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a b s t r a c t 

Acute respiratory distress syndrome (ARDS), a fatal critical disease, is induced by various insults. ARDS rep- 
resents a major global public health burden, and the management of ARDS continues to challenge healthcare 
systems globally, especially during the pandemic of the coronavirus disease 2019 (COVID-19). There remains no 
confirmed specific pharmacotherapy for ARDS, despite advances in understanding its pathophysiology. Debate 
continues about the potential role of glucocorticoids (GCs) as a promising ARDS clinical therapy. Questions re- 
garding GC agent, dose, and duration in patients with ARDS need to be answered, because of substantial variations 
in GC administration regimens across studies. ARDS heterogeneity likely affects the therapeutic actions of exoge- 
nous GCs. This review includes progress in determining the GC mechanisms of action and clinical applications in 
ARDS, especially during the COVID-19 pandemic. 
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Acute respiratory distress syndrome (ARDS), a common clin-
cal syndrome of acute respiratory failure, is characterized by
efractory hypoxemia with bilateral infiltrates on chest imag-
ng, which cannot be explained by acute cardiac failure or fluid
verload.[ 1 , 2 ] Supportive treatments including lung-protective
entilation, prone position ventilation, and restrictive fluid infu-
ion improve the outcomes of ARDS. However, no specific drug
as been found effective in its treatment.[ 3 ] Because of their ob-
ious anti-inflammatory role, glucocorticoids (GCs) have been
sed to treat ARDS for decades, especially during the Coron-
virus disease 2019 (COVID-19) pandemic, though their phar-
acologic mechanisms of action on ARDS remain unclear.
erein, we first review the ARDS definition, etiology, epidemi-
logy, and pathophysiology. We then discuss the effects and
echanisms by which GCs affect ARDS, and how ARDS hetero-

eneity affects GC actions. Finally, we address the side effects
f GCs. 
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RDS Definition, Epidemiology, Etiology, and 

athophysiology 

efinition 

The definition of ARDS has undergone four versions since
t was first published in 1967. Because the COVID-19 pan-
emic emphasized the importance of expanding its definition,
he global definition published in 2023 expanded the Berlin
efinition, to provide a more feasible diagnosis, especially in
esource-limited areas.[ 4 ] 

An important modification in the newest definition is
he inclusion of treatment with high flow nasal oxygen
 30 L/min without required partial pressure of oxygen in ar-

erial blood (PaO2 )/fraction of inspired oxygen (FiO2 ), positive
nd-expiratory pressure. Many patients with mild hypoxemia or
apidly improving ARDS are thus now eligible for inclusion in
linical trials, substantially changing epidemiological estimates
ospital of Wuhan University, Wuhan 430060, Hubei, China. 
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Table 1 

Causes of acute respiratory distress syndrome. 

Pulmonary (direct) Non-/extra-pulmonary (indirect) 

Pneumonia 
• Bacterial 
• Viral 
• Fungal 
• Opportunistic 

Non-pulmonary sepsis 
• Abdominal 
• Urinary 
• Bloodstream 

• Others 

Near drowning Pancreatitis 
Aspiration of gastric contents Severe traumatic injury 
Ventilation-associated injury Severe burn injury 
Inhalation injury Drug toxicity 

Neurogenic 
Transfusion of blood products 
Radiation pneumonitis 
Cardiopulmonary bypass 
Ischemia-reperfusion injury after 
transplantation 
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f ARDS incidence and misclassification of ARDS severity and
iagnosis.[ 5 ] Another major change is the criteria for hypox-
mia, with the recommendation to use peripheral oxygen satura-
ion (SpO2 )/FiO2 to diagnose ARDS when SpO2 ≤ 97 % and blood
as is unavailable, instead of PaO2 /FiO2 . The advantage of this is
hat SpO2 /FiO2 can be measured continuously, non-invasively,
nd with high sensitivity. However, the validity of SpO2 /FiO2 

s an alternative to PaO2 /FiO2 remains controversial, especially
onsidering evidence of racial bias and high-dose vasopressor
se.[ 6 , 7 ] The new definition also recommends lung ultrasound
LUS) as an alternative for detecting bilateral (non-cardiogenic)
ltration, especially when chest radiography/computed tomog-
aphy (CT) is unavailable. However, the lack of clear rules for
sing LUS in ARDS diagnosis is a major flaw of the current def-
nition, and it may lead to ARDS misclassification. 

ARDS is a clinical syndrome, rather than a disease. The global
efinition is not “new, ” but rather an expansion of the Berlin
efinition to meet the current situation. Indeed, there may not
e a “best ” ARDS definition. Rather, we must assess the defini-
ion’s reliability and validity across settings and patient groups
o provide “better ” diagnostic criteria.[ 8 ] 

pidemiology 

Despite significant progress in understanding its pathogene-
is and the use of supportive therapies, the incidence of ARDS
emains high, especially in resource-restrained regions. It occurs
n approximately 10% of patients in the intensive care unit (ICU)
nd 23% of those who are ventilated[ 9 ] with morbidity increases
rom 30% to 52% during the COVID-19 pandemic.[ 10 ] There is
 significant increase in mortality with each increase in ARDS
everity category, with 34.9% for mild, 40.3% for moderate, and
6.1% for severe ARDS.[ 9 , 11 ] 

tiology 

ARDS can be caused by various factors including, but not re-
tricted, to pneumonia, sepsis, pancreatitis, aspiration of gastric
ontents, severe trauma and burns, and smoke inhalation.[ 2 ] E-
igarette and vaping product use-associated lung injury[ 12 ] and
OVID-19[ 13 ] have also emerged as new causes of ARDS. In re-
ent studies, sepsis, pneumonia, and aspiration of gastric con-
ents together accounted for > 85 % of ARDS cases.[ 9 , 14–17 ] (The
nown causes of ARDS are shown in Table 1 .) 

athophysiology 

ARDS is an acute inflammatory syndrome of the alveoli
nd capillaries, characterized by alveolar epithelium and capil-
ary endothelial injury with subsequent inflammatory exudation
rom alveolar capillaries.[ 18 ] Direct and indirect insults damage
he alveolar structure and microvasculature ( Figure 1 A). Dam-
ge to the endothelial–epithelial barrier is essential in the devel-
pment of ARDS, which leads to intra-alveolar and interstitial
dema due to increased capillary permeability. 

xudative phase 

In the exudative phase, the activated alveolar resident
acrophages release proinflammatory mediators, leading to

he accumulation of neutrophils, monocytes, and effector T
418
ells.[ 19 ] Recruitment of neutrophils to the lung is a key step
n the pathogenesis of ARDS.[ 20 ] Proinflammatory mediators,
ostly interleukin-8 (IL-8), released from either alveolar resi-
ent macrophage or activated intravascular immune cells, cause
eutrophils to be primed, adhered, and then crossover the cap-
llary wall into the interstitium and alveoli, releasing reac-
ive oxygen species (ROS), antimicrobial peptides, proinflamma-
ory lipid-derived mediators, and neutrophil extracellular traps
NETs) to kill pathogens and limit inflammatory diffusion.[ 21 ] 

his robust host defense response also damages the surrounding
issue. Activation of the platelet and complementary system ag-
ravated by tumor necrosis factor (TNF)-mediated expression of
issue factors (TFs) leads to microvascular thrombus formation,
ogether with dysfunction of tight junctions and ion channels
e.g., epithelial sodium channels [ENaC] and sodium-potassium
ump [Na+ /K+ -ATPase]), cell necrosis and apoptosis, hyaline
embrane formation, and mechanical stretch. All of these fur-

her contribute to endothelial–epithelial barrier dysfunction, re-
ulting in protein-rich fluid exudation from the capillary into
nterstitium and then the alveoli[ 22–25 ] ( Figure 1 B). 

