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SUMMARY

In traumatic brain injury (TBI), a diversity of brain resident and peripherally derived myeloid cells 

have the potential to worsen damage and/or to assist in healing. We define the heterogeneity 

of microglia and macrophage phenotypes during TBI in wild-type (WT) mice and Ccr2−/− 

mice, which lack macrophage influx following TBI and are resistant to brain damage. We use 

unbiased single-cell RNA sequencing methods to uncover 25 microglia, monocyte/macrophage, 

and dendritic cell subsets in acute TBI and normal brains. We find alterations in transcriptional 

profiles of microglia subsets in Ccr2−/− TBI mice compared to WT TBI mice indicating that 

infiltrating monocytes/macrophages influence microglia activation to promote a type I IFN 

response. Preclinical pharmacological blockade of hCCR2 after injury reduces expression of IFN­

responsive gene, Irf7, and improves outcomes. These data extend our understanding of myeloid 

cell diversity and crosstalk in brain trauma and identify therapeutic targets in myeloid subsets.

Graphical Abstract
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In brief

By single-cell RNA sequencing of traumatically injured and normal brains from wild-type and 

Ccr2−/− mice, Somebang et al. define microglia, macrophage, and dendritic cell phenotypes 

in TBI. Targeting mouse and/or human CCR2 reduces specific TBI brain CNS myeloid 

compartments, dampens type I interferon responses, and improves cognition after TBI.

INTRODUCTION

Traumatic brain injury (TBI) is a significant public health issue in the United States (US). 

In 2014, over 2.8 million TBI-related hospital visits and 50,000 deaths occurred in the 

US (Taylor et al., 2017). TBI often leads to lifelong motor, cognitive, and behavioral 

disabilities (Potts et al., 2006; Elder, 2015). It is also a risk factor for developing other 

neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease (Elder, 2015).

In TBI, the mechanical insult to the brain rapidly elicits a series of potent immune responses 

in the central nervous system (CNS), collectively termed neuroinflammation (Potts et al., 

2006; Corps et al., 2015; Hinson et al., 2015). The responding circulating immune cells 

include monocyte-derived macrophages, which infiltrate the brain and differentiate into 

activated macrophages within and around the area of injury. In addition, resident innate 

immune cells, including microglia, become activated at the injury site (Jassam et al., 2017). 

Although inflammation likely evolved to sterilize wounds and to facilitate repair (Liu et al., 

2016; Russo et al., 2018), inflammation may remain active over years in humans and mice, 
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resulting in secondary injury featuring neurotoxicity and expanding brain damage (Corps et 

al., 2015; Martin and Leibovich, 2005; Loane et al., 2014; Johnson et al., 2013; Ertürk et 

al., 2016). There is no effective pharmacological treatment for TBI, but the prolonged nature 

of secondary injury offers opportunities to intervene. We have sought to understand innate 

immune cells and pathways that are harmful or protective in TBI (Hsieh et al., 2013; Kim 

et al., 2016). Precisely identifying components of neuroinflammation, including immune cell 

subsets and activated pathways that impact TBI, will lead to informed designs for treatment.

Our TBI studies use an established model of controlled cortical impact (CCI) TBI in 

mice, which induces a focal brain injury and recapitulates key features of human TBI, 

including bleeding, blood-brain barrier (BBB) damage, edema, progressive loss of neurons, 

inflammatory leukocyte infiltration into the brain, cytokine upregulation, and functional 

deficits in animal behavior (Xiong et al., 2013; Hsieh et al., 2013, 2014; Jassam et al., 2017). 

We previously demonstrated that mice deficient in C-C chemokine receptor-2 (Ccr2) exhibit 

reduced macrophage infiltration, improved hippocampal-dependent cognitive outcomes, and 

preserved viable hippocampal neurons (Hsieh et al., 2014). Other studies similarly support 

an overall deleterious role for the recruitment of peripheral monocytes to the brain in TBI 

(Semple et al., 2010; Morganti et al., 2015). In humans, CCL2 protein is produced locally 

within hours post-TBI and remains elevated in the CSF for up to 9 days, demonstrating that 

this pathway is steadily active in acute human TBI (Semple et al., 2010).

While these studies demonstrated a role for CCR2 in the damaging effects of 

neuroinflammation following TBI, they left open the possibility that healing monocyte/

macrophages are present but are overwhelmed by inflammatory myeloid cells. We therefore 

sought to define macrophage and microglial subtypes in TBI with the hypothesis that 

beneficial macrophages and/or phenotypes would emerge in the absence of CCR2. While 

a number of studies characterized macrophage and microglia responses following TBI 

in bulk cell population studies, the study of average expression obscures the actions of 

cellular subsets (Mahata et al., 2014; Patel et al., 2014; Shalek et al., 2014; Trapnell, 

2015; Wu et al., 2014; Ricardo-Gonzalez et al., 2018). Recent studies have begun 

to unravel the heterogeneity of brain macrophage and microglia subsets primarily in 

chronic neurodegenerative diseases of Alzheimer’s disease and experimental autoimmune 

encephalitis, development, and aging (Jordão et al., 2019; Keren-Shaul et al., 2017; 

Hammond et al., 2019; Mathys et al., 2017; Sala Frigerio et al., 2019). To complement 

those studies, we identified myeloid cell subtypes in the setting of traumatic brain injury.

We report here the identification of microglia and macrophage subsets that arise following 

acute TBI. We identified alterations of microglia phenotypes that are associated with the 

functional benefit of targeting Ccr2, including a reduction in the type I IFN response. 

Because CCR2 is restricted to circulating immune cells, such as monocytes and dendritic 

cells, and it is not expressed by microglia (Mizutani et al., 2012), the effects of Ccr2 
deficiency on microglia are likely not direct and instead indicate the presence of crosstalk 

between microglia and infiltrating monocytes. Finally, we conducted translational studies to 

pharmacologically target human CCR2 with a small-molecule inhibitor in hCCR2 knockin 

mice. Blockade of hCCR2 2h after TBI blocked the infiltration of macrophages and partially 

blocked loss of cognitive function. This demonstrates the feasibility of treating TBI even 
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after injury and shows that similar findings in mice genetically lacking Ccr2 were not due 

to developmental influences. Our in vivo data corroborate our single-cell RNA sequencing 

(scRNA-seq) data to suggest that reducing the type I IFN response in microglia may also be 

a mechanism of neuroprotection.

RESULTS

Single-cell RNA sequencing identifies cell lineages and subtypes in the acute TBI brain

We previously showed that Ccr2−/− male mice demonstrated improvements in memory and 

histopathology following TBI, compared to wild-type (WT) mice (Hsieh et al., 2014). To 

better understand the mechanisms associated with this improvement, we sought to determine 

the differences in immune responses in acute male TBI between Ccr2−/− mice and WT 

C57BL/6 mice. We analyzed brain samples 4 days post-TBI, a time point that we previously 

demonstrated to have peak infiltration of peripheral monocytes (Hsieh et al., 2014). We 

performed scRNA-seq on 111,717 high-quality cells combined from ipsilateral hemispheres 

of WT TBI mice (n = 3 animals, 1 animal/sample), Ccr2−/− TBI mice (n = 3 animals, 1 

animal/sample), and normal control mice (n = 2–3 animals/group, 1 animal/sample) from 

both genotypes. Sham controls can elicit low localized levels of inflammation and were 

used in our downstream validation experiments. We sorted cells by flow cytometry, gating 

for CD45+ Ly6G− live singlets, which includes microglia and macrophages but excludes 

neutrophils (Figure 1A).

ScRNA-seq was performed, cell doublets were excluded, and data were analyzed from 

microglia and circulating leukocytes from 35,405 individual transcriptomes of WT cells 

after TBI, 28,918 Ccr2−/− cells after TBI, 33,365 WT cells without TBI, and 14,029 Ccr2−/− 

cells without TBI expressing an average of 22,701 genes/sample. Gene expression from 

WT and Ccr2−/− cells were compared and aligned by using canonical correlation analysis 

(CCA) with Seurat (Butler et al., 2018). The high dimensional data were visualized by 

using UMAP (uniform manifold approximation and projection) dimensionality reduction 

technique (Becht et al., 2018) (Figure 1B). An analysis of cell-lineage markers to define 

cell clusters identified a large population of microglia (101,916 microglia), a cluster 

comprising a mix of monocytes/macrophages and dendritic cells, a separate Ccr7hi dendritic 

cell subset (5,157 monocyte/macrophages/dendritic cells), lymphocyte clusters, and “other” 

unclear cell-lineage clusters (Figure 1A). Examples of cell-lineage markers used to define 

clusters include: microglia (Sall1, Tmem119) (Bennett et al., 2016; Buttgereit et al., 

2016), monocyte/macrophages (Ccr2, F13a1) (Hammond et al., 2019), dendritic cells (Flt3, 
Zbtb46) (Merad et al., 2013), B cells (Cd19), T cells (CD3e), NK cells (Ncr1), neutrophils 

(Ly6g), neurons (Slc12a5), astrocytes (Aldh1l1), and oligodendrocytes (Mog) (Figures 1C 

and S1). In normal brains, a large majority of the cells identified were microglia as these 

samples lacked infiltrating leukocytes.

