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Mycobacterium tuberculosis (Mtb) genes encoding proteins targeted by vaccines and
drugs should be expressed in the lung, the main organ affected by Mtb, for these to be
effective. However, the pulmonary expression of most Mtb genes and their proteins
remains poorly characterized. The aim of this study is to fill this knowledge gap. We
analyzed large scale transcriptomic datasets from specimens of Mtb-infected humans,
TB-hypersusceptible (C3H/FeJ) and TB-resistant (C57BL/6J) mice and compared data to
in vitro cultured Mtb gene-expression profiles. Results revealed high concordance in the
most abundantly in vivo expressed genes between pulmonary Mtb transcriptomes from
different datasets and different species. As expected, this contrasted with a lower
correlation found with the highest expressed Mtb genes from in vitro datasets. Among
the most consistently and highly in vivo expressed genes, 35 have not yet been explored
as targets for vaccination or treatment. More than half of these genes are involved in
protein synthesis or metabolic pathways. This first lung-oriented multi-study analysis of
the in vivo expressed Mtb-transcriptome provides essential data that considerably
increase our understanding of pulmonary TB infection biology, and identifies novel
molecules for target-based TB-vaccine and drug development.

Keywords: Mycobacterium tuberculosis (MTB), transcriptomic, tuberculosis, vaccine, therapy, antigen discovery
INTRODUCTION

Tuberculosis (TB) is an ancient disease caused by the airborne pathogen Mycobacterium
tuberculosis (Mtb), which has infected billions of people and has killed more people than any
other bacterial infectious agent (1). Current tools to combat TB, including diagnostics, vaccines and
drugs, each for their own reasons, are insufficient to diminish the global TB burden. In response to
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this WHO has formulated consensus research priorities to
accelerate the discovery and development of better TB drugs,
diagnostics and vaccines (1, 2).

The current clinical TB vaccine pipeline includes more than
20 new candidates, which in pre-clinical animal models are able
to reduce Mtb infection in the lung (quantified by measuring
numbers of viable Mtb and/or pathology in the lung) and/or
systemically (often the spleen), or TB morbidity (quantified by
tissue pathology, weight loss or host survival) (1, 3). Recent
human phase II studies showed that sustained Mtb infection can
be prevented by BCG revaccination of Mtb uninfected
individuals (as measured by interferon gamma release assay
conversion), and that incidence of new TB cases can be
reduced amongst persons with LTBI by the M72 TB subunit
vaccine (4, 5). While these results are highly encouraging, the
immune mechanisms underlying these protective effects remain
poorly understood. Current understanding of the molecular and
cellular basis of Mtb/human host interaction is limited, and the
exact mechanisms exerting protection against TB remain largely
unknown, and could range from (trained) innate to adaptive
immune effector mechanisms (6). Many of the most advanced
TB subunit candidates are based on Mtb proteins historically
identified from in vitro culturedMtb which were thereafter tested
for antigenicity using peripheral blood cells from Mtb exposed
individuals (7).

Although immune recognition of such proteins suggests
previous immune priming by these antigens, it does not
provide information regarding the expression of these antigens
in the main organ affected by Mtb, the lung. We have
hypothesized that in order for vaccine antigens to be protective
(and for drug targets to be effective), a minimal requirement is
that they are expressed in the lung of Mtb infected individuals,
preferably over prolonged periods of time such that immune cells
can recognize and eliminate infected targets cells presenting
these antigens; or conversely, that TB drugs are able to act
effectively on such Mtb target molecules. To address this
important issue, which cannot easily be studied in humans, we
recently reported a novel in vivo pulmonaryMtb gene expression
analysis based on theMtb RNA expression patterns in the lung of
highly susceptible (C3HeB/FeJ) as well as resistant (C57BL/6J)
mice after aerosol Mtb (Erdman) infection, from early to late
time points (8). Of note, the highly susceptible C3HeB/FeJ
“Kramnik” mice uniquely develop a form of lung TB that
includes centrally necrotic lesions characteristic of human TB.
By analysing the expression of 2068 Mtb genes [selected to
represent the first genes of most predicted Mtb operons, in
order to enhance representative “genome wide” coverage (9)]
in their lungs during early and late phase Mtb infection, we
identified upregulated Mtb genes that were designated in vivo
expressed Mtb (IVE-TB) genes. A total of 50 IVE-TB candidate
antigens was selected further based on information including
high-level conservation among whole-genome sequenced Mtb-
complex strains (n = 219) and algorithms predicting epitopes
presented by HLA-class-Ia and -II. Many of the IVE-TB
candidate antigens were highly conserved among the genomes
of >200 human isolatedMtb strains, and were recognized byMtb
responsive human subjects, supporting the hypothesis that the
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IVE-TB genes found in the C3HeB/FeJ “Kramnik” mouse lung
were also expressed and presented in humans, likely in the lung.

Nevertheless, formal proof that these Mtb IVE-TB genes are
truly expressed in the Mtb infected human lung is lacking. Only
few studies have evaluated theMtb transcriptome by human lung
infection centred approaches, using sputum and bronchoalveolar
lavage (BAL) samples from pulmonary TB patients. Those few
studies used mostly quantitative real-time PCR (RT-PCR) or
microarray platforms (10–15). In these reports, the expression
levels of Mtb genes recovered from human sputum were
compared to those in in vitro cultures. Up- and down-
regulated Mtb genes were reported mainly as ‘fold-changes’
compared to in vitro cultured Mtb or evaluated as
quantitatively altered Mtb gene expression profiles in samples
collected during TB treatment. Since a direct comparison
between these ‘fold-changes’ and quantitative qPCR data was
not immediately possible, we collected and reanalyzed all raw
data and relative expression scores of Mtb transcripts from three
studies (11, 12, 15). These human transcriptomic data sets were
selected because raw data were publicly available and allowed
comparative analysis. Ranking Mtb genes within each dataset
allowed us to assess and combine in vivo Mtb gene expression in
multiple individual studies independent of their individual
design. Using this information and comparing three
independent Mtb transcriptome datasets from human sputum
or BAL with our previously published dataset from C3HeB/FeJ
“Kramnik” mouse lungs (8), which was then complemented by
validation in a recently deposited Mtb RNA-Seq dataset (GEO:
GSE132354) (16) from alveolar macrophages of Mtb infected
C57BL/6J mice, as well a partial validation in a Mtb RNA-Seq
dataset from seven human active TB sputum samples (GEO:
GSE137518) (17), we here provide a first lung-centric multi-
study transcriptomic integrated dataset, which provides a novel
tool likely to be useful to TB vaccine and drug target discovery.
RESULTS

Most Abundant Mtb Transcripts in Human
Airway Overlap With Those in Mtb-
Hypersusceptible-Mice Lung
Three published quantitative RT-PCR datasets were used to
assess the most abundant Mtb transcripts across host species
[mice (n=20) (8) and humans (n=28) (11, 12)] and lung-derived
specimen-type [murine lungs (n=20) (8), human BAL (n=11)
(12) and sputum (n=28) (11, 12)] (a brief description of the
datasets is provided in Table 1). As mentioned above, the
number of Mtb genes examined in these studies ranged
between 1970 and 2406, mostly selected to represent the first
genes of predicted Mtb operons.