roliferative phase 

In the proliferative phase, alveolar resident macrophages
hift to the anti-inflammatory phenotype (i.e., M2), clear-
ng neutrophils and excessive NETs through the efferocytosis
rocess.[ 26 , 27 ] Alveolar epithelial cells (AECs) II begin to dif-
erentiate into AEC I, and tight junctions, along with adhere
unctions, begin reconstructing and reestablishing the integrity
f the endothelial–epithelial barrier.[ 28 ] The protein-rich edema
uid and hyaline membrane begin to be reabsorbed by re-
xpression of ion channels and aquaporins (AQPs).[ 29 ] How-
ver, prolonged lifespan and delayed apoptosis of neutrophils
xaggerate NETs release that, along with decreased phagocyto-
is function of macrophages to apoptotic neutrophils and NETs,
ustain inflammation in ARDS[ 30 , 31 ] ( Figure 2 A). 

ibrosis phase 

During the fibrosis phase, M2-like macrophages and acti-
ated AEC II release factors, including transforming growth
actor (TGF)- 𝛽, platelet-derived growth factor, and insulin-like
rowth factor-1 (IGF-1), induce extensive deposition of ex-
racellular matrix. However, extensive basement membrane
amage and lack of surfactant production can cause atelecta-
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Figure 1. GC mechanisms in the exudative phase of ARDS. A: Direct and indirect insults damage the alveolar structure and microvasculature. B: During the exudative 
phase, alveolar resident macrophages are activated into M1-like macrophages, leading to the production of chemokines and proinflammatory cytokines that promote 
the accumulation of neutrophils and monocytes in the alveolus. To minimize the damage, activated neutrophils produce proinflammatory mediators such as ROS, 
NETs, COX-2, iNOS, MPO, and elastase. M1-like macrophages help T cells differentiate into Th 1, Th 2, Treg , and Th 17 subgroups. AEC I and AEC II are injured, and 
surfactant production decreases. Platelet aggregation and microthrombus formation cause intra-microvascular and intra-alveolar thrombosis, all of which injure 
barrier functions, leading to intra-alveolar and interstitial edema and respiratory failure. GCs suppress the NF- 𝜅B pathway to inhibit downstream proinflammatory 
mediator release, enhance antigen uptake in DCs and NKCs, and contribute to anti-inflammation effects by elevating proportions of Th 2, Treg , and Th 17 subgroups, 
and reducing the Th 1 subgroup. Despite repressing the expression of adhesion molecules to prevent adhesion and extravasation of neutrophils, GCs also induce 
expression and secretion of Anx-1 to further induce apoptosis of neutrophils in the inflammatory site. Created by Biorender. 
AEC: Alveolar epithelial cell; Anx-1: Annexin-1; AQPs: Aquaporins; ARDS: Acute respiratory distress syndrome; COX-2: Cyclooxygenase-2; CXCL: C-X-C motif 
chemokine ligand; DAMP: Damage-associated molecular pattern; DCs: Dendritic cells; ENaC: Epithelial sodium channels; E-sel: E-selectin; GC: Glucocorticoid; IL: 
Interleukin; iNOS: Inducible nitric oxide synthase; l-sel: l-selelctin; LTB4: Leukotriene B4; MHC: Major histocompatibility complex; MMPs: Matrix metalloproteinases; 
MPO: Myeloperoxidase; NETs: Neutrophil extracellular traps; NF- 𝜅B: Nuclear factor kappa-B; NKC: Natural killer cell; PAMP: Pathogen-associated molecular patterns; 
ROS: Reactive oxygen species; TCR: T cell receptor; Th cell: T helper cell; TNF: Tumor necrosis factor. 
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is and persistent interstitial and intra-alveolar inflammatory
xudation[ 18 , 32 ] ( Figure 2 B). 

echanisms of GCs in ARDS 

GCs are considered a promising treatment of ARDS based
n their anti-inflammatory, anti-oxidant, anti-fibrosis, and im-
unoregulation effects. However, the clinical effects remain

ontroversial due to different ARDS phenotypes and variance
n illness severity. Other influencing factors include GC type,
nitial time, dosage, and duration.[ 33 ] (The known mechanisms
f GC actions are shown in Supplementary Box 1.) 
419
Nuclear factor kappa-B (NF- 𝜅B) and activator protein-1,
mong other proinflammatory TFs, are primarily targeted by
lucocorticoid receptor (GR)-mediated gene suppression to limit
he inflammatory response.[ 34 ] Glucocorticoid-induced leucine
ipper (GILZ), a key regulator of GC effects, downregulates toll-
ike receptor-2 (TLR-2) expression and NF- 𝜅B, activator protein-
, and mitogen-activated protein kinase pathway activities, thus
nhibiting downstream proinflammatory gene expressions.[ 35 , 36 ] 

Cs can inhibit the NF- 𝜅B signal pathway by inducing in-
ibitor kappa B-alpha expression.[ 19 ] They can also upregu-
ate mitogen-activated protein kinase phosphatase-1 expres-
ion, then attenuate extracellular signal-regulated kinase, p38
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Figure 2. GC mechanisms in the proliferative and fibrotic phase of ARDS. A: The proliferative phase aims to resolve inflammation and reconstruct damaged structures. 
GCs induce phenotypic changes in macrophages from proinflammatory M1 to anti-inflammatory M2, activate macrophages to remove apoptotic cells, and improve the 
proportion of Treg cells, which release TGF- 𝛽, contributing to inflammation resolution. GCs can augment NETs production for inflammation clearance, but excessive 
NETs production leads to persistent inflammation and aggressive injuries. Following GC therapy, ion channel (ENaC, Na+ /K+ -ATPase, Ca2 + /Cl− /K+ pump, and 
AQPs) activity and quantity increase to hasten edema clearance. Surfactant production is increased with enhanced proliferation of AEC II. B: During the fibrotic 
phase, despite promoting re-epithelialization, GCs prevent the collagen deposition process and help to maintain the coagulation–fibrinolysis balance. Created by 
Biorender. 
AEC: Alveolar epithelial cell; AQPs: Aquaporins; ARDS: Acute respiratory distress syndrome; ENaC: Epithelial sodium channels; GC: Glucocorticoid; IGF: Insulin-like 
growth factor; IL: Interleukin; NETs: Neutrophil extracellular traps; PAI: Plasminogen activator inhibitor; PDGF: Platelet derived growth factor; TGF: Transforming 
growth factor; vWF: von Willebrand factor. 
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itogen-activated protein kinase, and Jun N-terminal kinase
ignaling by either directly by binding to mitogen-activated pro-
ein kinase phosphatase-1 promoter or indirectly upregulating
ILZ.[ 37 , 38 ] Annexin-1 (Anx-1), the first GC-induced annexin

uperfamily member to be characterized, inhibits the expres-
ion or activity of proinflammatory eicosanoids, cyclooxyge-
ase (COX), and inducible nitric oxide (NO) synthase (iNOS)
y repression of phospholipase A2.[ 39 , 40 ] Anx-1 can also pre-
ent neutrophil adhesion to endothelial layers, and interfere
ith excessive inflammatory cell transmigration.[ 41 ] GCs can

urther induce vasorelaxation by activating phosphoinositide 3-
inase (PI3K) in a concentration-dependent manner, with lower
osages of GCs causing an increase in NO production and higher
oses of GCs causing a decrease in NO production.[ 42 ] More-
ver, GCs can block several inflammatory pathways by pro-
oting expressions of specific proteins. Increased IL-10 expres-

ion inhibits NF- 𝜅B, activates PI3K, downregulates TLR-4, and
nduces macrophage apoptosis, all of which help to resolve
420
nflammation.[ 43 ] In macrophages and endothelial cells, GCs
rotect endothelial barrier function by upregulating the sph-
ngosine kinase 1 gene, which leads to elevated plasma sph-
ngosine 1-phosphate.[ 44 ] Moreover, GCs stimulate the expres-
ion of cluster of differentiation163 (CD163), a scavenger recep-
or that marks alternatively activated macrophages and mono-
ytes, prompting them to phagocytose apoptotic cells and at-
enuate inflammation.[ 45 ] GCs also reduce blood flow to inflam-
atory areas by several mechanisms, consisting of upregulating

ndothelin and angiotensin-converting enzyme expression, sen-
itizing endothelial cells to vasoconstrictors, and suppressing the
eneration of vasodilators.[ 46 ] 

