION

Lung cancers remain the leading cause of cancer-related death worldwide (1). Nonsmall cell lung cancer
(NSCLC) is the predominant subtype of lung cancers accounting for approximately 85%, of which more
than 30% cases are lung squamous cell carcinomas (LUSC) (2). LUSC, as compared with lung
adenocarcinoma (LUAD), correlates with more adverse clinical prognoses, and there is a lack of
available targeted drugs. Radiotherapy and chemotherapy are traditional treatment strategies (3), while
there is a high risk of treatment failure in patients with advanced LUSC due to the development of
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treatment resistance (4). Despite the fact that immunotherapy has
shown great potential in treatment of LUSC over the past years, it
brings benefits to a limited population (5). It was reported that the
5-year overall survival (OS) rate in patients with stage I/II LUSCwas
about 40%, and even lower to 5% when a stage III/IV LUSC was
present (6). Currently, basic biomarkers and precise targets for the
prognosis and treatment of LUSC are still unclear. In this setting,
further research into the potential prognostic biomarkers of LUSC is
required, so as to provide better prognostic prediction and
individualized treatment. Similar to many other carcinomas, the
initiation and progression of LUSC are closely related to the
dysregulation of cell cycle (7, 8). The timing of the cell to
proliferate, to enter reversible quiescent phase, to differentiate, or
to apoptosis is controlled by the cell cycle clock apparatus (9).
Dysregulation of the cell cycle process is a necessary step in
malignant transformation (10).

The E2 factor (E2F) pathway is a major pathway involved in the
cell cycle in mammals, and the E2F family of transcription factors
play various biological roles including cell cycle control (11).
Research found that the cell cycle-related E2F genes are
significantly associated with the prognosis of lung cancer patients
and provide a potential therapeutic strategy (12). Nevertheless, to
our knowledge, there has been no study reporting the discriminative
role of the E2F family in identifying high-risk LUSC. In this study,
we explored the genomic changes in LUSC samples before and after
radiatiotherapy to identify E2F pathway as the potential risk factor
for prognosis in LUSC patients. An E2F-related prognostic gene
signature was then established and further validated in additional
independent cohorts. Finally, a decision tree and a nomogram were
established according to the gene signature and multiple
clinicopathological characteristics to improve risk stratification
and quantify risk assessment for individual patients.

MATERIALS AND METHODS

Data Processing
The microarray dataset GSE42172 which contained paired normal
A549 lung cancer cells (n = 6) and radiation-exposed A549 cells
(n = 6) was selected to explore the genomic changes before and after
radiation. Also, the clinical annotations and follow-up information
of 916 LUSC patients across different platforms were included in
this study. The datasets GSE29013, GSE30219, and GSE37745 were
downloaded fromAffymetrix Human Genome U133 Plus 2.0 Array
GPL570, and the expression data of these datasets were integrated
using the R package combat (Supplementary Figures S1A, B) after
eliminating batch effects. After integration, 166 patients in this
cohort were enrolled in the training set. The datasets GSE14814,
GSE17710, GSE42127, and GSE74777 from different platforms were
used as a validation set 1 after integration using the combat package,
which contained 266 patients. In addition, RNA-Seq data in FPKM
of 499 patients whomet the criteria were obtained from TCGA, and
the expression data were taken as a validation set 2 after
normalization by transcripts per kilobase per million (TPM).

Signature Establishment
The gene set variation analysis (GSVA) was conducted to evaluate
changes of cancer biomarkers obtained from the Molecular
Frontiers in Oncology | www.frontiersin.org 2
Signatures Database (MSigDB) before and after radiotherapy in
the dataset GSE42172 (13). Markers of significant changes in the
training set (t > 1) were quantified using single-sample gene set
enrichment analysis (ssGSEA) (14). A univariate Cox proportional
hazard (COX-PH) regression model was utilized to assess the
prognostic value of diverse cancer biomarkers for LUSC patients.
Multiscale embedded gene coexpression network analysis
(MEGENA) (15), an R package with performance superior to
coexpression network analysis, was performed to analyze the
genes with standard deviation >0.9, and the planar filtered
network (PFN) was plotted based on the gene expression
correlation. A LUSC-specific gene network composed of
interconnected subnetworks or modules was constructed using
the multiscale clustering method, and the module feature genes
were identified using moduleEigengenes R function to calculate the
correlation between themodules and the E2F signaling pathway and
to determine the most relevant module. With the p-value in COX-
PH <0.05 as the threshold, 53 candidate genes from the E2F-related
module were screened out. Then, a least absolute shrinkage and
selection operator (LASSO) regression model was employed to
further screen reliable prognostic indicators (16). The
standardized gene expression values weighted using
corresponding LASSO coefficients were included, and a risk score
related to the E2F signaling pathway, E2F-related score (ERS), was
established as follows:

ERS = Si Coefficient (mRNAi)� Expression (mRNAi) :
Bioinformatics and Statistics
GSEA was implemented to verify the E2F signaling pathway
enrichment in the high-ERS group with the E2F-target genome
from MSigDB (17). Date analysis and graph plotting were carried
out using R software (version 4.0.4, http://www.r-project.org). The
survival analysis was completed with the Kaplan-Meier method
along with log-rank test. Additionally, the prognostic value of each
parameter for OS was evaluated using a COX-PH model. A time-
dependent receiver operating characteristic (tROC) curve was
drawn to assess the predictive value of ERS assisted by the R
package “survivalROC,” followed by comparison of the areas under
the curve at different time points (AUC(t)). Meta-analysis (I2 <30%,
fixed model) was carried out to assess the prognostic significance in
the merged cohort. Afterwards, consensus clustering of patients was
conducted using the R package “ConsensusClusterPlus” based on
the expression of candidate genes, whereby evaluating the
discriminative performance of candidate genes (18). A decision-
making tree was created for risk stratification with recursive
partitioning analysis (RPA) utilizing the R package rpart (19).
Two independent datasets, IMvigor210 and a dataset containing
47 responders with melanoma to immunotherapy, were
downloaded and analyzed (20). The IMvigor210 dataset was
derived from the freely available, fully documented software and
data package under the Creative Commons Attribution 3.0 license
from http://research-pub.gene.com/IMvigor210CoreBiologies.
A sum of 298 patients with urothelial carcinoma who had
complete clinical data and 47 patients with skin melanoma who
had underwent immunotherapy were integrated to identify the
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http://www.r-project.org
http://research-pub.gene.com/IMvigor210CoreBiologies
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. E2F-Related Gene Signature
value of ERS for immunotherapy. The Tumor ImmuneDysfunction
and Exclusion (TIDE) algorithmwas utilized to evaluate the value of
ERS in clinical immunotherapy. The R package “rms” was utilized
to draw nomogram and calibration curve (21). Decision curve
analysis (DCA) was carried out by Wilcox test with the DCA
package to test the difference between two groups (22). Differences
among multiple groups were examined by the Kruskal-Wallis test
and the differences among categorical data were processed by the
Chi-square test.
RESULTS

Workflow of the Study
First, E2F was one of the significantly changed pathways after
radiation. The E2F signaling pathway was demonstrated as the main
risk factor for the prognosis of LUSC patients (Figure 1A). Then,
Frontiers in Oncology | www.frontiersin.org 3
MEGENA, univariate COX-PH, and LASSO analyses were
conjunctively employed to filter candidates and to construct an
E2F-related gene signature of survival significance (Figure 1B),
which was further assessed using the training and two external
validation sets. Additionally, its prognostic capability was verified
and the response to treatment was evaluated by meta-analysis to
determine its potential as a promising prognostic marker
(Figure 1C). At last, a decision tree was established to improve
risk stratification, along with a nomogram generated to quantify the
risk evaluation and survival probability of individuals on the basis of
ERS and multiple clinicopathological characteristics (Figure 1D).

The E2F Signaling Pathway Is a Major Risk
Factor for Radiotherapy Response
in LUSC
The analyzed results of the radiation dataset in GSE42172 showed
that 18 cancer-related pathways were markedly changed after
A