A gross analysis of cell proportions of all cells analyzed per half brain by genotype and by 

injury showed that TBI induced significant increases in the proportion of the macrophage/

dendritic cells cluster (ANOVA p value = 0.007; WT TBI = 6.8% ± 2 [mean ± SD] versus 

WT normal control = 1.9 ± 0.2, adj p value = 0.007) (Figure 1D). Statistical analysis found 
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a significant difference between WT and Ccr2−/− cells in the microglia cluster and in the 

macrophage/dendritic cell cluster (ANOVAs p value = 0.01) (Figure 1D).

Identification of microglia subsets in normal and acute TBI ipsilateral brains that are 
enriched in the type I IFN response, proliferation, disease-associated microglia markers, 
leukocyte migration pathways, and the IL-1 response

Joint graph-based clustering with canonical correlation vectors defined 13 distinct 

subclusters or subsets of microglia that were visualized by UMAP (Figure 2A). Each 

microglia subset was designated by a differentially expressed gene (DEG) with the highest 

fold change that distinguished that subset from all other microglia subclusters. The highest 

expressed DEGs possibly suggest some phenotype to its assigned subset, but we clarify 

that the DEGs were defined based on relative expression to other subclusters and were not 

necessarily exclusively expressed in its subset. The 13 microglia subsets were named as 

follows: (1) Cxcl10hi (C-X-C motif chemokine ligand 10), (2) Cenpfhi (centromere protein 

F), (3) Ccl4hi (chemokine C-C motif ligands 4), (4) Ifi27l2ahi (interferon alpha-inducible 

protein 27-like protein 2A), (5) Spp1hi (secreted phosphoprotein 1), (6) Btg2hi (B cell 

translocation gene 2), (7) Junhi (Jun proto-oncogene, AP-1 transcription factor subunit), (8) 

Hba-a1hi (hemoglobin alpha, adult chain 1), (9) Crybb1hi (crystallin beta B1), (10) Smad7hi 

(SMAD family member 7), (11) Nfkbiahi (NFKB inhibitor alpha), (12) S100a9hi (S100 

calcium binding protein A9), and (13) Ctslhi (cathepsin L) microglia. Gene expression of 

selected DEGs and microglia subclusters in normal mice were compared to those in mice 

following TBI. Shown are UMAPs of Irf7, which is a top 10 DEG of Cxcl10hi and Ifi27l2ahi 

microglia; Ccl4 and Clec7a (Dectin 1), which are top 5 DEGs of Ccl4hi microglia; and Tnf, 
which was the top DEG for Nfkbiahi microglia (Figure 2B). The data demonstrated that 

each DEG highlighted a specific cluster and that the expression of Irf7, Ccl4, and Clec7a 
increased in TBI microglia compared to normal microglia, though there appears to be little 

to no increase in Tnf-expressing microglia (Figure 2B).

A heatmap showing the top 10 DEGs of each subset relative to other microglia demonstrated 

differences between the microglia subsets (Figure S2). We also performed gene ontology 

(GO) analysis of significant DEGs to begin to understand the phenotype of each microglia 

subset (Figures 2C, 2D, and S3A). There were five notable observations from the functional 

pathway analysis of enriched genes. The first is the presence of two microglia subsets, 

Cxcl10hi and Ifi27l2ahi, with significantly enriched expression of genes from the type I 

interferon (IFN) pathway, including a 2- to 3-fold increase in the expression of a type 

I IFN-stimulated gene (ISG) and transcription factor, Irf7 (interferon regulatory factor 

7) (Ivashkiv and Donlin, 2014; Schneider et al., 2014) (Figures S2 and S3A). Although 

these two ISG-expressing microglia subsets share some genes, a direct comparison found 

clear distinctions between them (Figure S3B). The second observation is that the Cenpfhi 

microglia were enriched in cell-cycle genes, including Mki67 (marker of proliferation Ki67) 

(Figures S2 and S3A). A third important observation is that the Ccl4hi microglia subset was 

enriched in several TREM2-dependent disease-associated microglia (DAM) marker genes 

(Keren-Shaul et al., 2017), including Ccl6 (chemokine C-C motif ligand 6), Lpl (lipoprotein 

lipase), Clec7a, Cd9, Cd63, Ctsb (cathepsin B), Ank (progressive ankylosis), Cst7 (cathepsin 

7), and Apoe (apolipoprotein E) (Figures S2 and S3A). Fourth, multiple microglia subsets 
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preferentially expressed genes with functions related to leukocyte migration, particularly for 

monocytes and neutrophils (Figures 2C, 2D, and S3A). And finally, three of the microglia 

subsets, Btg2hi, Junhi, and Nfkbiahi, were enriched in IL-1 response genes (Figures 2D and 

S3A).

TBI expands the proportions of microglia subsets that are responsive to type I IFNs and 
that express proliferation or DAM marker genes

We next determined the effects of TBI on the proportion and gene expression of each 

microglia subset relative to all microglia analyzed (Figure 2B; Figure 2C; Figure S4). Five 

of the 13 WT microglia subsets, Cxcl10hi, Cenpfhi, Ccl4hi, Ifi27l2ahi, and Spp1hi, were 

increased in proportion in WT TBI animals compared to normal controls (Figure 2B). 

Genes elevated following TBI were also evaluated for pathway enrichment analysis (Figure 

S5). Following TBI, proliferating Cenpfhi, Ccl4hi, Spp1hi, Nfkbiahi, and Smad7hi microglia, 

expressed genes indicative of a response to IFN-β and/or IFN-α during TBI (Figure S5). 

TBI induced heterogeneous and distinct responses from microglia subsets.

Ccr2 deficiency alters TBI microglia subset proportions and transcription

To determine the effects of CCR2 deficiency on the proportion of each microglia subset, 

we compared WT TBI microglia to Ccr2−/− TBI microglia from our scRNA-seq dataset. 

Interestingly, Ccr2 deficiency reduced the proportion of Ccl4hi microglia in Ccr2−/− TBI 

mice by 22% compared to WT TBI brains (p = 0.01), while the other microglia were not 

significantly affected (Figure 2C). One microglia subset, Hba-a1hi microglia, was increased 

in Ccr2−/− TBI mice (Figure S4). The predicted functions for this subset by GO analysis, 

however, did not reveal any unique pathways (Figure S3A).

Differential expression analysis between WT TBI and Ccr2−/− TBI microglia subsets 

revealed immune response pathways promoted by Ccr2 in WT TBI mice. Compared to their 

corresponding Ccr2−/− microglia subsets from TBI mice, four microglia subsets from WT 

TBI mice, Cenpfhi, Ifi27l2ahi, Btg2hi, and Junhi microglia, preferentially expressed elevated 

levels of the ISG, Cxcl10 with high statistical significance (adj p values = 3E-14, 4E-118, 

5E-37, 2E-71, respectively) (Figures 2C, 2D, and S4). Other ISGs (Cheon et al., 2014), 

Cxcl9, Ccl3, Ccl5, and Ifi27l2a, were also significantly increased in WT TBI mice microglia 

subsets compared to Ccr2−/− TBI microglia (adj p values = 0.01 to 2E-71) (Figures 2C 

and 2D). Lgals3 (Galectin-3) was increased in Cxcl10hi, Btg2hi, Crybb1hi, Smad7hi, and 

S100a9hi microglia subsets compared to Ccr2−/− TBI microglia (adj p values = 3E-20 

to 7E-111) (Figures 2C, 2D, and S4). Although the increase of gene expression in WT 

TBI mice was mild, ranging from 10%–45%, they were statistically highly significant and 

reproducible. In summary, Ccr2 deficiency reduced the gene expression of ISGs and Lgals3 
in several microglia subsets.