Nearly all nucleated cells express GR, but GCs exert differ-
nt actions on different cell types. The antigen uptake of den-
ritic cells (DCs) can be enhanced by GCs, which further down-
egulate the expression of major histocompatibility complex-II
olecules, co-stimulatory molecules, and proinflammatory cy-

okines (e.g., IL-1, IL-6, and IL-12).[ 47 ] GCs can extend the lifes-
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an of natural killer cells (NKCs) stimulated by IL-2 and IL-
2, protect NKCs from cytokine-induced death, and increase
xpression of interferon (IFN)- 𝛾 and IL-6, which further ex-
rt anti-inflammatory effects.[ 48 ] GCs can suppress T cell ex-
ression of co-stimulatory molecules (CD2/CD8), cytokines (IL-
/IL-2/IL-5/IL-8/IL-13, IFN- 𝛼/IFN- 𝛽/IFN- 𝛾), and chemokines,
esulting in potent T cell suppression.[ 49 , 50 ] Simultaneously,
y inhibiting macrophages and DCs from producing IL-12 and
FN- 𝛾, GCs can reduce Th 1 cell activation and promote Th 17
ell differentiation, leading to increased expression of the anti-
nflammatory mediator TGF- 𝛽 and introducing a shift from Th 1
o Th 2 immunity.[ 51–53 ] By boosting the number of Treg cells and
nhancing their capacity to generate IL-10, Treg cells become re-
istant to GC-induced apoptosis.[ 54 , 55 ] 

Innate immune cells, primarily neutrophils and
acrophages, play an essential role during the inflamma-

ory response. GCs stimulate the expression of TLR-2 and
od-like receptor-3, increase circulating bone marrow-derived
eutrophils, and enhance the innate immune system’s ability
o react instantly to inflammation.[ 56 , 57 ] Tissue infiltration of
eutrophils can be targeted by GCs via (1) down-regulated
xpressions of L, P, and E-selection to reduce capture and
olling[ 58 ] and (2) reduce the adhesion molecules on both
he endothelium[ 59 ] and leukocytes[ 60 ] to prevent adhesion
nd detachment. GCs also reduce expressions of ROS, COX-2,
nd iNOS[ 61 , 62 ] and inhibit chemotaxis and phagocytosis of
eutrophils.[ 63 ] GCs inhibit the synthesis of proinflammatory
ediators by enhancing IL-1 receptor-associated kinase-M

xpression in both macrophages and epithelial cells.[ 64 , 65 ] Fur-
hermore, GCs can promote an anti-inflammatory phenotype
n monocytes by preventing oxidative stress-induced apoptosis,
ermitting them to migrate rapidly into inflammatory sites.[ 66 ] 

A hallmark of ARDS, the inflammatory pulmonary edema
aused by the damaged endothelial–epithelial barrier is also
he key target of exogenous GCs. Inflammatory cytokines can
revent fluid transport by inactivation of ENaC and Na+ /K+ -
TPase.[ 29 ] GCs can activate the PI3K/phosphatidylinositol-
,4,5-trisphosphate (PIP3) pathway or increase SGK1 synthe-
is to inhibit iNOS, then activate ion channels.[ 24 ] GCs control
a+ transport by inducing steroid-induced proteins that alter
NaC trafficking, assembly, and degradation.[ 24 ] GCs also down-
egulate channel permeability by inhibiting AQPs.[ 67 ] It has also
een suggested that GCs rapidly decrease basal intracellular
a2 + levels by interfering with Ca2 + cycling from intracellular
tores into the cytoplasm, reducing ATP consumption and ROS
roduction, thus affecting cellular energy metabolism.[ 68 ] 

During the rehabilitation and fibrotic phase of ARDS, GCs
revent collagen deposition and re-epithelialization, to restore
issue integrity and function.[ 69 , 70 ] After administering GCs, lev-
ls of plasminogen activator inhibitor (PAI)-1 increase, while
on Willebrand factor and fibrinogen levels decline, potentially
aintaining the proper coagulation–fibrinolysis balance.[ 71 ] 

oreover, GILZ acts as a negative regulator of Ras- and Raf-
nduced proliferation and a critical mediator of GCs antiprolif-
rative activity.[ 72 ] 

eterogeneity of ARDS 

A main reason why observational and randomized trials
ail is that ARDS is, by nature, heterogeneous.[ 73 ] Negative re-
421
ults may indicate a treatment that is truly ineffective or a
asking signal from harm in a subset of patients with a sim-

lar phenotype.[ 74 ] Identifying a patient’s ARDS endotype and
ubphenotype facilitates assigning them to various treatment
roups and assessing results more precisely. Both prognostic en-
ichment (identifying subgroups who are more likely to have a
articular endpoint) and predictive enrichment (identifying sub-
roups who are more likely to respond to a given intervention
ue to the mechanism of benefit) help to improve clinical trial
fficacy.[ 75 , 76 ] See Figure 3 for a schematic representation of
RDS heterogeneity. 

Many factors —including physiological, clinical, radiologi-
al, and biological —are considered to identify ARDS subphe-
otypes. Several physiological parameters can be considered
o categorize patients with ARDS, including PaO2 /FiO2 , dead
pace fraction, driving pressure, and ventilatory ratio. There is
 positive correlation between illness severity and mortality, ac-
ording to both the Berlin and global definitions, both of which
se PaO2 /FiO2 as the illness severity criterion.[ 4 , 77 ] One notable
rawback of PaO2 /FiO2 is its significant dependence on ventila-
or settings, particularly positive end-expiratory pressure, which
ay swiftly transfer one subset of patients to another.[ 78 , 79 ] 

n a recent study, investigators also distinguished recruitable
nd non-recruitable phenotypes using CT imaging, respiratory
echanics, and gas exchange.[ 80 ] These phenotypes are dis-

inguished by their notably different reactions to standardized
ecruitment protocols.[ 80 ] The efficacy of using other physio-
ogical parameters (e.g., airway driving pressure and transpul-
onary pressure) to guide intervention classification has yet to

e fully elucidated.[ 81–83 ] 

Clinical phenotypes (including pneumonia/non-pulmonary
epsis/trauma, direct/indirect, bacteria/virus/fungal/other,
arly/late stage, temporary/persistent, and acute kidney in-
ury) act as an important framework for ARDS management
nd prognosis[ 79 , 84 ] ; this indicates differences in incidence,
isk strategy, and mortality in patients under different ARDS
athogenesis types. The main drawback of clinical phenotypes
s that they make it difficult to classify patients because they
ave unique physiologies and respond differently to treatments.
hile ARDS is a clinical diagnosis, clinical characteristics
ay not be precise enough to differentiate among patients’

iological heterogeneity for matching targeted therapies to the
ost active, relevant pathways.[ 73 ] 