Before comparison, within each dataset a relative score from 0
to 100 was calculated by scaling the expression values of all
detected Mtb genes, with 0 and 100 representing the lowest and
highest expressed genes, respectively (Data File S1: Tables S1.1,
S1.2, S1.3). By comparing the most abundant Mtb transcripts,
arbitrarily defined as genes having a relative expression rank of
December 2021 | Volume 12 | Article 763364
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85% or higher, 90 Mtb genes were identified as overlapping in
this cross-study analysis (Figure 1A). Interestingly, 49% of the
top expressed Mtb genes in the Mtb-hypersusceptible-mice lung
overlaps with those found in human sputum or human BAL
(Figure 1A). If considering the human data only, the top ranked
genes would mount up to 133 overlaps (Data File S1: Table
S1.8). However, since mice are the most commonly used model
for preclinical research on TB vaccine and drug development, we
will focus the following analysis on the most abundant Mtb
transcripts shared between humans and mice.

To validate these 90 Mtb transcripts found to be consistently
highly expressed in different human and mouse lung-derived TB
datasets (Figure 1B), we compared these findings to unbiased
Mtb RNA-Sequencing (RNA-Seq) data from alveolar
macrophages of Mtb infected C57BL/6J mice (Data File S1:
Table S1.6, dataset e) (GSE132354) (Table 1). Out of these 90
Mtb genes, 80 were also listed in the mouse lung-derived RNA-
Seq library and except for three genes (Rv1037c, Rv1038c and
Rv3619c) they were detectable in all samples studied (i.e., more
than five reads). In addition, among the top 15% expressed Mtb
genes detected in the mouse RNA-Seq dataset (104 out of 3766,
Data File S1: Table S1.6), 17 (Rv0005, Rv0284, Rv1161, Rv1297,
Rv1398c, Rv1611, Rv1783, Rv1925, Rv2031c, Rv3051c, Rv3219,
Rv3248c, Rv3583c, Rv3841, Rv3854c, Rv3874, and Rv3875) were
shared with the RT-PCR datasets. Furthermore, a partial
validation was performed by using a Mtb RNA-Seq dataset
from seven human active TB sputum samples (Data File S1:
Table S1.7, dataset f) (GSE137518) (17) (Table 1): 79 out of 90
Mtb antigens were detectable in all samples, seven (Rv1131,
Rv1738, Rv1888c, Rv2031c, Rv3108A, Rv0569 and Rv0991c) in 6
Frontiers in Immunology | www.frontiersin.org 3
samples, three (Rv0572c, Rv1037c and Rv3619c) in 5 samples
and one (Rv2660c) in 3 samples. In addition, among the top 15%
expressedMtb genes detected in the human RNA-Seq dataset (24
out of 3716, Data File S1: Table S1.7), eight (Rv3874, Rv0467,
Rv1398c, Rv1131, Rv3051c, Rv0284, Rv3248c and Rv1297) were
shared with the RT-PCR datasets.

We also performed a similar analysis on a published
microarray Mtb transcriptome (number of genes=3924)
obtained from human sputum samples (n=7) (15) (Data File
S1: Table S1.5) (Table 1). Of the most abundant 90 Mtb
transcripts found in the RT-PCR datasets, only seven genes
(Rv1915, Rv1388, Rv3667, Rv0715, Rv1738, Rv3601c, and
Rv0287) overlapped with the top 15% ranked genes of the
published microarray dataset. Microarray data are known to be
less quantitative and to have a lower dynamic range compared to
RT-qPCR, which probably underlies this relatively limited
correlation (18).

Strikingly, 51 of the most abundant transcripts have
previously been described as Mtb antigens and four (Rv0005,
Rv1305, Rv3601c, and Rv3854c) as targets of approved TB drugs
(7, 19, 20) (Figure 1B, left panel). To the best of our knowledge,
35 of the top rankedMtb transcripts have not been examined yet
as potential targets for TB vaccination or treatment (7, 19, 20)
(Figure 1B, right panel). Among this pool of unexplored genes,
the majority encode ribosomal proteins or proteins needed for
energy-transducing processes, thus essential for Mtb growth
and survival.

Among the above identified 90 abundantly expressed Mtb
“pulmonary core Mtb transcript set”, significant enrichment was
observed in genes related to specific biological processes (21)
TABLE 1 | Description of the Mtb transcriptomic datasets included in the study.

Dataset Host Type of Sample Number of
Samples

Sample characteristics Method Number of
genes

analysed

Data
availability

Reference

a C3HeB/FeJ (C3H)
mice

Lung tissue 20 2, 4, 6, 9 and 12 weeks post
Mtb Erdman aerosol challenge

RT-PCR 2068 Data File
S1.1

Coppola M, et al.,
2016 (8)

b TB patients
recruited in
Uganda

Sputum 17 Before TB treatment RT-PCR 2406 Data File
S1.2

Walter ND, et al.,
2015 (11)

c1 TB patients
recruited in South
Africa

Sputum 11 Before TB treatment RT-PCR 1970 Data File
S1.3

Garcia BJ, et al.,
2016 (12)

c2 TB patients
recruited in South
Africa

BAL 11 Before TB treatment RT-PCR 1970 Data File
S1.3

Garcia BJ, et al.,
2016 (12)

c3 – in vitro culture 4 H37Rv cultured in log phase
aerobic growth

RT-PCR Data File
S1.4

Garcia BJ, et al.,
2016 (12)

c4 – in vitro culture 6 H37Rv cultured in non-
replicating persistence state
(NRP-2)

RT-PCR Data File
S1.4

Garcia BJ, et al.,
2016 (12)

d TB patients
recruited in India

Sputum 7 Before TB treatment Microarray 3924 Data File
S1.5

Sharma S, et al.,
2017 (15)

e C57BL/6J mice Alveolar macrophages
isolated from lungs

3 2 weeks post Mtb smyc’::
mCherry Erdman challenge

RNA-Seq 3766 Data File
S1.6

Pisu D, et al., 2020
(16)

f TB patients
recruited in South
Africa

Sputum 7* Before TB treatment RNA-Seq Range: 2957-
3993

Data File
S1.7

Lai R, et al., 2021
(GSE137518) (17)
December 20
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Mtb, Mycobacterium tuberculosis; TB, Tuberculosis; BAL, bronchoalveolar lavage; RT-PCR, quantitative real-time PCR; RNA-Seq, RNA-Sequencing. *one is a TB-HIV patient.
12 | Article 763364

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Coppola et al. Profiling the In Vivo Mtb Expressome
including: Mtb growth, pathogenesis, response to hypoxia,
response to stress, translation, and protein secretion by the type
VII secretion system. The latter process was the most enriched,
compatible with its major role in virulence and pathogenesis
(Figure 1C). By using STRING, most of the predicted protein-
Frontiers in Immunology | www.frontiersin.org 4
protein interactions were found among those involved in growth
(especially ribosomal proteins), tricarboxylic acid metabolic
process, and secreted/virulent proteins (Figure 1D).
Furthermore, multiple Mtb genes among the 90 consistently
highly expressed have previously been associated with key
A B