Type I IFN-responding microglia and a proliferating microglia subset localize to the TBI 
lesion site

To validate the identification and localization of at least two microglia subsets at the 

protein level, we performed immunohistochemistry. Histological analysis for expression of 

CXCL10, IBA1, NEUN, and DAPI showed co-expression of CXCL10 and IBA-1 in cells 
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localized in the ipsilateral (side of injury) hippocampus and thalamus (Figures 3A and 3B). 

Quantification showed that ipsilateral TBI tissue had a significant increase in the mean 

number of IBA1+CXCL10+ cells compared to sham brain tissue (mean ± SD; 141 ± 73 

versus 18 ± 15, p value = 0.017) (Figure 3C). No significant increase in CXCL10+ cells was 

observed between contralateral TBI and sham tissue (mean ± SD; 50 ± 36 versus 11 ± 8, p 

value = 0.08) (Figure 3C). These histology data support the findings in scRNA-seq that there 

is a CXCL10+ microglia subset that increases in cell number in the ipsilateral hemisphere of 

the injured CNS.

Immunohistochemistry for the cell-proliferation marker, Ki67, revealed robust expression of 

Ki67 in a subset of IBA1+ cells that resembled ramified, activated microglia localized in 

the thalamus of TBI animals (Figure 3D). Quantification demonstrated a significant increase 

of double-positive Ki67+IBA1+ cells in the ipsilateral thalamus, but not the contralateral or 

sham control thalami (mean ± SD; 49 ± 18 versus 2 ± 1, p value = 0.003) (Figure 3E). 

Thus, acute TBI induces the rise of CXCL10+ and Ki67+ subsets of IBA1-expressing cells 

near the site of brain injury in the thalamus. Histology results bolster the scRNA-seq data 

and demonstrate that there is a proliferating subset of microglia that increases in TBI. These 

data extend the scRNA-seq findings to pinpoint the thalamus as a location in the CNS where 

microglia subsets expand in CCI.

Identification of monocyte/macrophage and dendritic cell subsets in normal and acute 
TBI ipsilateral brains revealed subsets enriched in pathways of response to type I IFN, of 
wound healing, and of leukocyte migration

The cell cluster expressing both monocyte/dendritic cell markers in Figure 1 was 

dissected further. Reclustering analysis with Seurat identified nine monocyte/macrophage 

clusters designated as Rgs1hi (regulator of G protein signaling 1), Arg1hi (arginase 1), 

Chil3hi (chitinase-like 3), Spp1hi (secreted phosphoprotein 1), Tmem176bhi (transmembrane 

protein 176B), Ear2hi (eosinophil-associated, ribonuclease A family, member2), Apoehi 

(apolipoprotein E), Ccl8hi (C-C motif chemokine ligand 8), and S100a9hi (S100 calcium 

binding protein A9) (Figure 4A). In addition to the Ccr7hi dendritic cells identified in Figure 

1, reclustering found two additional dendritic cell clusters designated as Ciitahi (class II 

major histocompatibility complex transactivator), and Cd209ahi (also known as DC-SIGN), 

both of which co-express the dendritic cell markers (Merad et al., 2013), Flt3 (fms related 

receptor tyrosine kinase 3), Itgax (integrin subunit alpha X, CD11c), and Zbtb46 (zinc finger 

and BTB domain containing 46) (Figure 4A). DEGs of each subset were visualized with a 

heatmap (Figure S6).

GO analysis found that Ly6c2 was highly expressed in Chil3hi monocytes (Figure S7), 

suggesting that these might be pro-inflammatory Ly6Chi monocytes. We also found ISG 

expression in two subclusters, Chil3hi monocytes and Cd209ahi dendritic cells, suggesting 

the presence of active type I IFN pathways (Figures 4B and S7). Four of the monocyte/

macrophage subsets, Arg1hi, Rgs1hi, Apoehi, and Ccl8hi, were enriched in wound-healing 

processes (Figures 4B and S7). Interestingly, the Apoehi macrophage subset also expressed 

DEGs similar to DAM (Keren-Shaul et al., 2017) and lipid-associated macrophages 

(LAMs) (Jaitin et al., 2019) and were enriched in pathways for remodeling protein-lipid 
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complexes (Figures 4B and S7). We observed that Ccl8hi macrophages expressed little 

to no Ccr2 but expressed relatively high levels of Mrc1 and Lyve1, suggesting that they 

could represent brain resident CNS-associated macrophages (CAMs) (Jordão et al., 2019). 

Leukocyte chemotaxis pathways were found among Chil3hi, Arg1hi, Rgs1hi, and S100a9hi 
macrophages (Figures 4B and S7). All three dendritic cells clusters, Ciitahi, Cd209ahi, and 

Ccr7hi, were enriched in genes associated with T cell activation (Figure S7). CNS injured 

macrophages and dendritic cell phenotypes were also diverse.

Ccr2 deficiency culls specific monocyte/macrophage subsets normally elevated in the CNS 
by TBI

TBI resulted in the expansion cell proportions of three out of the nine identified monocyte/

macrophage subsets, Arg1hi, Rgs1hi, and Apoehi macrophages (Figure 4C). Notably, Arg1hi, 
Rgs1hi monocyte/macrophages were significantly attenuated in Ccr2−/− TBI mice compared 

to WT TBI mice showing ~50% reduction in mean proportions (adj p values = 0.005 and 

0.01, respectively) (Figure 4C). The individual role and impact of each subset are yet to be 

determined.

Validation of Ly6Chi and Chil3 co-expression on TBI monocyte/macrophages

Ly6c2 was identified as a DEG in Chil3hi macrophages with 2-fold higher expression 

compared to other subsets (Figure S7). This was unexpected, since high expression of Ly6C 

is a classic marker for proinflammatory monocytes (Shi and Pamer, 2011; Swirski and 

Nahrendorf, 2018), while Chil3 is associated with anti-inflammation M(IL-4) (Murray et 

al., 2014; Chawla, 2010; Loke et al., 2002). Further, our data in Figure 4 revealed that 

Chil3hi and Arg1hi were markers of different subsets, which was another unexpected finding 

because Chil3 and Arg1 are signature markers that correlate in M(IL-4) macrophages 

(Murray et al., 2014; Chawla, 2010; Loke et al., 2002).

To follow up on our datasets, we determined whether we could identify Ly6Chi classic 

and Ly6Clo nonclassic macrophages at the protein level in acute TBI in Chil3hi and Arg1hi 

macrophages (Figures 5A and 5B). Four days after TBI, brain leukocytes were isolated 

and flow cytometry was performed. We confirmed that Ly6C RNA and protein expression 

correlated and that Ly6C was highly expressed on 60% of Chil+ TBI macrophages (Figures 

5A and 5B). Conversely, Arg1 was predominantly found in Ly6Clo monocyte/macrophages 

(Figure 5B). We also found that Gpnmb (glycoprotein nmb) served as a robust co-expression 

marker for Arg1 (Figure 5B). The control RNA probe, Dapb, which detects a bacterial 

gene did not bind TBI macrophages (Figure 5A) and did not correlate with Ly6C (Figure 

5B). While there is partial overlap between Chil3 and Arg1 expression (Figures 5B and 

5C), they define distinct Ly6C expressing macrophage subsets (Figures 5B, 5C, and S7). 

Early scRNA-seq from our laboratory on ex vivo TBI macrophages demonstrated a lack 

of correlation between M1/M2 markers in TBI (Kim et al., 2016; Ransohoff, 2016). In 

our current expanded scRNA-seq dataset, we found that high expression of each signature 

M(IL-4) genes, Arg1, Chil3, and Mrc1, defined different subsets (Figure 5C). It is also 

notable that Arg1, Chil3, and Mrc1 were not observed to correlate or serve as a DEG for 

any microglia subcluster (Figure 5C) supporting the insufficiencies of applying an M1/M2 

paradigm to both mouse macrophages and microglia in vivo.
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Targeting hCCR2 pharmacologically after TBI reduces the type I IFN response in vivo and 
improves cognitive function

Morganti et al. previously showed that a small-molecule inhibitor against human CCR2 

(hCCR2) (Sullivan et al., 2013; Chen et al., 2016; Miao et al., 2018), CCX872, improved 

TBI outcomes in WT mice (Morganti et al., 2015) when it is administered prior to 

trauma. We examined the potential clinical use of this inhibitor in TBI by testing the 

hCCR2 inhibitor for efficacy when given 2 hours after trauma. Our studies used hCCR2 
knockin mice, in which human CCR2 replaces the mouse Ccr2 gene (Sullivan et al., 2013). 