B

C

D

FIGURE 1 | Schematic diagram of the study design. (A) E2F signaling pathway was identified as the main risk factor for the prognosis of LUSC patients. (B) Stable
E2F-related gene signature for predicting prognosis was generated using combined methods. (C) The prognostic value of gene signature was validated in different
cohorts. (D) Clinical application. Cox-PH, Cox proportional hazards; LASSO, least absolute shrinkage and selection operator; LUAD, lung adenocarcinoma; ssGSEA,
single-sample gene set enrichment analysis; tROC, time-dependent receiver operating characteristic; MEGENA, weighted gene coexpression network analysis.
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radiation (t > 1), in which two pathways including the E2F
signaling pathway were notably downregulated, and 16
pathways including p53 signaling were notably upregulated
(Figure 2A). According to the ssGSEA score of the 18 changed
pathways and the OS data in the training set, each pathway was
conferred a Cox coefficient. Accordingly, the E2F signaling
pathway exerted a greater effect on survival than other cancer-
related pathways (such as cell cycle, signal transduction pathway,
EMT, angiogenesis, apoptosis, etc.) (Figure 2B). During the
follow-up period, remarkable higher E2F ssGSEA scores were
observed in the dead patients as compared with the surviving
patients (Figure 2C). In the training set, two groups were divided
according to the median E2F ssGSEA score. The results showed a
lower OS rate (Figure 2D) and shorter average survival time
(Figure 2E) in the high-score group.

Establishment of E2F-Associated
Prognostic Gene Signature
In the training set, MEGENA analysis was conducted with
whole-transcriptome profiling data and E2F ssGSEA score. We
observed a minimum error rate of the model when scale = 7
(Supplementary Figures S2A–D). A LUSC-specific gene
network with 70 modules was generated (Supplementary
Frontiers in Oncology | www.frontiersin.org 4
Figure S3A). Among these modules, module 25 and its
submodule 71 shared the closest association with E2F ssGSEA
score (r = 0.52, p = 5e−13/r = 0.53, p = 2e−13) (Supplementary
Figures S3B and S4A). The genes extracted from modules 25
and 71 were subjected to univariate COX-PH analysis, and 53
promising candidate factors (47 risk factors and six protective
factors) were identified with the threshold of p < 0.05
(Supplementary Figure S3C). Next, the LASSO regression
model was utilized to determine the most reliable prognostic
factors. Using a 10-fold cross-validation to avoid overfitting, the
optimal l value 0.06779023 was selected (Supplementary
Figures S3D and S4B). The remaining 11 genes had their own
nonzero coefficients (Figure 3A). Finally, ERS was calculated
according to the formula:

ERS = Si Coefficient (mRNAi)� Expression (mRNAi) :

ERS Is a Risk Factor for OS in Each Set
In the training set, most risk factors exerted positive correlations
with E2F transcription factor (Figure 3B). With the E2F target
genome from MSigDB, GSEA results demonstrated more
abundant enrichment of the E2F signaling pathway in the
high-ERS group (Figure 3C). The patients who died during
A B C

D

E

FIGURE 2 | E2F target is identified as the main risk factor of survival after radiation. (A) GSVA analysis showed significant changes in 18 cancer-related pathways
(t > 1). (B) Univariate Cox regression analysis exhibits that E2F targets were the main risk factors among diverse cancer biomarkers. (C) The E2F ssGSEA score of
patients who died during the follow-up period increased significantly. (D) Kaplan-Meier analysis suggested poorer OS of patients with higher E2F ssGSEA scores.
(E) Patients with higher E2F scores have shorter survival.
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the follow-up period exhibited notably higher ERS compared
with the surviving patients (Figure 3D), and the patients in the
high-ERS group showed markedly poorer survival (Figure 3E).
Results of Kaplan-Meier analysis exhibited worse prognoses of
patients with higher ERS scores versus those with lower scores
(Figure 3F). Among a variety of clinicopathological variables,
the multivariate COX-PH model identified the American Joint
Committee on Cancer (AJCC) TNM staging and ERS as two
independent risk factors for OS in the training set. In addition,
tROC analysis demonstrated ERS as the most accurate predictive
biomarker for OS (Figure 3G). Furthermore, the patients were
assigned into two groups by consensus clustering with the
optimal k value as the threshold, which showed remarkably
different prognoses, indicative of the good potential of the ERS
to distinguish patients with different prognostic risks (Figure 4I
and Supplementary Figure S5A).