D

C

FIGURE 1 | Most abundant Mtb transcripts in human airway overlap with those in Mtb-hypersusceptible-mice lung. (A) Venn diagram indicating the numbers of top
15% expressed Mtb genes that overlap among four published in vivo RT-PCR datasets from the lungs of infected C3HeB/FeJ (C3H) mice (8) (dataset a), human
sputa (11, 12) (datasets b and c1) and human BAL samples (12) (dataset c2). (B) The top ranked expressed Mtb genes (n=90) overlapping among all these in vivo
datasets, see (A), are shown in two heatmaps. The left heatmap lists genes that have been investigated as antigens or TB drugs; the right heatmap lists genes of
which the vaccine or drug potential remains unexplored. The color coding represents the expression rank for a certain gene (rows) in each dataset (columns). The
genes, identified by their Rv numbers, are ordered based on expression rank from top to bottom. (C) GO enrichment analysis performed on the top expressed Mtb
genes (n=90), see (A, B). The fold enrichments, the adjusted p value (Fisher, FDR) and the number of genes within each GO term, are shown only for biological
processes significantly enriched. (D) STRING network analysis performed on the top expressed Mtb genes (n=90), see (A, B). Blue nodes indicate biological process
in tricarboxylic acid metabolic process and red nodes indicate growth. The color of the lines indicates the following: light blue = known interaction from curated
databases; pink = known interaction from experiments; red = predicted gene fusions; blue = predicted gene co-occurrence; black = co-expression. Disconnected
nodes were hidden.
December 2021 | Volume 12 | Article 763364
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functional categories (11, 22). These include: genes induced by
oxidative, non-specific and stringent stress as well as by enduring
hypoxia (EHR); regulatory genes, and genes involved in aerobic or
anaerobic respiration. Furthermore, several esx genes were highly
expressed in all datasets (Figure S1). Genes encoding for phage
proteins, toxin and antitoxins, and for PE/PPE proteins were often
not determined in RT-PCR datasets, and were detected at low
levels in the other datasets (Figure S1). Similarly, many genes
associated with cholesterol metabolism and its regulon were not
determined or not highly expressed in the RT-PCR datasets, with
the exception of Rv3503c (Figure S1) (22).

Taken together, this first cross-study analysis identified a
pulmonary core Mtb transcript set of 90 Mtb genes that were
highly and consistently expressed among different datasets
analyzed by qRT-PCR. Of note, the detection of most of these
genes was validated in mouse as well as human lung-derived
RNA-Seq datasets. Importantly these genes encode for proteins
involved in biological processes essential to survival and likely
also transmission of Mtb. Interestingly, the vaccine or drug
potential of 35 top ranked genes remains unexplored. When
further confirmed, including at the proteomic level, these results
significantly increase our understanding of in vivo Mtb-infection
biology, and provide novel targets for innovative TB vaccine and
drug discovery.

In Vivo and In Vitro Mtb Transcriptome
Dataset Comparison
Although there was high concordance between qRT-PCR
datasets from the different studies, as expected there also were
some differences in the most abundantly expressed genes
between qRT-PCR, microarray and RNA-Seq datasets. To
compare all nine Mtb transcriptome datasets analyzed in this
study we calculated Spearmans rank correlation coefficients “r”
among each of the datasets. In this analysis we also examined two
additional in vitro Mtb RT-PCR transcriptome datasets (12)
(a brief description of the datasets is provided in Table 1). The
entire datasets-comparison consisted of the ranked expression of
Mtb genes (n=1813) that were commonly investigated in all nine
Mtb transcriptomes. Most of the in vivo datasets correlated
positively (Figure 2A). The strongest in vivo data correlation
(r=0·83) was found within Mtb transcriptome datasets based on
RNA obtained from BAL and sputum from the same individuals
(South Africa cohort), and results obtained with the same
technology platform (RT-PCR) as previously described in the
original manuscript (12). The RT-PCR dataset based on human
sputum of Ugandan TB correlated most strongly with other
datasets including those from the South Africa TB patient cohort
(sputum and BAL), the RNA-seq dataset from the seven South
Africa TB patients’ sputa and with both the RNA-Seq and the
RT-PCR datasets from Mtb infected mice (r values were 0·72,
0·63, 0·31, 0·27, and 0·59, respectively). Of all the in vivo datasets
the latter showed the highest correlation with the mouse and
human RNA-Seq transcriptome datasets (r values were 0·34, and
0·39). Importantly, the mouse RNA-Seq transcriptome dataset
highly correlated with the RNA-Seq data derived from human
samples (r=0·76).
Frontiers in Immunology | www.frontiersin.org 5
The microarray Mtb transcriptome dataset did not correlate
well with any of the other datasets investigated here, probably for
the reasons described above (see also Figure 2A). When
comparing the in vivo and in vitro Mtb transcriptome based
on the RT-PCR datasets, the expression ranks of the in vivo data
correlated most strongly with the expression ranks obtained
in vitro from log phase grown Mtb (datasets c3) (Figure 2A).
However, despite the overall positive correlation, the top ranked
expressed genes identified under the in vitro conditions.

Only partially overlapped with the in vivo pulmonary core
Mtb transcript set identified in the in vivo datasets, strongly
suggesting different biology (Figure 2B). Confirming what
already was described for the whole datasets, the overlaps were
higher with the top ranked genes from log phase aerobic grown
Mtb H37Rv (n=44) than those from the non-replicating
persistence state cultured Mtb H37Rv (n=26) (Figure 2B)
(Data File S1: Table S1.9). Of note, the overlaps between the
top ranked genes of the two different experimental models were
lower than those found when comparing the in vitro datasets
individually to the in vivo transcriptomes (n=16).

Thus, this latter comparison showed that the expression ranks
of Mtb genes identified in in vivo and in vitro positively
correlated among multiple datasets, including those derived
from different species. In addition, it also revealed that the set
of highly in vivo expressed Mtb genes substantially differs from
the set of highly in vitro expressed Mtb genes.

Expression of Mtb Genes Encoding
Candidate Antigens for TB Vaccines and
Diagnostics Across Datasets
In order to be effective, TB vaccines would need to contain
antigens consistently expressed byMtb at the site of infection, the
lung, and across various diverse populations. We therefore
interrogated published (8, 11, 12, 15) Mtb transcriptome
datasets to evaluate the expression levels of genes encoding
proteins constituting subunit TB vaccine candidates (n=22) (7)
as well as a selection of the most promising IVE-TB antigens
previously identified (n=30) (8). As described above, to compare
multiple datasets we used normalized and ranked Mtb gene
expression values. Two genes, namely Rv2608 and Rv3872
belonging to the PE/PPE family, were not determined in all
RT-PCR datasets. As expected from the previously described
general comparison (Figure 2A), the microarray dataset showed
the most discordant expression levels with the exception of a few
genes (Figures 3A, B). Next,Mtb genes were assigned to the first,
second or third quartiles based on the median expression rank
across the qRT-PCR and microarray datasets. Among 22 Mtb
genes encoding current TB vaccine candidates, 12 ranked in the
upper quartile (Rv3615c, Rv3620c, Rv0288, Rv3614c, Rv3619c,
Rv3875, Rv2660c, Rv2626c, Rv3865, Rv1196, Rv3407, and
Rv1886c), nine ranked in the interquartile range (Rv0867c,
Rv3804c, Rv0125, Rv0139, Rv1285, Rv2389c, Rv3849, and
Rv1813c) and only two ranked in the lower quartile (Rv2608,
and Rv3872) (Figure 3A). By performing the same analysis,
among the most promising 30 IVE-TB genes, 20 ranked in the
upper quartile (Rv0467, Rv3462c, Rv1131, Rv3615c, Rv0287,
December 2021 | Volume 12 | Article 763364
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Rv0288, Rv1284, Rv1221, Rv1872c, Rv0640, Rv3614c, Rv3616c,
Rv0991c, Rv2215, Rv2626c, Rv0470c, Rv0642c, Rv0468, Rv3865,
and Rv1846) and ten ranked in the interquartile range (Rv1980c,
Rv2873, Rv2941, Rv2007c, Rv0826, Rv2461c, Rv1791c, Rv0645c,
Rv0423c, and Rv0440) (Figure 3A). All these genes, except
nine (detected in six samples: Rv0826, Rv0991, Rv2873,
Rv3407; detected in five samples: Rv1285, Rv2608, Rv2626,
Rv3619; detected in three samples: Rv2660c), were detected in
all human samples analyzed by RNA-Seq (dataset f) whereas 44
were traceable in the mouse RNA-Seq dataset (dataset e) and
among those only one (Rv3619) was not detected (i.e., less than
five reads) in the mouse samples analyzed by that platform.
Among genes used in commercial immune- (interferon gamma
release assay, IGRAs) diagnostics, we found the expression of
ESAT-6 (Rv3875c) and CFP-10 (Rv3874) to rank in the upper
quartile (Figure 3A), and TB7.7 (Rv2654) in the lower quartile
(Figure 3B). All the genes encoding for antigens proposed in an
ESAT-6 free immunodiagnostic test (Rv2348c, Rv3615c, and
Frontiers in Immunology | www.frontiersin.org 6
Rv3865) were expressed among the upper quartile (23)
(Figures 3A, B).