Using human receptor transgenic mice was also important because the affinity of the drug 

is 100-fold greater for hCCR2 than its affinity for the mouse receptor. We quantified 

CD45hiCD11b+ macrophages infiltrating the brain 1 day post-TBI in hCCR2 knockin 

mice treated subcutaneously with drug or vehicle (n = 5–10 per TBI group, n = 3 per 

sham group). Representative flow-cytometry data of ipsilateral brain leukocytes showed that 

CCR2 blockade with 30 and 100 mg/kg (mpk) of CCX872 reduced macrophage infiltration 

by 46% ± 13% (mean ± SEM) and by 57% ± 8%, respectively (TBI vehicle versus TBI 

30 mpk *p < 0.05; TBI vehicle versus TBI 100 mpk ***p < 0.001) (Figures 6A and 6B). 

CCX872 treatment significantly reduced the absolute cell numbers of Ly6Chi macrophages 

in the ipsilateral brain by 56% ± 14% (30 mpk) and 71% ± 9% (100 mpk) (ANOVA ****p 

< 0.0001; TBI vehicle and TBI 30 mpk *p < 0.05; TBI vehicle versus TBI 100 mpk **p 

< 0.005) (Figure 6B). Additionally, we observed no differences at this early time point in 

absolute cell numbers of microglia, T cells, and neutrophils with drug treatment (Figure 

S8A).

To determine whether hCCR2 blockade after TBI improved cognitive outcomes, we next 

examined the effect of CCX872 treatment on behavior, as assessed by a cued platform 

version of Morris Water Maze testing at 4 weeks after injury (Hsieh et al., 2014; Patil et 

al., 2009; Vorhees and Williams, 2006; Possin et al., 2016) (Figure 6C). Mice were given 

TBI or sham surgery followed by administration of vehicle or hCCR2 inhibitor at 100 mpk 

beginning 2 h post-injury and then daily thereafter for 5 days (n = 17 per TBI group, 

n = 4–9 per sham group). Mice were assessed for their ability to learn the location of 

an escape platform with a visible cue on top. Mice treated with 100 mpk of the hCCR2 

inhibitor performed better than mice treated with vehicle, both in escape latency (time to 

platform) and total distance from the platform (Figure 6C) (rank summary scores [Possin 

et al., 2016] over both sessions: ANOVA ****p < 0.0001 for both latency and distance; 

TBI vehicle versus TBI 100 mpk *p = 0.033 for latency and *p = 0.023 for distance). 

The swim velocities for all groups were equivalent, ruling out potential confounding factors 

related to swimming ability (Figure 6C). We also examined animal behavior using rotarod 

and open-field testing and found no significant differences between drug and vehicle-treated 

TBI animals (Figure S8B). Thus, acute treatment of mice with CCX872 was sufficient for 

significant recovery of cognitive function at delayed time points.

We next tested whether pharmacologic blockade of CCR2 reduced the type I IFN response 

by using quantitative RT-PCR on injured brain hemispheres 4 days after TBI (n = 9–10 

per TBI group, n = 3–5 per sham group). TBI increased expression of a key ISG, Irf7, by 

an average 3-fold change (sham vehicle, mean relative quantification [RQ] to GAPDH = 
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4.5E−3; TBI vehicle, mean RQ = 1.5E−3; SEM = 1.2E−3; ANOVA **p < 0.001; post hoc 

test *p = 0.023). hCCR2 blockade reduced the increase in Irf7 expression by 52% compared 

to the TBI vehicle-treated group (TBI vehicle RQ = 4.5E−3; TBI 100 mpk drug RQ = 

2.1E−3; SEM = 7E−4; ANOVA **p < 0.001; **p = 0.005) (Figure 6D). In contrast, there was 

no difference observed in the expression of Tnf, which is not an ISG, between drug- and 

vehicle-treated animals (Figure 6D). The reduction in Ly6Chi monocyte cell numbers in the 

TBI brain (Figure 6B) also indicates a reduction in Chil3hi TBI macrophages, which have 

a pronounced type I IFN gene-expression profile (Figure 4B) and thus is likely contributing 

to the reduced IFN response in Ccr2−/− TBI mice. These data support our findings from 

Ccr2−/− mice that CCR2 intensifies the type I IFN response in TBI.

DISCUSSION

Our scRNA-seq of cells from ipsilateral brain tissues post-acute TBI and normal brain 

tissues expands our understanding of myeloid cell diversity in the CNS and in TBI. 

We identify 25 distinct myeloid cell phenotypes. Importantly, we validate the protein 

expression of key microglia markers, CXCL10 and Ki67, in subsets of IBA1+ TBI 

microglia/macrophages in the ipsilateral hippocampus and thalamus by histology and 

quantify their expansion in the lesion area in TBI. This is consistent with previous findings 

of Cxcl10+ clusters being found in TBI (Israelsson et al., 2010). We validate heightened 

protein expression of Ly6C on Chil3hi macrophages. By using ARG1 reporter mice, our 

group previously confirmed at the protein level that ARG1 clearly marked a subset of 

infiltrating F4/80+ monocyte/macrophages in TBI (Hsieh et al., 2013). Further validation of 

additional myeloid subsets with protein readouts and their spatial transcriptomic localization 

and defining their functional roles will be necessary to bring forth the potential vision of 

precisely modulating them for desired outcomes. Further analysis of sex differences across 

myeloid subsets will also be critical.

It is interesting that some myeloid subsets share similar phenotypes, such as the type 

I IFN response for Cxcl10hi and Ifi27l2ahi microglia. Multiple macrophage subsets are 

also enriched in wound healing processes, including Arg1hi, Rgs1hi, Apoehi, and Ccl8hi 

macrophages. Potential functional redundancies and/or distinctions between the subsets, and 

whether or not they represent transient transitional states, remain to be determined.

Importantly, we identify myeloid subsets that expand in TBI relative to their lineage; 

eight of them significantly increase in proportion in TBI: Cxcl10hi microglia, Cenpfhi 

microglia, Ccl4hi microglia, Ifi27l2ahi microglia, Spp1hi microglia, Arg1hi macrophages, 

Rgs1hi macrophages, and Apoehi macrophages. Furthermore, TBI microglia subsets are 

similar based on marker expression to previously identified myeloid subsets, some with 

critically identified functions in vivo. Ccl4hi TBI microglia share markers with disease­

associated microglia (DAM); Cenpfhi TBI microglia are proliferating microglia; Apoehi 

TBI macrophages share markers with DAM and lipid-associated macrophages; Ccl8hi 

TBI macrophages share defining markers with Mrc1+ Lyve1+ resident CNS-associated 

macrophages, thus connecting the biology of TBI with findings in other neurodegenerative 

diseases (Jordão et al., 2019; Li et al., 2019; Jaitin et al., 2019; Hammond et al., 2019; 

Keren-Shaul et al., 2017), and acute injuries (Wahane et al., 2021). Mathys et al. and 
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Frigerio et al. report type I IFN responsive and proliferating microglia in Alzheimer disease 

(Sala Frigerio et al., 2019; Mathys et al., 2017). Hammond et al. found populations of 

microglia in aged mice and in demyelinating injury with increased gene expression identical 

to or similar to those that define the Cxcl10hi and Ccl4hi TBI microglia (Hammond et 

al., 2019). Hammond further showed that Cxcl10+ and Ccl4+ microglia localized to and 

were upregulated in demyelinated lesions (Hammond et al., 2019). Jordao et al. also 

identified disease-associated microglia subsets in experimental autoimmune encephalitis 

(EAE), one of that shares defining features with Ccl4hi TBI microglia (Jordão et al., 2019). 

Injury-associated microglia were identified in the setting of spinal cord injury (Wahane 

et al., 2021). Thus, microglia subset biology in neurodegeneration may be similar across 

neuroinflammatory states and broadly useful.

These data uncover crosstalk between macrophages and microglia, where microglia 

subtypes recruit monocytes to the injured CNS by expression of Ccl2 and Ccl3 and then 

differentiated monocytes/macrophages direct a type I IFN response in microglia subsets. Our 

study identifies circulating CCR2+ cells as a source influencing the type I IFN response 

in microglia. While type I IFN signaling in neurons and astrocytes also affects microglia 

activation (Chhatbar et al., 2018), the relationship between microglia and monocytes were 

not well-defined. Interestingly, a previous study of cell replacement therapy in a model 

of amyotrophic lateral sclerosis (ALS) using a treatment of NOX2-deficient monocytes 

ameliorated microglia activation leading to extended animal survival in ALS (Chiot et al., 

2020). It would be interesting to test whether monocytes deficient in type I IFNs could 

be used to modulate microglia and provide benefit to TBI. Replacing and/or modulating 

circulating monocytes may be easier to manipulate than targeting microglia directly.