Radiographic heterogeneity was reported in a study in
hich lung morphology was classified into focal and non-

ocal phenotypes.[ 85 ] The Lung Imaging for Ventilator Setting
rial found no difference in 90-day mortality between standard
nd personalized ventilation strategies for focal or non-focal
oderate-to-severe ARDS, but it did find a 21% misclassification

t randomization.[ 86 ] Mortality was significantly higher among
atients whose ventilator strategy was misaligned, and exclud-
ng the misaligned group from the whole patient group has a
otential survival benefit. Effectively identifying and allocating
atients to the correct phenotype are crucial for future clini-
al trials and precision medicine. Since plain chest radiographs
re more readily available than CT, radiographic assessment of
ung edema scoring can be used to quantify both the extent and
ensity of alveolar edema; previous studies have found that ra-
iographic assessment of lung edema score changes over time
re associated with ARDS clinical outcome.[ 87 , 88 ] 
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Figure 3. ARDS heterogeneity and future perspectives. The ARDS is heterogeneous by nature and markedly impacts treatment efficacy. The center of the donut graph 
represents four main ARDS heterogeneity factors: clinical, physiological, radiographical, and biological. Circles within each section show identified subphenotypes. 
Omics approaches (left) and AI-assisted conceptual models (right) may help to identify specific subphenotypes and promote precision medicine. Created by Biorender. 
AI: Artificial intelligence; AKI: Acute kidney injury; ARDS: Acute respiratory distress syndrome. 
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With their lower chance of misclassification, biological
arkers are considered the most trustworthy for subpheno-

yping patients with ARDS. Several plasma biomarkers have
een tested, including markers of inflammatory, endothelial
njury, and coagulation disorder, all of which had prognos-
ic value.[ 89 , 90 ] In addition, “hyperinflammatory ” and “hypoin-
ammatory ” subphenotypes were identified by the latent class
nalysis,[ 91 ] while “reactive ” and “uninflamed ” subphenotypes
ere identified using hierarchical clustering and canonical path-
ay analysis.[ 92 , 93 ] Three-variable (IL-8, bicarbonate, and pro-

ein C) and four-variable (addition of vasopressor) parsimonious
odels have been developed to improve efficacy,[ 94 , 95 ] though
rospective validation will be needed.[ 96 ] Airspace sampling,
uch as bronchoalveolar lavage fluid[ 96 ] and heat moisture ex-
hange filter fluid,[ 97 ] could also provide evidence of lung in-
ury that plasma cannot, deepening our understanding of ARDS
echanisms. Omics technologies such as genomic, transcrip-

omic, proteomic, and metabolomic offer promising opportuni-
ies for pathway-specific interventions[ 96 , 98–101 ] ; however, these
pproaches are still in early development and not yet ready for
atient use.[ 102 ] 

Since ARDS develops rapidly, intervention should occur at
linical symptoms onset. Preventing unsafe exposure to im-
unomodulating drugs, like GCs, is critical,[ 103 ] highlight-
422
ng that reliable identification of patient phenotype is a ma-
or hurdle for precision medicine clinical trials in critically
ll populations.[ 104 ] Point-of-care clinical biomarker assays are
eeded to enable appropriate pre-intervention phenotyping.[ 105 ] 

RDS heterogeneity includes severity, stage, etiology, clinical
rial design, and population, all of which may be useful for dis-
inguishing phenotypes for specific “treatable traits ” beyond the
urrent ARDS definition.[ 106–108 ] To better understand the im-
ortant nodes of underlying physiological mechanisms, novel
nterventions of each subphenotype must be tested through pre-
linical research, translational clinical cohort studies, and ran-
omized trials.[ 73 ] Well-designed clinical trials should also be
esigned to increase participant representativeness, including
hose from both resource-rich and resource-poor settings, to de-
rease trial population heterogeneity.[ 74 ] 

C Therapy in Non-COVID-19-Related ARDS 

As GCs have been considered both standard and exploratory
reatments for preventing the spread of inflammation and im-
roving survival, previous studies have tested different regimens
n terms of timing, dose, course, and withdrawal, thus laying the
roundwork for GC therapy in ARDS.[ 109 , 110 ] A comparison of
Cs is presented in Supplementary Box 2. Representative ran-
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s  
omized controlled trials (RCTs) for ARDS and severe pneumo-
ia are summarized in Table 2 . 

ho benefits from GCs therapy? 

ntervention stage 

The first step is to identify patients who will benefit from
Cs. The effects of a low-dose prolonged methylprednisolone

egimen for severe early ARDS ( ≤ 72 h of symptom onset)
ere examined in a 2007 multicenter RCT ( n = 91), reported
y Meduri et al.[ 111 ] Those receiving methylprednisolone had
ignificantly: mitigated systemic inflammation, accompanied by
ower C-reactive protein levels; improved pulmonary and extra-
ulmonary organ dysfunction, evidenced by lower lung injury
nd multiple organ dysfunction syndrome scores; and shortened
echanical ventilation (MV) duration and ICU length of stay

LOS). Unfortunately, studies have failed to demonstrate GC effi-
acy in late-stage ARDS. Although data from the ARDS Network
emonstrated that GCs improved pulmonary function from 7
ays to 14 days after ARDS diagnosis, the therapeutic effect did
ot persist when GCs were delivered after that window, based on
ignificantly higher 60-day and 180-day mortality rates in sub-
roup analyses.[ 112 ] Early GC treatment in patients with severe
ommunity-acquired pneumonia prevented progression to sep-
ic shock (0% vs. 43%) and ARDS (0% vs. 17%),[ 113 ] while pro-
onged methylprednisolone treatment in early ARDS prevented
rogression to unresolving ARDS (8% vs. 36 %).[ 111 ] A meta-
nalysis of 8 RCTs and 10 cohort studies reported that patients
ith persistent ARDS appeared to benefit more if GCs were
iven within 14 days after symptom onset, further confirming
he ARDS Network findings.[ 114 ] 

acterial, viral, fungal, and other pathogenic infections 

Notably, the effects of early initial GC administration did
ot persist in patients with influenza-induced ARDS. A retro-
pective analysis of the Recherche en Ventilation Artificielle-
RLF (REVA-SRLF) trial conducted during the A/H1N1 pan-
emic found that early initiation (within ≤ 3 days of initial
V) with moderate-dose GCs was associated with increased
ortality.[ 115 ] Moreover, GC therapy was associated with an in-

reased risk of myocardial and liver injury, shock, MV duration,
nd delayed viral airway clearance, consistent with studies in se-
ere acute respiratory syndrome-associated coronavirus (i.e., se-
ere acute respiratory syndrome coronavirus 2 and Middle East
espiratory syndrome coronavirus).[ 116 , 117 ] Thus, routine GCs in
atients with virus-induced ARDS should be used with caution,
s it may be detrimental to multi-organ function. 

reventive and rescue administration 

Preventive GC administration has not been shown to prevent
ither the development of, or reverse, ARDS in patients with
epsis.[ 118 ] A meta-analysis of four studies assessing preventive
C treatment found a trend toward it increased odds of patients
ho developed ARDS, and increased mortality risk in those who

ubsequently developed ARDS.[ 119 ] 

an mortality be reduced after GC treatment? 

Due to inconsistent study results, it remains uncertain
hether GCs reduce mortality among patients with ARDS. Hy-
rocortisone administration improved pulmonary function but
423
id not reduce 28-day mortality (hazard ratio [HR] = 0.80, 95%
onfidence interval [CI]: 0.46 to 1.41) in early sepsis-associated
RDS ( n = 197).[ 120 ] A systemic review of 48 RCTs found that
lthough GCs improved ventilator-free days (VFD) up to day
8 (mean difference = 4.09, 95% CI: 1.74 to 6.44, low-certainty
vidence) and might lower early all-cause mortality (risk ra-
io [RR] = 0.77, 95% CI: 0.57 to 1.05; low-certainty evidence),
hey did not reduce late all-cause mortality (relative risk = 0.99,
5% CI: 0.64 to 1.52; very low-certainty evidence).[ 121 ] The
ask force for the Critical Illness-Related Corticosteroid Insuf-
ciency (CIRCI) guideline found that prolonged GC therapy
as associated with increased VFD and ICU-free days and
igher survival,[ 122 ] indicating that their therapeutic benefits
utweighed potential risks. The DEX-ARDS RCT ( n = 277), con-
ucted after publication of the CIRCI guidelines, found that early
dministration of dexamethasone (DEX) for 10 days resulted in
educed MV duration (between-group difference 4.8 days; 95%
I: 2.57 to 7.03) and all-cause mortality on day 60 (between-
roup difference 15.3%; 95% CI: − 25.9 to 4.9%).[ 123 ] 

ow to determine an optimal therapeutic regimen? 