To validate the prognostic robustness of E2F-associated gene
signature in diverse sets, two external sets were selected for
validation. Similarly, in the validation sets 1 and 2, more E2F
signaling pathway enrichment was verified in the high-ERS group
with the E2F target genome set by GSEA (Figures 4A, B). The
dead patients had a noticeable higher ERS than the surviving
patients in cohort 1, yet no significant variance was noted in
cohort 2 (Figures 4C, D). The patients with high scores had
markedly poorer survival (Figures 4E, F). The results of the
Kaplan-Meier analysis further revealed that the OS rate predicted
Frontiers in Oncology | www.frontiersin.org 5
by high ERS was lower than that predicted by low ERS
(Figures 4G, H). The cohort was grouped into different
subtypes with consensus clustering with the optimal k value as
the threshold, and the prognosis differed between subtypes
(Figures 4J, K and Supplementary Figures S5B, C). In
addition, multivariate COX-PH analysis suggested ERS be
independently prognostic for adverse OS (Figure 4L).
ERS Indicates Poor Survival in the Pooled
Cohort and Can Be a Potential Biomarker
for Therapeutic Resistance
Meta-analysis was conducted to assess the prognostic
significance of E2F-related gene signature in the pooled cohort
of one training set and two verification sets. Consequently,
patients with high ERS showed worse prognoses than patients
with low ERS (Figure 5A). In total, 916 patients from the three
sets were integrated for further investigation. The ERS was
upregulated significantly in deaths at follow-up, even higher in
those with a shorter survival time (Figure 5B). ERS could also
distinguish the high-risk patients suffering from adverse
outcomes from different subgroups, such as different
clinicopathological characteristics, including gender, age, and
TNM stage (Figure 5C).

Considering that the E2F signaling pathway may enhance the
resistance to treatment, we probed into whether ERS is a
A B

C

D E

F G

FIGURE 3 | The gene signature predicts worse survival of patients in the training set. (A) Distribution of LASSO coefficients of the E2F-related gene signature.
(B) Association between gene signature and the E2F transcription factor family. (C) GSEA validated E2F pathway enrichment in the high-ERS group. (D) ERS was
significantly increased in patients who died during follow-up. (E) The patients in the high-ERS group had worse survival. (F) Kaplan-Meier analysis showed a worse
OS of patients with higher ERS. (G) tROC analysis showed ERS to be an accurate variable for survival prediction.
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biomarker of therapeutic resistance. It was predicted by GSEA
that higher ERS was strikingly correlated with resistance to
diverse treatments (such as chemotherapy, radiotherapy, and
targeted therapies) (Figure 6A). Subsequently, therapeutic
information and clinical outcome were downloaded from
TCGA to verify the prediction. Following primary surgical
treatment, compared with the low ERS group, the ratio of
patients in the high-ERS group with the progressive disease to
that of patients with partial remission or stable disease was
prominently upregulated (Figure 6B).

Subsequently, we assessed the value of the ERS in predicting
the therapeutic outcomes of patients. To this end, patients with
anti-PD-L1 immunotherapy in the IMvigor210 cohort were
assigned into high ICI score and low ICI score subgroups. It
was worthy to note that in the IMvigor210 cohort, the patients
with low ERS had significantly longer survival time than those
with high ERS (Figure 6C). Besides, the lower ERS was
associated with the objective response to anti-PD-L1 treatment
(Figure 6D), and the objective response rate of anti-PD-L1
treatment was higher in the low-ERS group than that in the
Frontiers in Oncology | www.frontiersin.org 6
high-ERS group (Figure 6E). The Submap module in the
GenePattern was utilized for evaluation and comparison of the
patients in the training set and 47 responders to immunotherapy.
As compared with the high-score group, anti-CTL4-A treatment
was more effective for the low-score group (p = 0.036)
(Figure 6F). With the response to immunotherapy predicted
by the TIDE algorithm, the low-score group was more likely to
respond to immunotherapy, while there was no evident
difference between the two groups (Figure 6G) (Chi-square
test, p > 0.05).
The Combination of ERS and
Clinicopathological Characteristics
Contributes to Improving Risk
Stratification and Survival Prediction
Four parameters were available for 916 LUSC patients, namely
age, gender (male or female), TNM stage, and ERS. After risk
stratification using the decision tree, only the TNM stage and
ERS remained in the decision tree, and three different risk
A