We elucidate potential mechanisms of neuroprotection related to targeting CCR2. Our initial 

hypothesis was that the Ccr2-independent macrophages in the brain would express a more 

proreparative phenotype. However, Ccr2 deficiency, besides leading to a robust reduction 

in the migration of circulating monocytes to the injured CNS, did not yield clear or large 

shifts in gene expression in the macrophage/ dendritic cell subclusters. We conclude that one 

mechanism by which the Ccr2−/− mice fare better after TBI is simply the reduced number of 

inflammatory macrophages in the brain. In CCR2-targeted mice, we also observe a reduction 

in Ly6Chi Chil3hi macrophages that were enriched in type I IFN responses, implicating the 

reduction of innate immune pathways that promote type I IFNs as a contributing mechanism 

of neuroprotection. The studies by Karve et al. found that the IFN response in TBI was 

detected in hematopoietic cells, supporting the hypothesis that Ccr2+ macrophages are 

partially responsible for the pathogenic IFN in TBI (Karve et al., 2016). Pathogenic Cxcl10+ 

monocytes have also been reported in EAE (Giladi et al., 2020).

We find additional mechanisms and effects of targeting Ccr2 by examining microglia. 

Microglia in Ccr2−/− TBI mice show evidence of reduced activation compared to WT TBI 

microglia. The absence of CCR2 significantly alter the proportion and gene-expression 

profile of specific microglia subsets. Our study links infiltrating monocytes to the advocation 

of potentially neurotoxic subtypes of microglia. There was the recurring and reproducible 

observation of a moderate reduction in the expression of Cxcl10 and other ISGs in multiple 
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microglia subsets with high statistical significance. Our data show that modulation of 

microglia subset phenotypes can be linked with beneficial outcomes.

The type I IFN response is a critical innate immune pathway and is relevant to human 

TBI. IFNβ was robustly upregulated in human brains 6 hours after TBI (Karve et al., 

2016; Roselli et al., 2018). In mice, a deficiency in or blockade of IFNAR1 improved brain 

pathology after TBI (Karve et al., 2016). The type I IFN response can drive inflammation 

in AD and EAE (Roy et al., 2020; Giladi et al., 2020). Thus, a second potential mechanism 

by which targeting Ccr2 is beneficial may be a consequent dampening of the type I IFN 

response, pointing to this pathway as an additional target for TBI therapy.

The blockade of macrophages may also reduce other harmful pathways in TBI. Microglia 

subsets from Ccr2−/− TBI mice also express less Lgals3, which has been identified as a 

therapeutic target in TBI (Yip et al., 2017). Interestingly, Ccl4hi microglia, the subset sharing 

the most markers with DAM, are blunted in cell proportions in Ccr2−/− TBI mice. Although 

these were protective cells in the setting of AD, it is possible that the benefit associated with 

the dampening of these cells in TBI is due to reduced immune activation and/or reduced 

damage. CCL4 is a ligand for CCR5, a chemokine receptor on macrophages, microglia, and 

T cells, and CCR5 was recently shown to be a promising target to ameliorate TBI and stroke 

suggesting that less of these cells may be beneficial to TBI (Joy et al., 2019). Clec7a is 

also a marker for the Ccl4hi TBI microglia, and it plays critical roles in neuroinflammation 

(Deerhake et al., 2021). Taken together, these pathways and DAM-like microglia may play 

an important role in TBI and further evaluation is required.

Furthermore, our preclinical studies reveal that inhibiting hCCR2 with CCX872 in vivo 
2 h after injury reduces the type I IFN response in the acutely injured brain tissue and 

improves TBI outcomes. Pharmacological blockade of hCCR2 after TBI in hCCR2 knockin 

mice using CCX872 improved performance in cognitive behavioral testing one month 

after injury. CCX872 is in clinical trials for treatment of other human diseases such as 

pancreatic cancer and hepatic steatosis (Flores-Toro et al., 2020) and thus is translationally 

relevant. Importantly, our pharmacological studies to target hCCR2 indicate that benefits and 

changes in inflammation observed in the Ccr2−/− mice (Hsieh et al., 2014) were not due to 

developmental differences in the knockout animals. CCX872 treatment in hCCR2 knock-in 

mice after TBI also significantly reduced expression of Irf7, reinforcing the link between 

a reduced type I IFN response and neuroprotection in vivo. Future studies to extend our 

findings to human TBI would be exciting.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Christine L. Hsieh 

(christine.hsieh@ucsf.edu).

Materials availability—This study did not generate new unique reagents.
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Data and code availability—Single-cell RNA-seq data have been deposited at GEO and 

are publicly available as of the date of publication. The accession number is listed in the key 

resources table. Microscopy data reported in this paper will be shared by the lead contact 

upon request.

All original code has been deposited at Zenodo and is publicly available as of the date of 

publication. The DOI is listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—All mice were housed in a controlled environment (12h light/12h dark cycle, 

~20°C). WT C57BL/6 male (RRID:IMSR_JAX:000664) cage mate mice (aged 12-16 

weeks) were received from Jackson Laboratories (Sacramento, CA) and served as controls. 

Ccr2 knockout mice (Boring et al., 1998) were backcrossed onto a C57BL/6 background 

for nine generations and were from Jackson Laboratories (Bar Harbor, ME). Human Ccr2 
knock-in mice were a generous gift from Israel Charo, Tim Sullivan, and James Campbell 

at ChemoCentryx (Mountain View, CA). CCR2 transgenic mouse breeding colonies were 

established and maintained at the San Francisco VA Medical Center. To reduce variability, 

male mice were used for this initial study. Mouse experiments were performed according to 

the rules and guidelines established by the Institutional Animal Care and Use Committee at 

the San Francisco VA Medical Center.

METHOD DETAILS

Controlled cortical impact surgery and drug treatment—Controlled cortical impact 

(CCI) or sham surgery was performed as approved by the VA Animal Care Committee. 

Animals were anesthetized with 3% isoflurane with oxygen and were administered 

bupivacaine (4 mg/kg) subcutaneously. A midline incision across the scalp was made, and 

a craniectomy was performed over the right parietal cortex. The target for the impact of 

coordinates was 1.5 mm right lateral and 2.3 mm posterior from the Bregma point. No 

animals used in this study showed excessive bleeding or indication of breaching the dura 

during the craniectomy. For TBI animals, a circular, flat-tipped piston induced an injury at 

3 m/s, 150 ms duration, with a depth of 1.5 mm (Amscien Instruments, Richmond VA, with 

extensive modifications by H&R Machine, Capay, CA). After the bleeding was stopped, the 

skin was stapled closed together. Sham-injured mice received surgical procedures without 

piston impact. All mice received buprenex (0.05 mg/kg up to two times/day for 24h) or 

sustained release buprenorphine (1 mg/kg) post-operation and 2 mL of saline s.c. to prevent 

dehydration.

For a subset of experiments, an antagonistic hCCR2 small molecule inhibitor (30 or 100 

mg/kg) or vehicle (1% hypomethylcellulose) was administered subcutaneously beginning at 

2h post-surgery (day 0), and then 1x/day daily thereafter through day 5 or until sacrifice, 

whichever occurred earlier. Drugs and vehicle were provided by ChemoCentryx (Mountain 

View, CA).
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Brain leukocyte isolation, flow cytometry, and cell sorting—Four days after TBI, 

animals were euthanized and perfused through the heart with ice-cold GKN buffer (8 g/L 

NaCl, 0.4 g/L KCl, 1.41 g/L Na2HPO4, 0.6 g/L NaH2PO4, and 2 g/L D(+) glucose, pH 

7.4)(Hsieh et al., 2013, Hsieh et al., 2014, Kim et al., 2016). Ipsilateral brain hemispheres 

were harvested and the olfactory bulbs removed. Tissues were minced and washed in cold 

GKN buffer. Tissue chunks were resuspended in 2.5 mL of digestion buffer (NOSE buffer (4 

g/L MgCl2, 2.55 g/L CaCl2, 3.73 g/L KCl, 8.95 g/L NaCl, pH 6-7) with 200 U/ml DNase 

I (Sigma-Aldrich) and 0.2 mg/mL Collagenase I (Worthington Biochemical) and incubated 

at 37C in a dry incubator for 1h with shaking every 15 min. All samples were placed on 

ice to halt enzymatic activity. Tissues were crushed through a 100 micron nylon filter cup 

(BD Biosciences) and the cell suspension was washed with GKN buffer. An isotonic Percoll 

solution (90% Percoll (GE Biosciences), 10% 1.5M NaCl) was made and brought to room 

temperature. Cells were resuspended in 20 mL of a 1.03 g/mL isotonic Percoll solution in 

GKN buffer and underlayed with 10 mL of a 1.095 g/L isotonic Percoll solution in PBS. 