As mentioned above, multiple Mtb antigens have been
discovered over the last 40 years using different strategies other
than our IVE-TB approach. For our expression analysis here, we
focused on 70 genes encoding Mtb proteins which have been
described as promising antigens and validated in at least two
independent studies (7). Of the 70 Mtb genes only 11 had
expression median ranks in the upper quartile (Rv2031c,
Rv1793, Rv2346c, Rv1037c, Rv2780, Rv0934, Rv0983, Rv0129c,
Rv1270c, Rv0632c, and Rv1047) and were detected in all samples
by RNA-Seq (with the exception of Rv1037 and Rv1047)
(Figure 3B). Finally, we performed a similar analysis on 89 Mtb
genes encoding peptides that have been included in the so-called
mega-pool of epitopes which has been widely tested in numerous
different settings (24, 25). Out of 89 Mtb genes, 29 had an
expression rank in the upper quartile (Figure S1). Among these
highly in vivo expressed genes 12 (Rv3418c, Rv3023c, Rv1199c,
A

B

FIGURE 2 | In vivo and in vitro Mtb transcriptome dataset comparison. (A) Correlation between in vivo and in vitro Mtb transcriptome datasets (n=nine) measured
using Spearmans rank correlation coefficients “r” (from 1 to -1). This comparison was based only on the ranked expression of Mtb genes (n=1813) investigated in all
nine Mtb transcriptomes. The datasets included are the following: C3HeB/FeJ mouse lung dataset (8) (a); human sputum (HS) dataset from Ugandan TB patients
(10) (b); HS (c1) and BAL (c2) from a cohort of South African TB patients (12); a microarray (MA) based dataset (15) (d) from sputa of Indian TB patients (15); RNA-
Seq dataset from alveolar macrophages (AM) of Mtb infected C57BL/6J mice (GEO: GSE132354)] (e); and RT-PCR based datasets from log phase aerobic grown
Mtb H37Rv (c3) and non-replicating persistence state (NRP-2) cultured Mtb H37Rv (c4). (B) Scatter plots (left and middle panel) displaying the relationship between
the median expression ranks of the four published in vivo RT-PCR based Mtb transcriptomes (datasets a, b, c1 and c2) (x-axes) and the median expression ranks of
the two published in vitro RT-PCR based Mtb transcriptomes (c3 and c4, left and right plot, respectively) (y-axes). Dots are color coded according to the median
expression ranks of the in vivo datasets. At the value of 85%, dotted lines intersect the axes indicating the top 15% expressed Mtb genes. Venn diagram (right panel)
showing the numbers of top ranked in vivo Mtb genes (n=90), described in Figure 1, that overlap with the top ranked in vitro Mtb genes from log phase aerobic
grown Mtb H37Rv and non-replicating persistence state (NRP-2) cultured Mtb H37Rv.
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Rv0985c, Rv3115, Rv3022c, Rv2512c, Rv0299, Rv0294, Rv3018c,
Rv2996c, and Rv1908c) were not previously described as IVE-TB
genes or implemented in TB vaccines or diagnostics (Figure S1).

Taken together, these analyses show that most potent
candidate TB vaccine antigens, some of which are in advanced
clinical evaluation studies, are indeed highly expressed at the
Frontiers in Immunology | www.frontiersin.org 7
RNA level in infected lungs of mice and humans. This supports
our previous hypothesis that Mtb antigen expression in the lung
(if confirmed at the protein level) is a critical feature of potential
vaccine efficacy, and that this could guide target selection to
advance and improve TB vaccine development as well as new
TB diagnostics.
A B

FIGURE 3 | Expression of Mtb genes encoding candidate TB vaccine antigens and IVE-TB antigens across datasets. The median expression level of Mtb genes
encoding a selection of the most promising Mtb antigens previously identified was interrogated from published (8, 11, 12, 15) lung Mtb infection-centred
transcriptomic datasets. Each column represents the relative expression rank calculated obtained from our analysis within each dataset, as indicated in the boxes by
numbers. Source data are provided in Supplementary Table 1 (A) Proteins constituting clinical or late preclinical subunit TB vaccine candidates (n=22) as well as
IVE-TB antigens (font color red, n=30) previously identified. On the left of each antigen is indicated the name of the vaccine candidates of which they are part (font
colors in black or grey differentiate candidates in clinical and pre-clinical studies, respectively). (B) Expression ranks of genes used in commercial diagnostics
(Rv2348c, font color grey) and genes encoding Mtb proteins described as promising antigens (n=70) by at least two previous independent studies other than the
IVE-TB approach (7, 23). Undetermined expression ranks are color coded in white. Datasets are listed from left to right as in Figure 2 (see legend Figure 2).
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Expression Profiles of Mtb Genes
Encoding TB Drugs Targets
Twenty-eight TB drugs have been approved for use against TB
(20). Since these drugs can cure drug sensitive TB, we would
predict that their targets, which are mostly proteins, should be
expressed particularly during pulmonary Mtb infection. Based
on the information available on the TBDRUGS - Database of
Drugs for Tuberculosis (version 1.0) at http://bmi.icmr.org.in/
tbdrugs/, we evaluated the median expression ranks across four
published studies of 22 Mtb genes encoding major TB drugs
targets, or prodrug-drug converting enzymes, across the qRT-
PCR, and microarray transcriptomic datasets (Figure S1).
Similar to the above, Mtb genes were again assigned to the
first, second and third quartiles based on the median expression
rank across the qRT-PCR and microarray datasets. Seven Mtb
genes which ranked in the upper quartile (Rv1305, Rv0005,
Rv3854c, Rv3423c, Rv1484, Rv1908c, and Rv0206c) are targets
(or prodrug-drug converting enzymes) of drugs inhibiting the
synthesis of mycolic acids (Isoniazid, Prothionamide and
Ethionamide), peptidoglycans (Cycloserine and Terizidone), or
DNA (Gatifloxacin, Moxifloxacin and Ofloxicin), or interfering
with trehalose monomycolate export (SQ109), or interfering
with oxidative phosphorylation (Bedaquiline) (Figure 4). All
other genes encoding drug targets had median expression ranks
in the interquartile range (Rv0667, Rv3794, Rv3795, Rv2447,
Rv2163c, Rv0006, Rv3608, Rv3547, Rv2068c, Rv0706, Rv0701,
Rv3793, and Rv2981c), with the exception of the target gene
(Rv2763c) of the pro-drug Para-aminosalicylic acid (PAS) which
had an expression rank in the lower quartile (Figure 4). Of note,
all 22Mtb genes reviewed here, except three (Rv3608 and Rv2447
not traceable in the mouse dataset, Rv3608 and Rv2763c not
found in some of the human samples), were detected in all
samples evaluated by RNA-Seq analysis (Data File S1: Tables
S1.6, S1.7).