B

C

D

E

F

G

H

I J K L

FIGURE 4 | Verification of gene signatures in different sets. (A, B) GSEA validated E2F pathway enrichment in the validation I and II sets. (C, D) The dead patients in
the validation I and II sets showed higher ERS. (E, F) The patients of the high-ERS group in the validation I and II sets had worse survival. (G, H) Patients with higher
ERS have a poorer prognosis in the validation I and II sets. (I–K) On the basis of the expression patterns of gene signature, the survival rate of clusters derived from
consensus clustering differed greatly. (L) Multivariate Cox regression analysis showed ERS as an independent risk factor for OS in the validation I and II sets.
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subgroups were identified (Figure 7A). It was noteworthy that
the ERS was the optimum stratification factor. The OS rates
showed noticeable differences among these three risk subgroups
(Figure 7B). Multivariate COX-PH analysis results indicated
ERS to be the optimum prognostic indicator (Figure 7C). In
order to quantify the risk assessment and survival probability of
LUSC patients, a nomogram was generated using ERS and other
clinicopathological characteristics (Figure 7D). According to the
calibration analysis, the 1-, 3-, and 5-year survival probability
predicted by the nomogram nearly reached the ideal results
(Figure 7E), indicating high accuracy of the nomogram.
Furthermore, the 3-year DCA revealed that the nomogram had
optimum decision benefit at most thresholds (Figure 7F). In
comparison with other characteristics, the nomogram exerted
the most powerful and stable capability for predicting survival,
with an average area under the curve above 0.6, considerably
superior to the pathological TNM staging (Figure 7G).
DISCUSSION

Surgery is the main treatment strategy of NSCLC, with
chemoradiotherapy, targeted therapy, and immunotherapy as
Frontiers in Oncology | www.frontiersin.org 7
adjuvants (23). However, it was estimated that more than 85% of
patients with NSCLC have lost optimum time for surgical
treatment at the first diagnosis, and only 25% to 30% can be
treated by the traditional surgical resection (24). With the
continuous development of computer technology, radiobiology,
and functional imaging in recent years, radiotherapy has shown
considerable advantages in the treatment of patients with locally
advanced NSCLC (25). Existing research unraveled that
radiotherapy is safe and effective for patients with stage I
NSCLC, hence, radiotherapy is the primary choice for patients
with early lung cancer who are elder or have poor
cardiopulmonary function, rather than surgery (26). Due to the
demands for precision medicine, the importance of radiotherapy
has been highlighted, but the sensitivity to radiotherapy is a
limiting factor for its therapeutic effect (27). Besides, few reports
are focusing on the changes in the pathways before and after
radiotherapy for NSCLC. Identification of biomarkers to
estimate the prognosis of patients electing to receive
radiotherapy is of importance in the clinical management of
NSCLC (28). The E2F transcription factor family plays a crucial
role in regulating cell cycle progression, while the E2F-RB1
pathway is dysregulated in approximately 90% of lung cancers
(29). It was uncovered that enhanced E2F activity contributes to
A B

C

FIGURE 5 | ERS is a valuable indicator of poor survival in the pooled cohorts and subgroups. (A) Meta-analysis results showed ERS to be a valuable prognostic
marker. (B) The ERS score was markedly raised in the dead patients, especially in those who had a shorter survival. (C) ERS distinguished high-risk patients in
different subgroups, including age, gender, and AJCC staging.
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the activation of nAChR (encoded by CHRNA5) by its ligands
(such as nicotine) in the neurons, whereby promoting
radioresistance through facilitating cell cycle progression (30).
Radiotherapy is commonly used in the clinical treatment of
LUSC, so we aim at identifying whether the E2F signaling
pathway can serve as a prognostic indicator of LUSC.

In this study, We first explored that the E2F pathway was
identified as the mainly changed pathway after radiation using
the “GSVA” algorithm in the GSE42172 dataset. We then used all
of the changed pathways and the clinical data in the training set
to apply Cox regression, and we find that the E2F pathway is the
best prognostic factor. Therefore, we chose E2F pathway for
subsequent analysis. MEGENA was performed to identify LUSC-
specific E2F-related gene modules based on whole-transcriptome
profiling data, and then Cox univariate and LASSO regression
models were used to screen prognostic biomarkers, which were
taken to establish an E2F-related gene signature of prognostic
value. A risk scoring system based on the signature, called ERS
here, was then constructed. Survival analysis identified that ERS
was a risk factor for the OS of patients in each cohort, and a
higher ERS was associated with a worse survival outcome. The
Frontiers in Oncology | www.frontiersin.org 8
prognostic value of the gene signature was further validated in two
independent cohorts derived fromdifferent platforms. In themeta-
analysis and subgroup analysis, ERS was still capable of
discriminating high-risk patients, suggesting that the performance
of ERS is reliable in pooled populations and similar-stage
subgroups. In groups of adjuvant therapy, patients with higher
ERS suffered fromworse survival outcomes as comparedwith those
with lower ERS. Patients with lower ERS gainedmore benefits from
CTL4-AandPD-L1 treatments, whichmight be associatedwith the
gene signature-derived resistance to therapies, indicating the
potential role of the gene signature as a promising marker of
therapeutic resistance in LUSC patients.