Cells were spun at ~850 g at room temperature for 20 min. Buffy layers were isolated.

Cells were blocked with 10% rat serum for 10 min on ice and then stained with 

the following antibodies: anti-CD45 PE-Cy5.5 (Clone 30-F11, Invitrogen), anti-Ly6G PE­

eFluor610 (Clone 1A8, Invitrogen), anti-CD11b PE (Clone M1/70, BD Biosciences), anti­

Ly6C PE-Cy7 (Clone AL-21, BD Biosciences), and anti-CD3 FITC (Clone 17A2, BD 

Biosciences). DAPI (Invitrogen) was used at 1 uM to gate out dead cells. Cells were 

sorted on a FACS AriaIIu (BD Biosciences) at the San Francisco VA Medical Center Flow 

Cytometry Core Facility.

Intracellular RNA flow cytometry was performed using PrimeFlow RNA reagents 

(Affymetrix)(Kim et al., 2016). Fixable viability dye eFluor506 was used to exclude dead 

cells. Cell surface markers were stained using antibodies against CD45 (Clone 30-F11), 

CD11b (Clone M1/70), Ly6G (Clone 1A8), and Ly6C (Clone AL-21). RNA probes for 

Arg1, Chil3, and Gpnmb were used. A DapB RNA probe, a probe for RNA of a bacterial 

gene, served as a negative control. Cell staining was analyzed on a FACS AriaIIu at the San 

Francisco VA Health Care System Flow Cytometry Core Facility. Data was analyzed using 

FlowJoX software (Treestar).

Single cell RNA sequencing—Eleven individual mice were used for scRNA-seq (3 WT 

TBI ipsilateral hemispheres, 3 Ccr2−/− TBI ipsilateral hemispheres, 3 WT normal brains, 

and 2 Ccr2−/− normal brains). Dissected ipsilateral hemispheres were individually sorted 

for CD45+ Ly6G− live singlets using a FACSAriaIIu at the San Francisco VA Health Care 

System Flow Cytometry Core Facility. Single cell RNA seq was performed at the Genomics 

Core Facility at the Institute for Human Genetics (University of California, San Francisco) 

using the 10X Genomics platform with gel emulsion bead technology. Chromium Single 

Cell 3′ Reagent Kits v3 was used according to manufacturer protocols and each sample was 

run on separate lanes. Libraries were sequenced on a NovaSeq6000 at the UCSF Center for 

Advanced Technologies with an average of 2967 average UMI per cell.

Relative quantitative PCR—Perfused brain tissues were stored in RNA later at −20C. 

RNA was isolated using TRIzol reagent (Invitrogen) and a Kinematica homogenizer 
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(Polytron PT 10-35 GT). Reverse transcription was performed with the iScript cDNA 

Synthesis Kit (Bio-Rad) using a Mastercycler EP Gradient S (Eppendorf). Quantitative 

PCR was run using TaqMan reagents. Primer sequences used were: Irf7-Mm00516793_g1, 

Tnf- Mm00443258_m1, and Gapdh- Mm99999915_g1 (FAM-MGB, ThermoFisher) as an 

endogenous control. PCR amplification was performed on QuantStudio 7 Flex (Applied 

Biosystems) at the San Francisco VA Health Care System Molecular Biology Core Facility.

Fluorescent Immunohistochemistry—Anesthetized mice were perfused with ice 

cold saline followed by 4% paraformaldehyde. Brains were post-fixed overnight in 4% 

paraformaldehyde and then immersed in 15% sucrose for 6h followed by 30% sucrose for 

6h. Brains were embedded in Tissue-Tek optimal cutting temperature (OCT) compound 

(Sakura Finetech, Torrance, CA), frozen on dry ice and stored at −80°C. Brains were 

cut coronally into 40um thick free-floating sections into PBS. Sections were blocked for 

1h with 10% donkey serum in TBS containing 3% BSA and 0.4% Triton X-100 and 

incubated with primary antibodies overnight. Primary antibodies were against Iba-1 (rabbit 

polyclonal; Wako, Richmond, VA), Cxcl10 (goat IgG, R&D Systems, Minneapolis, MN) 

and NeuN (clone A60, Millipore, Burlington, MA). The following secondary antibodies 

were used: Donkey anti-goat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 

488; Donkey anti-rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa 

Fluor 568; Donkey anti-mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, 

Alexa Fluor 647 (Thermo Fisher Scientific, Waltham, MA) for 2h at room temperature. 

DAPI (1:2000, Sigma-Aldrich, St Louis, MO) was used to identify nuclei before mounting 

with Fluoromount-G (Thermo Fisher Scientific, Waltham, MA). Images were acquired with 

a confocal laser scanning microscope (Zeiss LSM510 meta). Pictures were analyzed with 

Zeiss Zen microscope software. 3 animals/group were analyzed.

Chromogenic Immunohistochemistry—Formalin-fixed mouse brains were sectioned 

coronally through the middle of the visualized CCI lesion. The rest of the brain was 

sectioned into 2mm thick coronal sections as a 6-piece coronal trim. Pieces were placed 

rostrally face down, emanating from the mid-lesional section. These coronal sections 

were processed into FFPE blocks. Blocks were sectioned at 5μm on a DNS AS-400 

Autosectioner. H&E and immunoperoxidase stains were performed (Iba1-Ki67) on Ventana 

Ultra IHC machines.

Stained slides were scanned at 20x using a Panoramic P250 slide scanner. Images were 

analyzed using Visiopharm software and custom image analysis algorithms. Ki67 and Iba1 

were analyzed with a morphology algorithm to detect percent area of total immunoreactivity 

and morphology parameters based on detected positivity. Data were compared among CCI 

and sham groups using 2-factor ANOVAs.

Behavior studies—The cued platform version of the Morris Water Maze(Liu et al., 2007, 

Raber et al., 2004, Suh et al., 2005, Hong et al., 2007, Hsieh et al., 2014) was performed 

starting at 4 weeks post-TBI at the San Francisco VA Animal Behavior Core Facility. A 

swimming pool (Maze Engineers) filled with opaque water was monitored using video 

tracking software, Ethovision XT13 (Noldus), to analyze animals’ swim paths. A platform 

with a cue on top was placed in opaque water. Animals were trained to locate the platform 
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with three trials per session for two sessions in one day. The maximum time per trial was 60 

s. If an animal had not located the platform after 60 s, a handler blinded to the animal group 

would guide the animal to the platform.

The open field test(Hong et al., 2007, Raber et al., 2004, Suh et al., 2005, Hsieh et al., 

2014) assessed animals’ spontaneous locomotor activity and baseline anxiety starting at 3 

weeks post-TBI. Animals were placed in a novel environment inside a plexiglass enclosure 

(40 × 40 inches) surrounded by automated infrared photocells connected to a computer 

with KinderScientific software (Hamilton & Kinder) to record data. Beam breaks generated 

by movement were observed, allowing measurements of spontaneous locomotor activity. 

The amount of time spent in the center of the open field arena was used as an indicator 

of baseline anxiety. Decreased time spent in the center zone was used as an indicator of 

anxiety-like behavior. Animals were tested for 10 min/day for two days.

Rotarod (Hong et al., 2007, Hsieh et al., 2014, Liu et al., 2007, Raber et al., 2004, Suh et 

al., 2005) (TSE Systems) was used to assess motor balance and coordination in mice three 

weeks after TBI. Mice were placed on a rotating rod that accelerated to 40 rpm over 300 s. 

The length of time the mouse could stay on the rod before falling off was recorded. Animals 

were assessed five trials/day for two days.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis—Statistical analysis of flow cytometry data was performed using 

Prism 7.0 & 8.0 (Graphpad). A one way ANOVA was used to determine statistical 

significance among groups, followed by a Kruskal-Wallis test and Dunn’s multiple 

comparisons test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

Relative quantification PCR data was analyzed using Prism 7.0 software (Graphpad). PCR 

datasets per gene of interest were analyzed using ordinary one-way ANOVA and Tukey’s 

multiple comparisons test, with a single pooled variance.