Thus the 22 Mtb genes evaluated here which encode targets
for drugs efficacious clinical TB-drugs are all expressed byMtb in
the mouse and human lung across multiple datasets.

Taken together, our analyses significantly increase current
knowledge on the in vivo expression of the pulmonary Mtb
transcriptome expression. These insights and new data could be
highly valuable in guiding rationalized target selection of new TB
antigens (for both diagnostics and vaccines) as well as TB
drug discovery.
DISCUSSION

This study represents the first lung-oriented description of Mtb
transcripts from sputum and bronchoalveolar lavage (BAL) of
TB patients and from the lungs of Mtb infected mice (8, 11, 12,
15). Our analysis identified considerable overlap among the most
abundant Mtb transcripts in different settings, spanning
information from mouse (C3H/FeJ) and human Mtb infection.
The only exception were microarray based data, probably due to
the lower dynamic range of that platform (discussed further
below). These findings were further validated and corroborated
Frontiers in Immunology | www.frontiersin.org 8
using mouse and human sputum Mtb transcriptomes measured
by RNA-Seq. In addition, the data were compared with in vitro
datasets, revealing significant differences as expected.

An important observation was that manyMtb genes encoding
new candidateMtb vaccine antigens or existing drug targets were
among the most highly expressed Mtb genes in the lungs of
infected mice and humans. A second important observation was
that our analysis revealed high expression of 35 Mtb genes that
have not been studied as vaccine antigens, diagnostic or drug
target molecules, suggesting that the here reported data might
inform novel strategies for discovery of new antigens and drug
targets. Thus, this first comprehensive lung infection centred
Mtb gene expression comparison provides novel insights into the
pulmonary Mtb transcriptome signature and the biological
pathways involved, significantly enhances our understanding of
Mtb infection biology and is useful in deciphering the in vivo
expressed pulmonary Mtb transcriptome, which can guide
precision development of new TB diagnostics, drugs and
vaccines (7).

Assessing theMtb transcriptome in infected human organs is
challenging since airway specimens such as sputum, BAL and
biopsies are not always easy to obtain. Among those, sputum
collection is the only non-invasive procedure and therefore the
most commonly used to investigate Mtb transcriptomes in TB
(10–15). However, adequate RNA isolation from sputum is
hampered by several factors such as the small size of the
samples, the presence of RNases, and the contamination with
other commensal or pathogenic bacteria (26). In past studies, we
circumvented those limitations by analysing RNA isolated from
lung of Mtb infected mice, including those of highly susceptible
C3HeB/FeJ “Kramnik” mice presenting with pulmonary lesions
characteristic of human TB (8, 27), using RT-PCR. Although
these methods allowed the identification of a new class of in vivo
expressed Mtb (IVE-TB) antigens, proven to be recognized by
peripheral blood cells of Mtb infected individuals (8, 27), it was
not clear whether the Mtb transcriptome signature found in the
lung of “Kramnik” mice sufficiently reflected that of clinical Mtb
isolates infecting the human respiratory tract. The present
comparison shows a strongly positive correlation between Mtb
transcriptomes signatures from infected lungs of “Kramnik”
mice and three out of four published Mtb transcriptome
signatures identified from sputum and BAL of TB patients
(Figure 2). The only Mtb transcriptome dataset that did not
correlate with the mouse dataset was obtained using micro-
arrays, and also did not correlate with any of the other human
datasets (Figure 2). There are two main factors that could
explain this lack of correlation: the most likely is the
technology platform used (dual microarray vs. RT-PCR:
microarrays are less sensitive and quantitative than RT-qPCR
and have a significantly lower dynamic range (18) although we
cannot exclude a role for the geographic area of patients’
recruitment, India vs. Sub-Saharan Africa [there are different
distributions of geographically restricted Mtb strains detected in
the samples (28)]. The differences compared to the microarray
dataset was also clear when the top 15% expressed Mtb genes of
each published dataset were compared: only seven of the 90Mtb
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top expressed genes which were shared in all RT-PCR datasets,
were found to be highly expressed in the microarray dataset
(Figure 1B). This discrepancy is evident also when comparing
our findings to those obtained in a previous study (29) that
analyzed the overlaps between upregulated genes in human and
murine lungs identified from two microarray datasets (30, 31). In
this meta-analysis only four genes were shared across species
(Rv0316, Rv3347c, Rv3532, and Rv3706c), none of which is
included in the top ranked transcripts of our analysis. Besides the
fact that this data was based on microarray assays, the limited
overlaps could be explained by the fact that in these studies the
up-regulation of the genes is relative to the expression found in
in vitro transcriptomics. Our findings differ also from another
comparative analysis among Mtb transcriptomes from
susceptible (I/StSnEgYCit) and resistant (C57BL/6YCit) mouse
strains, which defined 209 commonly upregulated genes using
the Audic-Claverie algorithm (32). However, from this list only
17 Mtb transcripts overlap with the top ranked genes found in
Frontiers in Immunology | www.frontiersin.org 9
our C3HeB/FeJ “Kramnik” dataset, a number that decreases to
two if including in the comparison also the human datasets
(Data File S1: Table S1.10). Therefore, we think it is crucial to
use the same analysis pipeline when examining different datasets.

We also analyzed two additional in vitro Mtb transcriptome
(RT-PCR based) datasets, both from log phase as well as from
stationary phase culturedMtb bacteria, and compared their gene
expression profiles with those from the in vivo analyses. As
expected, the in vitro log phase grown data correlated most
strongly with the in vivo datasets (Figure 2B). However, despite
the overall correlation, the in vivo pulmonary coreMtb transcript
set only partially overlapped with the in vitro data, emphasizing
the need for unbiased in vivo analyses to identify core Mtb
transcriptome expression signatures that can inform the design
of intervention tools, such as diagnostic tests, vaccines or new
drugs. Of note, when taking only the top ranked transcripts from
the in vitro datasets these had more overlap with the human
datasets than those found between the two in vitro conditions.
FIGURE 4 | Expression profiles of Mtb genes encoding TB drugs targets. Based on the information available on the TBDRUGS - Database of Drugs for
Tuberculosis (version 1.0), available at http://bmi.icmr.org.in/tbdrugs/, the median expression ranks of 22 Mtb genes encoding TB drugs targets or prodrug-drug
converting enzyme were evaluated across published (8, 10, 11, 14) lung Mtb infection-centred transcriptomic datasets. Nodes representing genes are colored based
on the median expression rank. Blue, magenta and orange text indicate first-line drugs, other approved drugs or drugs evaluated in clinical trials, respectively. Source
data are provided in Supplementary Table 1.
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This finding may suggest that a combination of in vitro
experimental models may translate better into the dynamic
and heterogeneous state of Mtb during an in vivo infection (33).