C therapy dose 

Attention needs to be paid to GC dosage and use duration.
rom the mid-1950s to the 1980s, high-dose GCs were used
o treat ARDS, with few survival benefits observed, especially
rom a short course of high-dose GCs. An observational study in
hich 105 patients with ARDS were allocated to high-dose or

ow-dose GCs (mean doses are 175 mg/day and 88.5 mg/day,
espectively) according to their condition showed that except
or a markedly decreased IL-18 and significant improvement
n oxygenation among survivors, high-dose GC was related to
igher 45-day mortality.[ 124 ] Kaplan–Meier analysis revealed
hat when the GC dosage was equal to 146.5 mg/day of methyl-
rednisolone, it had the highest sensitivity and specificity for
redicting death, indicating that high-dose GC was an indepen-
ent risk factor for death. Collectively, high-dose GC therapy is
ot recommended for patients with either ARDS or sepsis ac-
ording to current evidence.[ 125 ] In addition, a series of studies
f patients with sepsis or septic shock showed no survival bene-
t, and potential harm in patients with normal ( > 9 g/dL) plasma
ortisol.[ 126 , 127 ] Since the 1990s, physiologic steroid therapy
also known as a “supraphysiologic ” or “stress ” dose) in patients
ith ARDS and sepsis has been encouraging, including improved

espiratory function, decreased lung and systemic inflammation,
nd survival benefits.[ 128 , 129 ] Most studies have used a protocol
f ≤ 2 mg/(kg·day) with a gradual taper, but a more precise rec-
mmendation was made considering ARDS timing: methylpred-
isolone ≤ 1 mg/(kg·day) for early ARDS ( ≤ 72 h of onset) and
 mg/(kg·day) for persistent/unresolving ARDS ( ≥ 5 days of on-
et), combined with a slow dosage reduction (9–12 days).[ 130 ] 

lthough a null effect for low-dose steroid-based mortality ef-
cacy in severe sepsis and septic shock could not be excluded,
here appeared to be credible evidence for shock reversal effi-
acy; similarly, the beneficial effects of low-dose steroids were
ighly dependent on patient age and underlying risk factors.[ 131 ] 

C therapy duration 

Previous clinical and experimental studies have demon-
trated that GC exposure duration is critical to regulating cy-
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Table 2 

RCTs of ARDS. 

Trial/author (year) Design Period Participants No. of patients 
(GCs/control) 

Interventions Duration 
(days) 

Primary outcome (GCs vs. 

control) 
Secondary outcomes Others 

Burnard et al.[ 176 ] 

(1987) 
Country: USA 
Multicenter (7 ICUs) 
Placebo-controlled 
Two parallel groups 

June 1983–November 1985 ARDS 99 (50/49) Methylprednisolone 
(bolus of 30 mg/kg 
for every 6 h for four 
doses) 

1 No difference in mortality 
rate during 45-day follow-up 
(60% vs. 63%, P = 0.74) 

Lower reversal of chest 
radiograph and arterial blood 
gases were observed (9% vs. 

56%, P < 0.018) 

NA 

Meduri et al.[ 127 ] 

(1998) 
Country: Memphis 
Multicenter (4 ICUs) 
Placebo-controlled 
Two parallel groups 

October 1994–November 1996 Severe persistent 
ARDS 

24 (16/8) Methylprednisolone 
(bolus of 2 mg/kg 
followed by every 6 
h: 2 mg/(kg·day) for 
14 days, 
1 mg/(kg·day) for 7 
days, 
0.5 mg/(kg·day) for 
7 days, 
0.25 mg/(kg·day) for 
2 days, and 
0.025 mg/(kg·day) 
for 2 days) 

14 On day 10: Reduced LIS 
(1.7 vs . 3.0, P < 0.001) 
Improved PaO2 : FiO2 

(262 vs . 148, P < 0.001) ICU 
mortality: 0/16 (0%) vs . 5/8 
(62%) ( P = 0.002) Hospital 
mortality: 2/16 (12%) vs. 

5/8 (62%) ( P = 0.03) 

Decreased MODS score (0.7 vs . 
1.8, P < 0.001) No increased 
rate of infections 

Four patients in the 
control group 
crossed over because 
of failure to improve 
outcomes 

Confalonieri 
et al.[ 113 ] (2005) 

Country: Italy 
Multicenter (6 ICUs) 
Placebo-controlled 
Two parallel groups 

July 2000–March 2003 Severe CAP 48 (24/24) Hydrocortisone 
(bolus of 200 mg 
followed by infusion 
of 240 mg/day at a 
rate of 10 mg/h) 

7 On day 8: Improved PaO2 : 
FiO2 ≥ 300 mmHg (16/23 vs . 
5/23, P = 0.0002) Reduced 
MODS score (0.3 ± 0.5 vs . 
1.0 ± 0.9, P = 0.003) 

GCs treatment was associated 
with decreased CRP levels 
(18 mg/dL vs. 34 mg/dL, 
P = 0.01), delayed septic shock 
(0% vs. 13%, P = 0.001), 
reduced in-hospital stay and 
mortality (all P < 0.01) on day 
8 

NA 

ARDS 
Network/Steinberg 
et al.[ 112 ] (2006) 

Country: USA 
Multicenter (25 
ICUs) 
Placebo-controlled 
Two parallel groups 

August 1997–November 2003 Persistent ARDS 180 (89/91) Methylprednisolone 
(bolus of 2 mg/kg, 
followed by 
0.5 mg/(kg·6 h) for 
14 days, 
0.5 mg/(kg·12 h) for 
7 days, and 
tampered over 2–4 
days) 

23–25 No difference in 60-day 
mortality between groups 
(29.2% vs. 28.6%, P = 1.0) 

Improvement in MV-free days 
( P < 0.001), ICU-free days 
( P = 0.02), and organ 
failure-free days ( P < 0.001) at 
day 28 Higher rate of 
neuromuscular weakness (9 vs . 
0, P = 0.001) 

Significantly 
increased rate of 
60-day and 180-day 
mortality when GCs 
administered ≥ 14 
days before the onset 
of ARDS More likely 
to be re-intubated 
after GCs treated 
(28% vs. 9%, 
P = 0.006) 

Annane et al.[ 177 ] 

(2006) 
Country: France 
Multicenter (19 
ICUs) 
Placebo-controlled 
Post hoc analysis 
Two parallel groups 

October 1995–February 1999 Septic 
shock-associated 
early ARDS 

177 (85/92) Hydrocortisone 
(50 mg/6 h) together 
with fludrocortisone 
(50 𝜇g orally daily) 

7 Decreased 28-day survival in 
non-responders (53% vs. 

75%, HR = 0.57, 95% CI: 0.36 
to 0.89, P = 0.013) 

ICU mortality in 
non-responders (RR = 0.73, 95% 

CI: 0.57 to 0.94, P = 0.01) 
Hospital mortality in 
non-responders (RR = 0.75, 95% 

CI: 0.59 to 0.96, P = 0.016) No 
significant difference in 
adverse events (all P > 0.05) 

Not all patients 
received 
lung-protective 
ventilation (mean 
tidal volume in all 
patients with ARDS 
> 8 mL/kg) 

Meduri et al.[ 111 ] 

(2007) 
Country: USA 
Multicenter (5 ICUs) 
Placebo-controlled 
Two parallel groups 

April 1997–April 2002 Severe early ARDS 
( ≤ 72 h) 

91 (63/28) Methylprednisolone 
(bolus of 1 mg/kg 
followed by 
1 mg/(kg·day) 
continuous infusion 
for 14 days, 
0.5 mg/(kg·day) for 
7 days, 
0.25 mg/(kg·day) for 
4 days, and 
0.125 mg/(kg·day) 
for 3 days) 

28 On day 7: 2-fold reduction of 
a 1-point reduction in LIS 
(69.8% vs. 35.7%, P = 0.002) 
and MODS scores 
(0.90 ± 1.1 vs . 1.9 ± 1.4; 
P = 0.002) More patients 
breathing without assistance 
(54% vs. 25%; P = 0.01) 