Sample sizes can be found in figure legends, and p values can be found in the Results 

section and/or indicated in the figures.

Single-cell RNA sequencing analysis—STAR Solo v2.7.2b was used to align reads 

to the mouse genome (mm10) and aggregate UMI counts per gene per cell. STAR Solo 

count matrix outputs were then imported into Seurat and samples were combined following 

v3 integration methodology. Samples were aligned using 30 dimensions during integration 

and used for downstream analysis, including clustering and visualization with UMAP. 

After using the join graph-based clustering at a variety of resolutions, we settled on 

20 total groups. Marker genes for each cluster were determined using Seurat’s (version 

3.1.1) ‘FindMarkers’ function with the parameters logfc.threshold = 0.25, min.pct = 0.25, 

only.pos = T. Cell type identities were determined from cell lineage genes (increasing 

CC vectors and higher resolutions for clustering lead to cumbersome results, due to an 

extremely high number of clusters emerging before this group of cells would cluster 

independently). Each cluster was assigned to a cell type and subtype, and differential 

expression testing between wild-type and Ccr2−/− was done with FindMarkers function 
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utilizing the Wilcox rank-sum test (parameters logfc.threshold = 0.1, min.pct = 0.1, 

only.pos = F) inside each cell type and subtype. Wilcox rank-sum test p values were 

then corrected for multiple testing using the Bonferroni correction method based on 

the number genes tested. Cell type, cell subtype, and WT versus Ccr2−/− heatmaps 

were generated from top 10 (or fewer if there were not 10) differentially expressed 

gene lists using Complex Heatmap. R package 3.6.1 was used for bioinformatics 

analyses. Other attached R packages used were: limma_3.40.6, scatterpie_0.1.4, 

Formula_1.2-3, data.table_1.12.6, Seurat_3.1.1, scales_1.0.0, ggrepel_0.8.1, Matrix_1.2-17, 

reshape2_1.4.3, cowplot_1.0.0, RColorBrewer_1.1-2, viridis_0.5.1, viridisLite_0.3.0, 

dplyr_0.8.3, ggplot2_3.2.1, future_1.14.0 (https://cran.r-project.org/).

Statistical analysis found significant differences in cell numbers in microglia and in 

the macrophage/dendritic cell clusters by using two-way ANOVAs followed by Tukey’s 

multiple comparisons tests using Prism 8.0.

Fluorescent immunohistochemistry analysis—Fluorescent images were captured 

using a Leica SP5 laser scanning confocal microscope at the UCSF Biological Imaging 

Development CoLab. Quantification of IBA1+CXCL10+ microglia/macrophages was 

performed using the Zeiss LSM510META confocal microscope and Zen microscope 

software. Three animals/group were analyzed. Unpaired t tests with Holm-Sidak correction 

were performed post hoc.

Chromogenic immunohistochemistry—This protocol was performed on the Ventana 

Discovery ULTRA with heat induced antigen retrieval in Cell Conditioner 1 buffer (Tris­

based EDTA). The Ki67 antibody was diluted 1:50, and the Iba1 antibody was diluted 

1:4000 (0.125 ug/ml working concentration). Slides were analyzed for staining with anti­

Ki67 and anti-IBA1 antibodies using Visiopharm software. Ki67 and IBA1 staining were 

analyzed with a morphology algorithm to detect percent area of total immunoreactivity and 

morphology parameters based on detected positivity. Data was compared among TBI and 

sham groups utilizing two-way ANOVAs to assess for statistical significance, followed by an 

unpaired t test with Benjamini, Krieger, Yekutieli correction.

Behavior studies statistical analysis—For Morris Water Maze, TBI groups (n = 17/

group) and sham groups (n = 4-9) were analyzed. Rank summary scores(Possin et al., 2016) 

followed by a one way analysis of variance (ANOVA) (Prism 7.0, Graphpad) were used for 

evaluation of statistical significance.

We analyzed open field and rotor rod performance in TBI (n = 17-18/group) and sham (n 

= 7-9/group) groups. Two-way ANOVAs were used to assess statistical significance on each 

day of the open field test, followed by Tukey’s multiple comparisons test.

The animals’ average per day was used for quantitation of the rotor rod. Two-way ANOVAs 

were used to assess statistical significance at each time point, followed by Tukey’s multiple 

comparisons test.
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Highlights

• TBI elevates distinct phenotypes of microglia, macrophages, and dendritic 

cells

• Ccr2 deficiency alters cell proportions and reduces ISG expression in 

microglia

• TBI induces crosstalk between microglia and circulating monocytes

• Preclinical translational studies to target human CCR2 after TBI improves 

outcomes

Somebang et al. Page 24

Cell Rep. Author manuscript; available in PMC 2021 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Defining cell lineages of clusters from scRNA-seq of white cells from ipsilateral acute 
TBI and normal brain tissues from Ccr2−/− and WT mice
(A) Representative flow-cytometry gates of LIVE CD45+Ly6G− cells sorted from ipsilateral 

brain hemispheres from WT TBI mice (4 days post-injury, n = 3 animals, 1 animal/sample), 

Ccr2−/− TBI mice (n = 3 animals, 1 animal/sample) and normal control mice (n = 2-3 

animals/group, 1 animal/sample).

(B) UMAP visualization of identified cell lineages of 111,717 cells from all animal groups 

combined.

(C) Dot plot of cell-lineage marker expression that was used to help define clusters for 

microglia (Sall1), monocyte/macrophages (Ccr2), dendritic cells (Flt3), B cells (Cd19), T 

cells (CD3e), NK cells (Ncr1), neutrophils (Ly6g), neurons (Slc12a5), astrocytes (Aldh1l1), 

and oligodendrocytes (Mog).

(D) Cell proportions of microglia and circulating leukocytes per brain hemisphere by 

genotype and by injury show that TBI induced increases in macrophages/dendritic cells. 
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Ccr2 deficiency robustly reduced the macrophage/dendritic cells in the ipsilateral brain 

tissue post-TBI.
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Figure 2. Quantification and gene-expression analysis of microglia subsets reveal subsets 
upregulated in TBI and pathways associated with Ccr2
(A) ScRNA-seq and clustering analysis of all microglia (102,997 microglia analyzed) from 

all samples (n = 11 individual animals: n = 3 per TBI animal group; n = 2–3 per control 

animal group) separated the microglia into 13 distinct subsets as visualized by a UMAP.

(B) Gene-expression plots of selected top DEGs. Irf7 was a DEG of Cxcl10hi and Ifi27l2ahi 

microglia subsets, Ccl4 and Clec7a were DEGS of Ccl4hi microglia, Tnf was the top DEG 

for Nfkbiahi microglia. Irf7-, Ccl4-, and Clec7a-expressing microglia were present in normal 

brain tissue and expanded in TBI.
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(C) Quantification of microglia subsets that significantly increased in proportion relative 

to all microglia analyzed during acute TBI compared to normal brains (n = 3/TBI group, 

n = 2–3/control group). The proportions of Ccl4hi microglia were decreased in Ccr2−/− 

TBI mice compared to WT TBI (p = 0.01). Proportions (top; mean ± SD) and pathway 

enrichment analysis (middle) for each microglia subset that increase in TBI are shown. 

Differential expression analysis between WT TBI and Ccr2−/− TBI microglia subsets are 

shown (bottom). Many ISGs were consistently and significantly upregulated in WT TBI 

microglia subsets and are highlighted in salmon color (p = 2E-8 to 4E-118).

(D) Analysis of a few microglia subsets that did not alter proportions relative to all microglia 

during TBI. Gene ontology (GO) analysis of DEGs of these subsets showed that they shared 

a response to IL-1. Some of these microglia showed transcriptional differences between 

WT and Ccr2−/− mice. Differential expression analysis between WT TBI and Ccr2−/− TBI 

microglia subsets revealed increased ISG expression in WT TBI Btg2hi and Junhi microglia 

(right).
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Figure 3. Histological validation and quantification of microglia subsets at the injury site
(A) Four days after TBI or sham surgery, immunohistochemistry was performed on brain 

tissue sections with costaining for CXCL10 (green), IBA1 (red), NEUN (blue), and DAPI 

(white). The hippocampus and thalamic regions were analyzed. Scale bars indicate 20 μm.

(B) CXCL10 and IBA1 co-localized in cells in the ipsilateral hippocampus and thalamus in 

magnified insets.

(C) Quantification of IBA1+ CXCL10+ microglia/macrophages per square mm revealed a 

significant increase in cell numbers in the ipsilateral TBI hemisphere compared to sham 

animals (p = 0.017) (n = 4 TBI; n = 4 sham).