Moreover, a decision tree combining the ESR and multiple
clinicopathological characteristics was constructed to improve
risk stratification. We found that only the TNM stage and ERS
remained in the decision tree, and three different risk subgroups
were identified. Among the three subgroups, significant difference
wasnoted regardingOS.TheERSwas identifiedas thepredominant
discriminative factor, which was further validated by the
multivariate COX-PH analysis. These collectively suggest that the
E2F-related gene signature is potentially a powerful risk factor for
A B C D

E

F G

FIGURE 6 | ERS gene signature is a promising biomarker of resistance to different treatments. (A) GSEA predicts the correlation of gene signature with resistance
to chemotherapy and resistance to radiotherapy. (B) The proportion of adverse postoperative outcomes increased in the high-ERS group. (C) In the IMvigor210
cohort, the prognosis of patients with higher ERS was remarkably worse. (D) ERS scores of groups with different anti-PD-1 clinical responses. (E) In the IMvigor210
cohort, the patients with higher ERS to anti-PD-L1 immunotherapy exhibited a lower clinical response rate. (F) Heat map displayed response to immunotherapy.
(G) Sankey diagram showed the immunotherapy response predicted by the TIDE algorithm. ***P < 00.01
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FIGURE 7 | Combination of ERS and clinicopathological characteristics contributes to better risk stratification and survival prediction. (A) Risk stratification was
improved by constructing a decision tree. (B) Kaplan-Meier analysis showed noticeably different prognoses of different risk strata. (C) In the whole cohort, ERS was
the most important risk factor for OS. (D) Risk assessment of individuals was quantified by constructing a nomogram. (E) Calibration analysis revealed high accuracy
of survival prediction. (F) DCA analysis indicated that nomogram has the optimum decision benefit under most thresholds. (G) tROC analysis demonstrated that the
nomogram was the most stable and powerful indicator for OS among all the clinical variables.
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OS of LUSC patients. In subsequent work, a nomogram was
generated to quantify the risk assessment for individual patients,
with the involvement of the ERS and other clinicopathological
characteristics. On calibration curves, the predicted results
appeared to highly approach to the actual outcomes, indicative of
a high accuracy of the nomogram in prognosis prediction. In
addition, tROC analysis demonstrated that the nomogram
performed the best on survival prediction at different time points
during follow-up, as compared with other variables.

Of the biomarkers involved in the gene signature, some have
been studied in many cancers, while most of them are rarely
investigated in LUSC. It is proven that E2F-related genes have
great implications in cell cycle, proliferation, differentiation, and
apoptosis, and they are regarded as the determinant of the timing
for G1/S transition. An animal experiment demonstrated that the
increased expression of E2F activators may result in upregulation
of E2F target genes and a risk of spontaneous cancer formation.
There have been studies reporting the dysregulated expression of
E2F activators in multiple human malignancies, such as bladder,
breast, ovarian, prostate, gastrointestinal, and lung cancers.
Although high-level E2F activators and its associations with
clinicopathological characteritics and prognosis have been partly
reported in human NSCLC, to the best of our knowledge, its role
in LUSC has not been probed. In this setting, we here developed a
risk scoring system, ERS, to improve the prediction for the survival
of LUSC patients, and further validated its performance in
external independent cohorts, which outperformed conventional
immunotherapeutic biomarkers.

The retrospective nature of our study is an inevitable limitation.
Although we included as many datasets as possible for rigorous
validation and combined multiple different approaches to reduce
batch effects, sampling bias caused by tumor genetic heterogeneity
and cross-platform integration could only be reduced but not
completely eliminated. Meanwhile, further experimental studies
are required to elucidate tumor E2F-related biological functions
underlying the gene signature in LUSC.
CONCLUSION

To sum up, a novel E2F-related gene signature was established
here to discriminate high-risk LUSC patients with
radioresistance. Combining multiple clinicopathological
characteristics, a decision tree and a nomogram were further
built to respectively optimize the risk stratification for OS and to
quantify risk assessment for individual patients. The E2F-related
gene signature could provide a useful tool to distinguish high-
risk LUSC patients with radioresistance who may benefit from
adjuvant therapies, thus to facilitate personalized management.
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