The 90 Mtb top expressed genes were enriched for biological
processes such as growth, translation, pathogenicity, protein
secretion, and response to hypoxia and oxidative stress
(Figure 1C). This trend was found also when genes were
grouped according to previously described functional
categories (11). In fact, the highest and most consistent
expression ranks included virulence-associated Mtb genes, and
were found among esx genes, ribosomal protein genes, genes
related to metabolic pathways, and genes encoding proteins in
response to hypoxic and oxidative stress, suggesting the presence
of metabolic active bacilli in the samples investigated here
(Figure S1). These signatures are compatible with active Mtb
infection. Additionally, most of the 90 top expressed genes
within the RT-PCR dataset were found expressed in
independent and unbiased mouse and human derived RNA-
Seq datasets. Unexpectedly, 35 out of these 90 highly abundant
Mtb transcripts encode for proteins not yet been described as
Mtb antigens or drug targets (Figure 1B) (7, 19). This key finding
underscores how our integrative transcriptomic approach helps
generate new hypotheses worth future investigation.

Although based on different mouse strains (C3H vs. BL6), and
time of infection (five time points spanning from two to 12 weeks
vs. two weeks only), the mouse lung RT-PCR dataset showed the
highest correlation with the unbiased RNA-Seq datasets
(Figure 2A) which detected, with only one exception (Rv3619c
for the mouse derived dataset)¸ all genes encoding IVE-TB
antigens. The latter had been selected based on high expression
in the Mtb infected lungs of “Kramnik” mice, and the present
analysis further extends this to humanMtb infected lung derived
samples (Figure 3A) (8). By contrast, many of the Mtb genes
encoding antigens identified only on the basis of their
recognition in human peripheral blood, mostly showed lower
expression than the IVE-TB antigens in the lung-centric datasets
studied here (Figure 3B). Based on our hypothesis this suggests
that only a subset of proteins immunogenic in human blood tests
might have vaccine potential, but this needs to be demonstrated
formally. However, one case in point is the failure of the MVA85
phase IIb trial which showed no additional efficacy of MVA85
booster vaccination on top of BCG in preventing TB in infants
(34). We found that the encoded antigen, Ag85A (Rv3804c) used
in MVA85A exhibited lower expression than for example
antigens contained in the successful M72 vaccine (Figure 3A)
(5), and this may underlie Rv3804c’s poor performance as single
subunit vaccine antigen. Although the different protective
efficacies of subunit vaccines are difficult to compare, antigen
availability and presentation to immune cells in the respiratory
tract ofMtb infected subjects may well be a key factor influencing
their eventual efficacy. Of note, in our analysis, most promising
TB subunit-vaccine candidates, including those in current
clinical trials, contained at least one protein encoded by a
highly expressed Mtb gene in multiple transcriptomic datasets.

We also performed further comparative analyses on genes
encoding antigens that are currently used in commercial TB
Frontiers in Immunology | www.frontiersin.org 10
diagnostics or additional candidate vaccines (7). As expected,
antigens implemented in approved TB diagnostics such as
ESAT-6 and CFP-10 (Rv3875c and Rv3874) were highly or
moderately expressed, except TB7.7 (Rv2654) that showed only
low or undetectable expression levels. T cell reactivity towards
TB7.7 has been investigated in short-term T cell cultures (35, 36)
and in a direct ex vivo assay (37). The latter approach failed to find
evidence for antigenicity of TB7.7 in a cohort of 18 LTBI donors
(37). This result was unexpected given the presence of HLA-class
II binding peptides in the antigen. Here we postulate that this lack
of antigenicity in fact may reflect the low expression levels of
TB7.7 which we find in the respiratory tract of untreated TB
patients. Together, these findings support the use of other antigens
for early detection of Mtb infection such as those recently
proposed to be included in ESAT-6 free immunodiagnostic tests
(Rv2348, Rv3615, and Rv3865) (23), which were instead found
highly expressed (Figure 3B).

Another interesting application of our findings may be the
refinement and implementation of new mega-pools of Mtb
epitopes, a first version of which has already been tested in
several cohorts of Mtb infected subjects (24, 25). Our analysis
revealed that 19% (n=17) of the 89Mtb genes encoding for those
epitopes were poorly expressed in vivo (Figure S1). If confirmed
also at a protein level, depleting new mega-pools of such peptides
might help denoising the promiscuous immune reactivity found
against the Mtb epitope mega-pool (24) and allow a better
characterization of those peptides most likely available
during infection.

A limitation of our analysis might be that differential gene
expression does not by definition correlate with differential
protein expression, and differential protein expression does not
equal differential functionality. The analysis of large sets of genes
as performed in this study, however, we think might have
mitigated this risk, even though at the individual gene level
exceptions may exist. Several Mtb proteomic datasets have been
reported, confirming high expression of Mtb proteins known to
be diagnostic or candidate vaccine antigens, but as far as we
know this has not been correlated systematically to vaccine-,
diagnostic- of drug-target efficacy. Furthermore, although Mtb
transcript levels may not necessarily predict protein levels (38),
they are helpful in understanding global transcriptome dynamics
with impact on potential local antigen availability and
presentation as well as drug target expression during Mtb
infection. Such knowledge may help de-risking TB vaccine and
drug development by selecting the most highly expressed and
presented Mtb genes and proteins in the human lung
during infection.

Currently there are 28 approved TB drugs which have been or
are being prioritized and combined based on the sensitivity of
Mtb to these drugs. Isoniazid, Rifampin (or rifapentine or
Rifabutin), Ethambutol (administered for six months) and
Pyrazinamide are used as first-line drugs for drug sensitive TB,
while the rest are used in different regimens against multi- or
extensively-drug resistant TB (MDR-TB and XDR-TB
respectively) (http://bmi.icmr.org.in/tbdrugs/). An important
aspect of our analysis is that it confirmed the high-medium
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expression of all 22 Mtb genes encoding targets of TB drugs
efficacious in clinical settings (Figures 4, S1). These results
indirectly validate our approach but, more importantly,
support the value of using pulmonary Mtb transcriptomic
datasets to select for new potential TB drug targets. Indeed,
our work also reveals high expression ofMtb genes that have not
been studied as drug target molecules, suggesting that the here
reported approach could inform discovery of new drug targets.

Collectively, by our comparative analyses of in vivo
pulmonary Mtb transcriptomes both from Mtb infected
animals and humans significantly increase our understanding
of in situ host-pathogen interactions in TB, and can help refining
the in vivo expressed Mtb genes and proteins to accelerate and
innovate TB vaccine, diagnostics and drug development.
Enhanced focus on lung centric studies in TB should therefore
be encouraged.
MATERIALS AND METHODS

Study Design
The central aim of the study was to examine the gene expression
profile ofMtb during in vivo pulmonary infection in humans and
mouse models and compare those to the Mtb in vitro expression
signature. We analyzed large scale transcriptomic datasets from
Mtb-infected human sputa (n=35), human bronchoalveolar
lavages (n=11), TB-hypersusceptible (C3H/FeJ) mouse lungs
(n=20), alveolar macrophages from TB-resistant (C57BL/6J)
mice (n=3) and compared data to in vitro cultured Mtb gene-
expression profiles and to a RNA-Seq human sputum derived
Mtb transcriptome dataset from TB patients (n=7) (Table 1).
Within each dataset and each sample, a relative score was
calculated by ranking the expression level of each gene relative
to all genes assayed.