(D) Immunohistochemistry on brain tissue post-TBI for the cell-proliferation marker, Ki67 

(brown), and IBA-1 (purple). Scale bar indicates 200 μm for far-left and far-right images.
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(E) Quantification of Ki67 and IBA1 expressing cells demonstrated elevated proliferative 

(p = 0.003) and non-proliferative (p = 0.0004) microglia/macrophages in the ipsilateral TBI 

hemisphere compared to sham controls (n = 3 TBI; n = 4 sham).
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Figure 4. Monocyte/macrophage and dendritic cell subcluster analysis
(A) UMAP visualization of nine monocyte/macrophage subclusters and two dendritic cell 

subclusters in addition to the Ccr7hi dendritic cell cluster from all animal groups (n = 11 

individual animal samples: n = 3 per TBI animal group; n = 2–3 per control animal group. 

The total number of monocyte/dendritc cells analyzed were 4,076).

(B) GO analysis of five selected monocyte/macrophage and dendritic cell subclusters 

showed that macrophage/dendritic cells are enriched in type I IFN response genes and 

wound-healing genes.
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(C and D) Quantification of proportions of monocyte/macrophage subsets (C) and 

proportions (D) of dendritic cell subsets (mean ± SD) in TBI as a percentage of all 

monocyte/macrophages/dendritic cells analyzed.
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Figure 5. Validation of Ly6Chi protein co-expression with Chil3 in TBI macrophage subsets by 
flow cytometry
(A) Flow-cytometry gating strategy for TBI day 4 ipsilateral brain white cells that are LIVE, 

CD45hiCD11b+, and Ly6G. Cells were further gated for their binding to RNA probes for 

Chil3, Arg1, Gpnmb, and a control RNA probe for Dapb (data are representative of three 

independent experiments).

(B) Histogram analysis for Ly6C surface expression on gated TBI macrophages showed 

that Ly6C was preferentially highly expressed in 60% of Chil3+ TBI macrophages 

by flow cytometry. Arg1 expression was distinct from Chil3 expression as Arg1 was 

predominantly found in Ly6Clo cells. Gpnmb served as a co-expression marker for Arg1. 

FMO, fluorescence minus one.

(C) UMAP visualization of all cells as in Figure 1B and their expression of signature 

M(IL-4) genes, Arg1, Chil3, and Mrc1.
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Figure 6. Targeting hCCR2 pharmacologically after TBI in hCCR2 knockin mice led to reduced 
macrophage infiltration into the brain, improved cognitive memory, and reduced expression of a 
key ISG, Irf7
(A) hCCR2 knockin mice were administered CCX872 at 30 mg/kg (mpk), 100 mpk, or 

vehicle beginning 2 h post-surgery. Flow-cytometry analysis of microglia and macrophages 

proportions in the brain 1 day after surgery are shown. Ly6G− viable cells are shown. Data 

represent at least three independent experiments.

(B) Absolute macrophage numbers in ipsilateral hemispheres 4 days post-TBI or sham 

surgery were quantified by flow cytometry (n = 8–10 per TBI group; n = 3 per sham group) 

(*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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(C) A cued platform version of the Morris water maze was performed beginning 4 weeks 

post-surgery (n = 17 per TBI group; n = 4–9 per sham group). Data are shown with statistics 

reflecting rank summary score analysis.

(D) Relative gene-expression analysis of ipsilateral brain hemispheres 4 days post-TBI or 

sham surgery was performed in triplicate with biological replicates (n = 9–10 per TBI group; 

n = 3–5 per sham group). Two independent experiments were performed.
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KEY RESOURCES TABLE

Reagent or resource Source Identifier

Antibodies

Mouse monoclonal anti-CD45 PE Invitrogen Cat# 12-0451-82; RRID:AB_465668; Clone 30­
F11

Mouse monoclonal anti-Ly6G PE-eFluor610 Invitrogen Cat# 61-9668-82; RRID:AB_2574679; Clone 1A8

Mouse monoclonal anti-CD45 PE-Cy5.5 Invitrogen Cat# 35-0451-82; RRID:AB_469718; Clone 30­
F11

Mouse monoclonal anti-CD11b PE BD Biosciences Cat# 557397; RRID:AB_396680; Clone M1/70

Mouse monoclonal anti-Ly6C PE-Cy7 BD Biosciences Cat# 560593; RRID:AB_1727557; Clone Al-21

Mouse monoclonal anti-CD3 FITC BD Biosciences Cat# 561798; RRID:AB_10898341; Clone 17A2

Rabbit polyclonal anti-Iba-1 Wako Cat# 019-19741; RRID:AB_839504

Goat IgG anti-Cxcl10 R&D Systems Cat# AF-466-NA; RRID:AB_2292487

Mouse monoclonal anti-NeuN Millipore Cat# MAB377; RRID:AB_2298772; Clone A60

Donkey anti-goat IgG (H+L) Cross-Adsorbed 
Secondary Antibody, Alexa Fluor 488

ThermoFisher Cat# A-11055, RRID:AB_2534102

Donkey anti-mouse IgG (H+L) Highly Cross­
Adsorbed Secondary Antibody, Alexa Fluor 647

ThermoFisher Cat# A-31571, RRID:AB_162542

Donkey anti-rabbit IgG (H+L) Highly Cross­
Adsorbed Secondary Antibody, Alexa Fluor 568

ThermoFisher Cat# A10042, RRID:AB_2534017

RNA probe: Mouse Arg1 Type 1 Affymetrix Ref# VB1-17389

RNA probe: Mouse Gpnmb Type 1 Affymetrix Ref# VB1-17176

RNA probe: Mouse Dapb Type 1 Affymetrix Ref# VF1-11712

RNA probe: Mouse Chil3 Type 1 Affymetrix Ref# VB1-17412

Rabbit anti-mouse/human/rat Iba1 pAb Wako Cat# 019-19741; RRID:AB_839504

Rabbit anti-Ki67 monoclonal antibody ThermoScientific Cat# RM-9106-S; RRID:AB_149707

Chemicals, peptides, and recombinant proteins

Human CCR2 small molecule inhibitor, CCX872 ChemoCentryx N/A

1% hypomethylcellulose (vehicle) ChemoCentryx N/A

Critical commercial assays

PrimeFlow RNA Assay Affymetrix Cat# 19361

Chromium Single Cell 3′ Reagent Kits v2 10x Genomics Cat# PN-120237

TruSeq Stranded mRNA Library Prep Illumina Cat# 20020595

iScript cDNA Synthesis Kit Bio-Rad Cat# 1708891

Deposited data

Single Cell RNA Sequencing Data https://www.ncbi.nlm.nih.gov/geo/ GEO: GSE175430

Original code https://zenodo.org/record/5178424 https://doi.org/10.5281/zenodo.5178424

Experimental models: Organisms/strains

C57BL6/J Jackson Laboratories RRID:IMSR_JAX:000664

Ccr2−/− mice Jackson Laboratories N/A

Human Ccr2 knock-in mice ChemoCentryx N/A

Oligonucleotides

Cxcl10 TaqMan Assay (FAM-MGB) ThermoFisher Cat # 4331182; Assay ID: Mm00445235_m1
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Reagent or resource Source Identifier

Irf7 TaqMan Assay (FAM-MGB) ThermoFisher Cat # 4331182; Assay ID: Mm00516793_g1

Tnf Taqman Assay (FAM-MGB) ThermoFisher Cat # 4331182; Assay ID: Mm00443258_m1

Gapdh TaqMan Assay (FAM-MGB) ThermoFisher Cat # 4331182; Assay ID: Mm99999915_g1

Software and algorithms

FlowJo v10 BD RRID:SCR_008520; https://www.flowjo.com/
solutions/flowjo

Cellranger 10x Genomics https://support.10xgenomics.com/single-cell-gene­
expression/software/pipelines/latest/using/count

STARsolo Alex Dobin, dobin@cshl.edu https://github.com/alexdobin/STAR/blob/master/
docs/STARsolo.md

https://groups.google.com/g/ma­
star

R 3.6.1 https://cran.r-project.org/

Seurat 3.1.1 RRID:SCR_007322; http://seurat.r-forge.r­
project.org/

Prism 7.0 and 8.0 GraphPad RRID:SCR_002798; https://
www.graphpad.com:443/

Ethovision XT 13 Noldus RRID:SCR_000441

Motor Monitor Kinder Scientific N/A
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