Shorter length of ICU stay (7 
days vs. 14.5 days; P = 0.007) 
Lower rate of ICU mortality 
(20.6% vs. 42.9%; P = 0.03) 
Fewer new infections (42.9% 

vs. 60.7%; P = 0.002) 

More received 
open-label 
methylprednisolone 
(7.9% vs. 35.7%; 
P = 0.002) 

( continued on next page ) 
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Table 2 ( continued ) 

Trial/author (year) Design Period Participants No. of patients 
(GCs/control) 

Interventions Duration 
(days) 

Primary outcome (GCs vs. 

control) 
Secondary outcomes Others 

Meijvis et al.[ 178 ] 

(2011) 
Country: 
Netherlands 
Multicenter (2 ICUs) 
Placebo-controlled 
Two parallel groups 

November 2007–
September 2010 

Severe CAP 304 (151/153) DEX (5 mg daily) 4 Reduced length of hospital 
stay (6.5 days vs. 7.5 days, 
95% CI: 0 to 2 days, 
P = 0.048) 

No difference in hospital 
mortality and 30-day mortality 
(all P > 0.05) Higher rate of 
hyperglycemia (67/151 [44%] 
vs. 35/153 [23%], P < 0.0001) 

NA 

Tongyoo et al.[ 120 ] 

(2016) 
Country: Thailand 
Single-center 
Placebo-controlled 
Two parallel groups 

December 2010–
December 2014 

Sepsis-associated 
ARDS 

197 (98/99) Hydrocortisone 
(200 mg/day in 4 
bolus of 50 mg) 

7 No difference in mortality at 
day 28 (22.5% vs. 27.3%, 
RR = 0.82, 95% CI: 0.50 to 
1.34, P = 0.51) 

Similar time to remove vital 
organ support (HR = 0.74, 95% 

CI: 0.51 to 1.07, P = 0.107) 

Improvement in the 
PaO2 : FiO2 

( P = 0.001) and LIS 
( P = 0.01) Higher rate 
of hyperglycemia 
(80.6% vs. 67.7%, 
P = 0.04) 

DEXA-ARDS/Villar 
et al.[ 123 ] (2020) 

Country: Spain 
Multicenter (17 
ICUs) 
Placebo-controlled 
Two parallel groups 

March 2013–December 2018 Moderate-to-severe 
ARDS 

277 (139/138) DEX (20 mg/day 
bolus for 5 days 
followed by 
10 mg/day for 5 
days) 

10 Longer MV-free days on 
day-28 (MD = 4.8 days, 95% 

CI: 2.57 to 7.04, P < 0.0001) 

Lower all-cause mortality on 
day-60 (between-group 
difference − 15.3%, 95% CI: 
− 25.9 to − 4.9, P = 0.0047) 

Higher re-intubation 
rate with DEX 
compared with 
control (12 [8.6%] 
vs. 7 [5.1%]) 

CoDEX trial/Angus 
et al.[ 179 ] (2020) 

Country: Brazil 
Multicenter (41 
ICUs) 
Placebo-controlled 
Two parallel groups 

June 2020–July 2020 Moderate-to-severe 
ARDS 

299 (151/148) DEX (20 mg/day 
bolus for 5 days 
followed by 
10 mg/day for 5 
days or until 
discharge) 

NA Longer MV-free days on 
day-28 (MD = 2.26 days, 95% 

CI: 0.2 to 4.38, P = 0.04) 

No difference in all-cause 
mortality, ICU-free days, and 
MV-free days at day-28 

NA 

Gragueb ‑Chatti 
et al.[ 155 ] (2021) 

Country: France 
Multicenter (3 ICUs) 
Placebo-controlled 
Two parallel groups 

March 10–29, 2020 and 
August 2020–November 2020 

COVID-19-related 
ARDS requiring 
invasive MV 

151 (84/67) DEX (6 mg/day for 
10 days) 

10 DEX did not significantly 
increase the incidence of 
VAP or BSI 

DEX treatment was associated 
with more VFD at day-28 

NA 

RECOVERY 
trial/Horby 
et al.[ 145 ] (2021) 

Country: UK 
Multicenter (176 
ICUs) 
Placebo-controlled 
Two parallel groups 

March 2020–June 2020 COVID-19 6425 (2104/4321) DEX (6 mg/day for 
10 days) 

10 Lower 28-day mortality 
among those who were 
receiving either invasive MV 
or oxygen alone at admission 
(aRR = 0.83, 95% CI: 0.75 to 
0.93, P < 0.001) 

NA DEX treatment 
showed no benefit 
and even harm 

among patients who 
did not require 
oxygen 

Moreno et al.[ 150 ] 

(2021) 
Country: Spanish, 
Andorran, and Irish 
Multicenter (70 
ICUs) 
Placebo-controlled 
Two parallel groups 

February 2020–
September 2020 

COVID-19-related 
ARDS requiring 
invasive MV 

1835 (1117/781) Methylprednisolone 
was used in 76.6% 

and DEX was used in 
22.1% of patients. 
Mean duration of 
methylprednisolone 
and DEX treatment 
was 5 days and 10 
days, respectively 

NA ICU mortality did not differ 
between groups (33.8% vs. 

30.9%, P = 0.28) 

GCs treatment at ICU 
admission was associated with 
survival benefit (HR = 0.53, 
95% CI: 0.39 to 0.72) After the 
17th day of admission, GCs 
treatment increased ICU 
mortality (long-term HR = 1.68, 
95% CI: 1.16 to 2.45) 

Specific subgroups 
(age < 60 years, 
severe ARDS) could 
benefit from GCs 
treatment 

Martinez-Guerra 
et al.[ 159 ] (2022) 

Country: Mexico 
Single-center 
Placebo-controlled 
Two parallel groups 

March 2020–September 2020 Severe 
COVID-19-related 
ARDS 

1540 (688/852) DEX (6 mg/day for 
10 days) after June 
17, 2020 

NA Reduced in-hospital 
mortality (18% vs. 31%, 
P < 0.01) 

GCs treatment resulted in 
longer time before MV (5 days 
vs. 3 days, P < 0.01), and more 
HAP (20% vs. 10%, P < 0.01) 

NA 

Lamouche ‑Wilquin 
et al.[ 154 ] (2022) 

Country: France 
Multicenter (15 
ICUs) 
Placebo-controlled 
Two parallel groups 

February 2020–December 2020 COVID-19-related 
ARDS 

670 (369 early 
GCs/301 no early 
GCs) 

DEX was used in 
91% (336/369) of 
the early admitted 
patients, while 
methylprednisolone 
was used in 36% 

(19/53) beyond 24 h 
of admission 

NA The incidence of VAP was 
higher with early GCs 
treatment (HR = 1.29, 95% CI: 
1.05 to 1.58, P = 0.016) 

NA VAP was associated 
with higher day-90 
mortality, but early 
GCs treatment was 
not 

( continued on next page ) 
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Table 2 ( continued ) 

Trial/author (year) Design Period Participants No. of patients 
(GCs/control) 

Interventions Duration 
(days) 

Primary outcome (GCs vs. 

control) 
Secondary outcomes Others 

Reyes et al.[ 153 ] 

(2022) 
Country: Latin, USA, 
and Europe 
Multicenter (84 
ICUs) 
Placebo-controlled 
Two parallel groups 

March 2020–January 2021 Severe 
COVID-19-related 
ARDS 

3777 (2065/1712) DEX dose and 
duration were 
determined by the 
attending physician 

NA Significant higher proportion 
of VAP was found (17.1% vs. 