Data Source and Data Process
Dataset a: RT-PCR Mtb Transcriptome Dataset From
Lung of Mtb infected Mice
In brief, C3HeB/FeJ (C3H) mice, housed under specific
pathogen-free conditions were infected with Mtb Erdman by
aerosol challenge (25–50 CFU Mtb using a Madison chamber).
Four mice per group were sacrificed at five different time points.
Quantification of Mtb transcript profile was performed on 2068
genes, mostly representing the first gene of each predicted
operon, as previously described (8). Total Mtb RNA was
isolated from infected mouse lung tissue, after two, four, six,
nine, and 12 weeks of Mtb infection. cDNA synthesis was
conducted and cDNA further amplified via controlled
multiplex pre-amplification. Sequences and design of PCR
primer/probe sets are available at http://genes.stanford.edu/
technology.php. Individual gene transcript quantification was
carried out using TaqMan primer/probe sets (Biosearch
Technology, Petaluma, CA, USA). For each time point after
infection, the median cycle threshold values of four mice per
strain were transformed to relative gene copy numbers (RGCNs)
based on logarithmic transformation/linear regression equations
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devised from calibration curves (CT and RGCNs used in this
paper are available in the Data File S1: Table S1.1) (8).

For each time point, a relative score was calculated by ranking
the median RGCN of each gene to all genes assayed. A rank of 100
represents the most highly expressed gene, a rank of zero
represents the lowest expressed gene. The same percentile rank
values were assigned to genes with same median RGCN.
Thereafter, the median relative expression score among all time
points was calculated for each gene (Data File S1: Table S1.1).

Dataset b: RT-PCR Mtb Transcriptome Dataset From
Human Sputum of Ugandan TB Patients
Mtb gene-based RT-PCR data were obtained from the
supplementary files from the original paper (Data File S1:
Table S1.2) (11). Briefly, in that study expectorated sputum of
17 Ugandan adults with untreated pulmonary TB was collected
into a sterile cup containing guanidine thiocyanate solution for
immediate RNA preservation. Total RNA was extracted and
amplified. The authors quantified a total of 2406Mtb transcripts
via multiplex quantitative RT-PCR, and normalized mRNA
expression data using a minimum-variance data-driven
method. For each sample, we calculated a relative score by
ranking the expression level of each gene to all genes assayed.

A rank of 100 represents the most highly expressed gene, a
rank of zero the lowest expressed gene. For each gene, the
median relative expression score was available for specimen
collected before TB treatment and therefore used in this
analysis (Data File S1: Table S1.2).

Dataset c1 and c2: RT-PCR Mtb Transcriptome
Dataset From Human Sputum and BAL of South
African TB Patients
Mtb gene-based RT-PCR data were obtained from supplementary
files provided in the original paper (Data File S1: Table S1.3) (12).
Briefly, in that study, human sputum (dataset c1) and BAL
(dataset c2) samples were collected from 11 untreated South
African TB patients. From these specimens, RNA extraction was
performed using a phenol/chloroform protocol and
transcriptional profiling of 1970 Mtb genes was assessed via
multiplex quantitative RT-PCR (TaqMan) with a LightCycler
480 (Roche, Indianapolis, Indiana) (details in the original
manuscript). Data were batch corrected using a median
approach. Since BAL and sputa were paired samples, the Mtb
transcriptional data were normalized using a previously-described
minimum variance method (12) (Data File S1: Table S1.3).

For each time point and sample, a relative score was
calculated by ranking the median CT level of each gene among
all genes assayed. Rank of 100 represents the most highly
expressed gene, a rank of zero the lowest expressed gene.
Identical percentile rank values were assigned to genes with the
same median CT (Data File S1: Table S1.3).

Dataset c3 and c4: RT-PCR Mtb Transcriptome
Dataset From In Vitro Cultured Mtb
Mtb gene-based RT-PCR data were obtained from supplementary
files provided in the original paper. Briefly, this study providedMtb
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gene expression data from H37Rv cultured in log phase aerobic
growth (four replicates) (dataset c3) and in non-replicating
persistence state (NRP-2; 0·06% of oxygen in the culture) (six
replicates) (dataset c4) (Data File S1: Table S1.4) (12). From
these specimens, RNA extraction was performed using a phenol/
chloroform protocol and transcriptional profiling of 2124Mtb genes
was assessed via multiplex quantitative RT-PCR (TaqMan) with a
LightCycler 480 (Roche, Indianapolis, Indiana) (details in the
original manuscript) (12).

For each time point and sample, a relative score was
calculated by ranking the median CT level of each gene to all
genes assayed. Rank of 100 represents the most highly expressed
gene, a rank of zero the lowest expressed gene. Identical
percentile rank values were assigned to genes with the same
median CT (Data File S1: Table S1.4).

Dataset d: Microarray Mtb Transcriptome Dataset
From Human Sputum From Untreated Indian TB
Patients
Microarray data of 3924 Mtb genes were obtained from the files
deposited in GEO database, accession number: GSE93316. Briefly,
in this study human sputa from seven untreated TB patients were
collected in Chandigarh, India and used for extraction of RNA by
RNAZOL in Primestore. For DNA microarrays, the DNase treated
RNA (50ng) was amplified using the MessageAmp™ II-Bacteria
RNA Amplification Kit (Ambion®) and then reverse transcribed
using superscript III RT. The amplified and labelled cDNAwas then
hybridized to Mtb arrays obtained from the Center for Applied
Genomics (Public Health Research Institute; Newark, NJ). The
microarrays were scanned with Axon 4000B scanner and
processed further with GenePix Pro 6.1 software.

For our analysis, we used the within sample print-tip Lowess
normalized fluorescence intensities (F635 medians from the
original paper) detected from the cDNA of the smear positive
samples. Quantile normalization was performed in R studio, as
described in the methods below. Within each sample, genes were
ranked from zero to 100, with zero and 100 representing
respectively the lowest and the most highly expressed gene.
The same percentile rank values were assigned to genes with
same normalized fluorescence intensities. The median rank was
calculated for each gene among the donors (n=seven) (Data File
S1: Table S1.5).

Dataset e: RNA-Sequencing (RNA-Seq) Mtb
Transcriptome Dataset From Alveolar Macrophages
of Mtb Infected Mice
Normalized Mtb transcriptome data were obtained from the
Supplementary Figure 1 of the GEO depository (GSE132354).
Briefly, as described in the depository, C57BL/6J mice
(n=three) purchased from the Jackson Laboratory were
infected with Mtb smyc’::mCherry Erdman for 14 days. The
total mixed RNA enriched for bacterial reads was extracted
following the protocol described in the paper (16). rRNA
removal was performed using 50-100ng total RNA input and a
modified protocol for the Ribo-Zero Epidemiology Gold rRNA
removal kit (Illumina). Briefly, 90 ml bead stock was used per
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sample, together with two ml each of reaction buffer and removal
solution in a 20 ml reaction volume, as detailed in the
manufacturer’s protocol. The rRNA-depleted samples were
purified by precipitating the RNA. Sequencing libraries were
generated using the NEBNext Ultra™ II Directional RNA
Library Prep Kit for Illumina (New England BioLabs).
Libraries were sequenced on a NextSeq500 (Illumina) in
multiple rounds until the desired sequencing depth for
bacterial reads was reached (target 1M 85nt reads). Flexbar
(v. 3.4) has been used to remove low quality reads and trim
Illumina adapters. rRNA reads have been removed using
Bowtie2 (sensitive mode). rRNA filtered fastq files were split
using Bowtie2 (very-sensitive mode) into species-specific files
using the two reference genomes, GRCm38.94 forMus musculus
and NCBI assembly GCA_00668235.1 for Mtb Erdman Hisat2
(v. 2.1.0). Raw read counts for each sample were obtained using
HTSeq (v. 0.11.0).