13.2%, P = 0.014) 

NA DEX treatment was 
considered an 
adjusted risk factor 
of ICU-acquired 
respiratory 
infections 

Maskin et al.[ 180 ] 

(2022) 
Country: Argentina 
Multicenter (4 ICUs) 
Dose-controlled Two 
parallel groups 

June 2020–March 2021 COVID-19-related 
ARDS required 
invasive MV 

98 (49 low-dose 
DEX/49 high-dose 
DEX) 

DEX (6 mg/day for 
10 days in low-dose 
group; 16 mg/day 
for 5 days followed 
by 8 mg/day for 5 
days) 

10 No difference in VFD ([0–14] 
day vs. [0–1] day, P = 0.231) 
or mean duration of MV 
(19 ± 18 days vs. 25 ± 22 days, 
P = 0.078) within 28 days 
after inclusion between 
groups 

Higher cumulative hazard of 
successful discontinuation from 

MV in the high-dose group 
(HR = 1.84, 95% CI: 1.31 to 2.5, 
P < 0.001) 

NA 

Scaravilli et al.[ 181 ] 

(2022) 
Country: Italy 
Multicenter (4 ICUs) 
Propensity-matched 
cohort study Two 
parallel groups 

February 2020–December 2020 COVID-19-related 
ARDS requiring 
invasive MV 

316 (158/158) DEX (6 mg/day for 
10 days) 

10 Higher VAP incidence and 
risk for VAP 

Mortality was similar between 
groups 

VAP was associated 
with longer ICU and 
in-hospital LOS, and 
MV rate. VAP 
increased mortality 
(RR = 1.64, 95% CI: 
1.02 to 2.65, 
P = 0.04) 

RECOVERY 
trial/RECOVERY 
Collaborative 
Group[ 148 ] (2023) 

Country: UK, Asia, 
and Africa 
Multicenter (93 
ICUs) 
Placebo-controlled 
Two parallel groups 

May 2021–May 2022 COVID-19 1272 (659/613) DEX (20 mg/day 
bolus for 5 days 
followed by 
10 mg/day for 5 
days or until 
discharge) 

NA Higher dose GCs result in 
higher day-28 mortality 
compared with usual care 
(123/659 [19%] vs. 75/613 
[12%], RR = 1.59, 95% CI: 
1.12 to 2.10, P = 0.0012) 

NA Higher dose DEX 
treatment resulted in 
an increase in 
hyperglycemia 
requiring an 
increased insulin 
dose 

ARDS: Acute respiratory distress syndrome; BSI: Blood stream infections; CAP: Community-associated pneumonia; CI: Confidence interval; COVID-19: Coronavirus disease 2019; CRP: C-reactive protein; DEX: Dexam- 
ethasone; FiO2 : Fraction of inspired oxygen; GCs: Glucocorticoids; HAP: Hospital-acquired infections; HR: Hazard ratio; ICU: Intensive care unit; LIS: Lung injury scores; LOS: Length of stay; MD: Mean difference; MODS: 
Multiple organ dysfunction syndrome; MV: Mechanical ventilation; NA: Not available; PaO2 : Partial pressure of oxygen in arterial blood; RCTs: Randomized controlled trials; RR: Risk ratio; VAP: Ventilator-associated 
pneumonia; VFD: Ventilator-free day. 
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okine production and that premature discontinuation leads to
linical deterioration (i.e., increased inflammatory markers and
orsening multiple organ dysfunction).[ 132 , 133 ] In the ARDS Net-
ork, patients in the methylprednisolone group were able to
reathe on their own sooner, but one-quarter of them resumed
V after rapid steroid discontinuation (28% vs. 9%). This result
as probably attributable to the negative effects of GCs, such as
euromyopathy and shock recrudescence.[ 112 ] The potent anti-
nflammatory effects of GCs were achieved at the expense of
eversible hypothalamic-pituitary-adrenal (HPA) axis suppres-
ion, with the risk of treatment-associated adrenal insufficiency
n patients who are critically ill.[ 134 ] 

Extended GC exposure restores GR quantity and function, re-
ulting in lower inflammatory marker levels and higher func-
ional surfactant levels.[ 130 ] A recent ARDS Network reanalysis
einforced that abruptly discontinuing GCs causes inflammatory
ebound, which may explain the increased return to MV and
ortality,[ 135 ] and that gradual tapering is essential to main-

ain inflammation resolution, restore tissue homeostasis, and
uppress the HPA axis to forestall disease relapse because of
nflammation rebound.[ 111 , 130 ] Hence, resuming GC administra-
ion should be considered if the patient’s condition rapidly de-
eriorates after it is abruptly discontinued. With ongoing uncer-
ainties, an individualized dosage regimen is required according
o the underlying disease, organ function, and initial GC timing
nd options, rather than ARDS per se .[ 136 ] 

Benefits and risks, as well as costs, must be balanced in treat-
ent decision-making. We propose a tailored approach in which

teroids are administered regularly to those most likely to bene-
t from them, avoided in patients at higher harm risk, and care-

ully evaluated on a case-by-case basis in those with intermedi-
te risks/benefits. 

C Therapy in COVID-19-Related ARDS 

COVID-19 has become the leading etiology of acute respi-
atory failure.[ 137 , 138 ] Severe acute respiratory syndrome coro-
avirus 2, the virus that causes COVID-19, attaches and in-
ernalizes along with the membrane-bound protein angiotensin
onverting enzyme (ACE-2) to cause intracellular damage.[ 139 ] 

ompared with non-COVID-19 ARDS, COVID-19-induced ARDS
s characterized by reduced IL-6 expression,[ 140 ] lower total
hite cell count, and higher platelet count and fibrinogen.[ 141 ] 

EX was reported to be therapeutic in severe COVID-19 by sup-
ressing the IFN signal, expanding immunosuppressive imma-
ure neutrophils, and remodeling cellular interactions.[ 142 ] GCs
lso inhibit ROS generation in circulating T cells[ 143 ] and de-
rease CD4+ counts and human leukocyte antigen expression in
irculating monocytes.[ 144 ] 

The Randomised Evaluation of COVID-19 Therapy (RECOV-
RY) trial reported that DEX (6 mg/(kg·day) for 10 days) re-
uced 28-day mortality by one-third in patients undergoing in-
asive MV, and one-fifth in those who received oxygen sup-
ly, but did not benefit those who did not receive oxygen.[ 145 ] 

everal studies have demonstrated the positive effects of GCs
n survival, without elevated risk of adverse events.[ 146 , 147 ] Al-
hough RECOVERY survival benefits results led to several rec-
mmendations regarding GC therapy in patients with severe
OVID-19, controversial results remain. The latest RECOVERY
rial ( n = 1272) reported significantly increased mortality risk in
427
atients hospitalized with COVID-19 who require either no oxy-
en or simple oxygen with higher-dose GCs (DEX 20 mg/day
or 5 days followed by 10 mg/day for 5 days or until discharge),
ompared with usual care which included low-dose GCs.[ 148 ] In
he COVID-19 Dexamethasone (CoDEX) trial, in patients with
oderate-to-severe COVID-19 ( n = 299), DEX administration led

o no significant improvements in ICU mortality, ICU LOS, or
V duration.[ 149 ] A large retrospective cohort study of patients
ith COVID-19 with MV also identified a time-dependent ef-

ect for survival benefit, with a protective effect when GCs were
dministered within 2 weeks of diagnosis.[ 150 ] Recently, high-
ose GCs (1 mg/kg methylprednisolone) treatment in patients
ith COVID-19 and non-resolving ARDS who had been treated
ith DEX as standard of care had higher 90-day mortality (ad-

usted HR = 1.65, 95 % CI: 1.03–2.63).[ 151 ] The One Year Follow-
ps of Patients Admitted to Spanish Intensive Care Units Due to
OVID-19 (CIBERESUCICOVID) trial found a protective effect
n 90-day mortality, even in specific subgroups (i.e., age ≥ 60
ears, higher baseline severity, those who required MV at ICU
dmission).[ 152 ] A large, multicenter RCT ( n = 3777) found that
reating patients with severe COVID-19 with DEX increased the
ncidence of ICU-acquired respiratory tract infections (17.1%
s. 13.2%), regardless of illness severity at ICU admission or
uration of invasive MV.[ 153 ] Lamouche-Wilquin et al.[ 154 ] con-
luded that early GC treatment increased ventilator-associated
neumonia (VAP) rates, which were associated with higher 90-
ay mortality. However, Gragueb-Chatti et al.[ 155 ] reported that
reventive DEX dose did not increase VAP occurrence or bis-
ectral index monitoring, and even led to longer VFD at day
8 (9 [0–21] days vs. 0 [0–11] days). Whether GCs increase
AP incidence remains uncertain, yet clinicians should attend

o high VAP rates in patients with COVID-19-related ARDS who
re treated with GCs. These cumulative data emphasize that
areful immune monitoring is needed. In conclusion, early GC
nitiation ( ≤ 7 days of symptom onset) should be avoided, and
otential risks for nosocomial bacterial pneumonia and hyper-
lycemia should be considered.[ 156 ] 