A total of 3766 Mtb genes whose names could be assigned to
the corresponding Rv numbers were considered in our analysis.
Within each sample, genes were ranked from zero to 100, with
zero and 100 representing respectively undetected and the most
highly expressed gene. The same percentile rank values were
assigned to genes with same raw read counts. The median of
these ranks was calculated for each gene among samples (Data
File S1: Table S1.6). Since this in vivo RNA-Seq dataset was
derived only from an early stage of Mtb infection (two weeks),
the data was used primarily to validate results obtained from the
RT-PCR Mtb transcriptomes.

Dataset f: RNA-Sequencing (RNA-Seq) Mtb
Transcriptome Dataset From Human Sputum of
South African TB Patients
RNA-Seq libraries for the 7 sputum samples from 6 untreated
South African TB-only and 1 TB-HIV patients were prepared
with 200ng of corresponding RNA using the Ovation Human
FFPE RNA-Seq Multiplex System (NuGen, San Carlos CA,
USA). To guarantee immediate RNA preservation, the sputum
was lysed in Trizol immediately after collection and total RNA
was extracted using chloroform and purified and concentrated
with the RNA Clean & Concentrator kit Zymo Research, Irvine
CA, USA. Each sputum library was loaded onto a single lane in a
flow cell and sequenced with a Hi-Seq 2500 instrument using
SE100 reaction (Illumina, San Diego CA, USA).

The quality of the sequencing fastq files was analyzed using
FastQC (v0.11.5). Sequence reads were adapter- and quality-
trimmed using Trimmomatic (v0.36) before aligning to the
human genome (Ensembl GRCh38 build 88) using STAR
aligner (v2.5.2a). To assure that the reported RNA-Seq reads
did not map to other commensal bacteria such as oral flora, the
sequence reads were quality filtered and then aligned to the
human genome, with unaligned reads extracted for microbiome
taxonomy classification, species mapping and subsequently
aligned to reference genomes of Mtb using STAR aligner
(v2.5.2a). The alignment files were name sorted by SAMtools
(v1.2) and gene expression was quantified using BEDTools
(v.2.26.0). The RNA-Seq data reported in this paper have been
deposited at GEO with the accession number GSE137518.
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Quantile normalization was performed in R studio, as
described further in these methods. Within each sample, genes
were ranked from 0 to 100, with 0 and 100 representing
respectively undetected and the most highly expressed gene.
The same percentile rank values were assigned to genes with
same raw read counts. The median of these ranks was calculated
for each gene among donors (n=7) (Data File S1: Table S1.7). In
the human sputum samples, although the number of detected
Mtb genes varied between 2957 and 3993 (median=3716), many
genes had both equal raw read counts and read counts below 100,
thus skewing the expression rank towards the lower interquartile.
Therefore, the in vivo RNA-Seq dataset was mostly used to
validate results obtained from the RT-PCR Mtb transcriptomes.

Quantile Normalization of RNA-Seq and
Microarray Datasets
In order to compare microarray data among biological samples,
read counts and signal intensities have to be adjusted to eliminate
systematic effects that are not associated with the biological
differences of interest. It has been shown that quantile-based
normalization is a robust procedure to remove technical
variations without introducing additional noise and to make
distributions identical across samples (39). Quantile
normalization was performed in R studio by applying the
following function (40):

quantile_normalisation <- function(df)
{df_rank <- apply (df,2, rank, ties.method=“min”)
df_sorted <- data.frame (apply (df, 2, sort))
df_mean <- apply (df_sorted, 1, mean)
index_to_mean <- function (my_index, my_mean) {return

(my_mean [my_index])}
df_final <- apply (df_rank, 2, index_to_mean, my_mean

= df_mean)
rownames (df_final) <- rownames(df)
return(df_final)}

GO and STRING Analysis
Gene ontology (GO) enrichment analysis was performed by
using PANTHER Overrepresentation Test (21). The most
expressed Mtb genes shared among the Mtb transcriptome
datasets previously described were evaluated in respect to the
Mtb genome (all genes in the database). P values were calculated
by Fisher’s exact test adjusted for false discovery rate. Only
biological processes significantly enriched (p value < 0·05) were
reported. STRING (https://string-db.org/) was used to predict
protein-protein interactions and show network connectivity
(41). The network was based on evidence from experiments,
curated databases or prediction of co-expression, and gene
fusions (medium confidence score >= 0·4).

Correlation Matrix
All datasets were compared in R using the ggcorrplot
package (https://cran.r-project.org/web/packages/ggcorrplot/
ggcorrplot.pdf). Spearmans rank correlation coefficient was
computed based on the median rank of the 1813 Mtb genes
investigated in all datasets. Since the datasets used in our
analysis consist of a large sample size, all Spearmans rank
Frontiers in Immunology | www.frontiersin.org 13
correlation coefficients above 0.13 were significant (calculated
using the cor.test function in R).

Venn Diagrams
To show the numbers of top ranked Mtb genes that overlap
between in vivo and in vitro datasets, Venn diagrams have been
made using the ggVennDiagram and the ggplot2 packages
(https://cran.r-project.org/web/packages/ggVennDiagram/
index.html and https://cran.r-project.org/web/packages/ggplot2/
index.html).

Code Availability
Code is available in the Methods section and at the following
link: (https://cran.r-project.org/web/packages/ggcorrplot/
ggcorrplot.pdf).
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Supplementary Figure 1 | Expression level of Mtb genes belonging to specific
categories previously defined in literature. Each heatmap lists Mtb genes belonging
to previously defined functional categories (11, 22). Specific pathways are indicated
on the right of the genes encoding proteins related to metabolic pathways. Each
column represents the relative expression rank within each dataset. Datasets are
listed from left to right with the following order: C3HeB/FeJ mouse lung dataset (8)
(A); human sputum (HS) dataset from Ugandan TB patients (10) (B); HS (C1) and
BAL (C2) from a cohort of South African TB patients (12); a microarray (MA) based
dataset (D) from sputa of Indian TB patients (15). Red color coded Rvs indicateMtb
genes of the mega-pool which overlap with Figure 3B.

Supplementary Table 1 | Source Data. This file contains nine supplementary
tables for this paper. Tables S1.1–S1.7 report the normalized data available for
each of the published dataset. These datasets describe the expression of Mtb
genes in: lung of infected C3HeB/FeJ (C3H)(S1.1) (8); alveolar macrophages (AM) of
Frontiers in Immunology | www.frontiersin.org 14
Mtb infected C57BL/6J mice (S1.6) (GEO: GSE132354) (16); human sputa (S1.2,
S1.3, S1.5 and S1.7) (11, 12) (GSE137518); in BAL samples (S1.3) (12) from TB
patients as well as under in vitro conditions (S1.4). If not performed previously, a
quantile normalization was performed on raw data of interest (for data in S1.5).
Within each dataset, genes were ranked from zero to 100, with zero and 100
representing respectively the lowest or undetected (only for the RNA-Seq data)
genes and the most highly expressed gene. The median rank was calculated for
each gene among samples. Table S1.8 reports the top expressed Mtb genes in
common among the human RT-PCR datasets only. Table S1.9 reports the overlap
between the top ranked Mtb genes of the two different experimental models with
the top rankedMtb genes of the in vivo RT-PCR datasets. Table S1.10 lists the 17
Mtb transcripts overlapping with the top ranked genes found in our C3HeB/FeJ
“Kramnik” dataset (8) and a previous published comparative analysis between Mtb
transcriptomes from susceptible (I/StSnEgYCit) and resistant (C57BL/6YCit) mouse
strains (32).
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