Cs Therapy Side Effects 

Two key issues limit the use of GCs as therapeutic agents.
irst, high-dose and/or long-term GCs use can cause adverse ef-
ects, including infections, hyperglycemia, cardiovascular dis-
ase, muscle weakness, and gastrointestinal bleeding. Second,
lucocorticoid resistance (GCR) and CIRCI are usually observed,
ut underestimated, in patients who are critically ill. Because
hese issues can be devastating, clinicians must evaluate the po-
ential risks before making decisions regarding GC treatment for
RDS. 

nfection 

The increased risk of nosocomial infection in patients with
RDS from immunosuppression is a major concern. According

o the ARDS Network,[ 112 ] the treated group had a lower prob-
bility of clinically diagnosed VAP, but it was difficult to de-
ermine how an undiscovered infection might affect the out-
ome due to the absence of infection surveillance. While sev-
ral studies have found that GCs do not raise overall infection
isk,[ 157 , 158 ] a meta-analysis showed a trend toward increased in-
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idence of new infections with increasing GC doses.[ 119 ] In addi-
ion, conflicting results have been reported, including infection
isk increases in cohort studies (RR = 1.35, 95% CI: 0.99 to 1.84)
nd decreases in RCTs (RR = 0.83, 95% CI: 0.65 to 1.06).[ 114 ] It
s unclear whether this difference can be attributed to the strict
atient selection and infection monitoring procedures in RCTs.
igher incidences of ICU-acquired infections (45.8% vs. 35.2%)
nd pneumonia (41.0% vs. 26.4%) have been linked to GC treat-
ent for influenza-induced ARDS.[ 115 ] A higher rate of hospital-

cquired infections (HAP) (20% vs. 10%), primarily HAP/VAP
ut not bloodstream infections, was found among COVID-19
atients with GCs treated compared with placebo.[ 159 ] The
IBERESUCICOVID trial ( n = 4226) reported an elevated inci-
ence of both clinically diagnosed and microbiologically con-
rmed nosocomial bacterial pneumonia (odds ratio [OR] = 1.29,
5 % CI: 1.01 to 1.65) and hyperglycemia (OR = 2.17, 95 % CI:
.35 to 3.48) in 3592 patients who received GCs.[ 152 ] Because
arly infection signs and symptoms can be masked by GCs, es-
ecially when insufficient infection surveillance measures are
aken, infection rates vary. Future studies should define the
imeframe for infection surveillance to more precisely define in-
ection incidence in the context of clinical symptoms and etio-
ogical evidence, to provide prompt treatment. 

yperglycemia 

Hyperglycemia is a common side effect of GCs and is evi-
enced by insulin resistance and impaired peripheral glucose
ptake. Patients receiving GCs for pneumonia, sepsis, septic
hock, or ARDS experience a marked rise in hyperglycemia,
ut not gastrointestinal bleeding, secondary infection, neuropsy-
hiatric events, or cardiac events.[ 160–162 ] A group receiving
ethylprednisolone had a significantly higher incidence of hy-
erglycemia compared with a group receiving DEX.[ 163 ] Among
atients with COVID-19, an episode of blood glucose concentra-
ion ≥ 180 mg/dL by post-admission day 3 occurred in 19% of
atients in the DEX treatment group.[ 159 ] Because systemic GCs
an increase hyperglycemia, their development may negate the
enefits of GCs and impair prognosis in patients with COVID-
9.[ 164 ] Hence, the appropriate GC therapy durations need to be
etermined, and intensive blood glucose monitoring is recom-
ended. 

uscle weakness and neuromyopathy 

Muscle weakness is commonly observed in patients with
RDS who received MV for > 7 days. The ARDS Network showed
onflicting results: a strong association between methylpred-
isolone and severe muscle weakness, and similar cases of neu-
omyopathy, between treated and placebo groups.[ 112 ] How-
ver, among patients with neuromyopathy, the treated group
ad a shorter median MV duration. Although 48-h continu-
us infusion of neuromuscular blocking agents did not raise
he probability of ICU-acquired weakness,[ 165 , 166 ] the combi-
ation of GCs and neuromuscular blocking agents appeared to
o so.[ 167 ] Increased blood glucose levels were considered to
e associated with neuromuscular diseases.[ 168 ] GCs may pro-
ect against neuromyopathy in the intensive insulin therapy
428
etting.[ 169 ] The links among GCs, ICU-acquired neuromuscular
ysfunction, and clinical outcomes remain unclear. Comprehen-
ive electrophysiologic monitoring techniques for neuromuscu-
ar function will be required. 

CR and CIRCI 

Patients with ARDS and sepsis commonly progress to GCR,
hich can be acquired as a pathological host response to

he ineffectiveness of endogenous GCs to modulate inflam-
ation, endothelial function, and glucose metabolism,[ 170 ] or

nherited via mutations in the NR3C1 gene.[ 171 ] Since pa-
ients with severe sepsis and septic shock have blunted adrenal
unctions, low-dose GCs as an adjuvant therapy have become
he standard treatment.[ 172 ] To achieve a higher benefit-to-
isk ratio, guidelines regarding optimal dosage must be fol-
owed, along with strict monitoring to prevent and manage side
ffects.[ 134 ] Current therapeutic GCs do all activate GR activ-
ty, raising the potential for adverse effects.[ 173 ] To improve the
herapeutic balance, more work should be done to stimulate
he anti-inflammatory functions of GCs rather than unneeded
unctions.[ 173 ] Increased GC dosing may help to alleviate GCR,
hough overdose is a known danger. 

CIRCI was first described, in 2008, as relative adrenal in-
ufficiency, which occurs when the adrenal cortex is already
ully activated to create substantial quantities of cortisol, but
ot enough to handle the extreme stress of illness; it is also
ermed “starvation in plenty. ”[ 174 ] None of the total dose, high-
st dose, or length of GC therapy are reliable indicators of HPA
xis recovery.[ 175 ] Since the publication of the guidelines for the
iagnosis and management of CIRCI in 2017, prolonged low-
ose GCs therapy has been recommended for survival benefits
n patients with septic shock who are unresponsive to fluid re-
uscitation and moderate to high-dose of vasopressor therapy,
ut not in those without septic shock.[ 134 ] Because the negative
ffects of GCs are often dose-dependent, dose reduction may be
n option for reducing side effects. 

uture Perspectives 

ARDS is a heterogeneous syndrome with variable severity
nd underlying causes. To date, despite support therapies hav-
ng been consistently proven beneficial, no specific pharma-
otherapy agents have achieved concrete benefits. Clinical stud-
es have demonstrated the potent anti-inflammatory and im-
unomodulatory effects of GCs in specific subgroups of ARDS.
evertheless, overall mortality has not improved, especially fol-

owing the COVID-19 pandemic. The complex interplay among
fficacy, risk factors, and adverse events needs further consider-
tion. Tailoring optimal treatment regimens by vigilantly moni-
oring the initial timeframe, dose, duration, drug selection, and
apering of GCs is of prime importance for improving outcomes
n patients with ARDS. In the future, GC therapy in ARDS should
e tailored according to personalized physiology and biology,
s we move toward an era of precision medicine in critical ill-
ess. Global-scale collaboration —among academics, industry,
egulatory agencies, sponsors, and patients —may help to reveal
he benefits and potential risks of GC therapies in patients with
RDS. 
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