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SUMMARY

Primary σ70 factors are key conserved bacterial regulatory proteins that interact with regulatory 

DNA to control gene expression. It is, however, poorly understood whether σ70 sequence diversity 

in different bacteria reflects functional differences. Here, we employ comparative and functional 

genomics to explore the sequence and function relationship of primary σ70. Using multiplex 

automated genome engineering and deep sequencing (MAGE-seq), we generate a saturation 

mutagenesis library and high-resolution fitness map of E. coli σ70 in domains 2–4. Mapping 

natural σ70 sequence diversity to the E. coli σ70 fitness landscape reveals significant predicted 

fitness deficits across σ70 orthologs. Interestingly, these predicted deficits are larger than observed 

fitness changes for 15 σ70 orthologs introduced into E. coli. Finally, we use a multiplexed 

transcriptional reporter assay and RNA sequencing (RNA-seq) to explore functional differences of 

several σ70 orthologs. This work provides an in-depth analysis of σ70 sequence and function to 

improve efforts to understand the evolution and engineering potential of this global regulator.

In brief

Through comparative and functional genomics, Park and Wang dissect the sequence and function 

relationship of the bacterial σ70 factor. MAGE-seq generates a saturation mutagenesis library and 

a high-resolution fitness map of E. coli σ70. Replacement of endogenous E.coli σ70 with natural 

orthologs elicits transcriptional changes.
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Graphical Abstract

INTRODUCTION

Bacterial gene expression is coordinated through interactions between cis-regulatory DNA 

sequences and trans-regulatory proteins to facilitate cell growth, adaptation, and response 

to external stimuli (Browning and Busby, 2016; Phillips et al., 2019). During transcription, 

regulatory proteins recognize sequence motifs in the 5′ regulatory regions (e.g., promoters) 

upstream of protein-encoding genes to control their expression. A key class of regulatory 

proteins in bacteria is the sigma factors that control many essential functions in the cell. 

To coordinate gene expression, sigma factors interact with an RNA polymerase (RNAP) 

core enzyme (consisting of α2ββ′ω subunits) to form the RNAP holoenzyme and directs 

the complex to promoter regions by recognizing specific regulatory signatures (Feklístov 

et al., 2014; Paget and Helmann, 2003). There, sigma factors unwind the DNA duplex 

and facilitate transcription initiation. Sigma factors are classified into either σ70 or σ54 

protein families. The σ70 protein family contains primary (group 1) and alternative (group 

2–4) sigma factors and recognizes the −10/−35 promoter motifs. The σ54 protein family 

has a different recognition domain that recognizes the −12/−24 promoter motifs and is 

functionally, structurally, and evolutionarily distinct from σ70 (Merrick, 1993). In most 

bacteria, the primary σ70 protein is known as rpoD or sigA and controls the expression 

of the largest fraction of genes in the cell. The remaining alternative σ70 factors regulate 

more targeted cellular functions such as flagellar proteins or responses to environmental 
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stressors (Feklístov et al., 2014; Paget and Helmann, 2003). In E. coli, the primary σ70 factor 

accounts for 60%–95% of all sigma factors present in the cell during exponential growth 

and binds to >50% of all sigma factor binding sites across the genome (Gama-Castro et al., 

2016; Grigorova et al., 2006; Ishihama, 2000).

The primary σ70 factor encodes four conserved protein domains (Feklístov et al., 2014; 

Paget and Helmann, 2003). Domain 1 plays an inhibitory role, preventing free σ70 proteins 

from binding to DNA while not in complex with the rest of the RNAP subunits. Domain 

2 recognizes the −10 promoter motif and facilitates unwinding of the DNA duplex for 

transcription initiation, while domain 3 interacts with the extended −10 promoter motif. 

Domain 4 mediates recognition of the −35 promoter motif. Since primary σ70 is highly 

conserved across bacteria, promoter motifs similar to the canonical E.coli σ70 motif have 

been reported from diverse bacterial species (Bottacini et al., 2017; Domínguez-Cuevas 

and Marqués, 2004; Jeong et al., 2016; Moran et al., 1982; Rosinski-Chupin et al., 2015; 

Sharma et al., 2010). However, σ70-associated regulatory sequences can be quite diverse 

even within a single genome such that any single sequence motif will not necessarily predict 

transcriptional output (Urtecho et al., 2019).

Changes to primary σ70 factors have been shown to alter the cellular transcriptome. 

Mutants of the E. coli σ70 generated through laboratory evolution exhibited genome-wide 

transcriptional changes that yielded novel cellular phenotypes such as improved tolerance 

to environmental stresses (Alper and Stephanopoulos, 2007). Furthermore, many point 

mutations in σ70 domain 2 or 4 have been generated and characterized in the past several 

decades (Gardella et al., 1989; Siegele et al., 1989; Waldburger et al., 1990). These studies 

highlighted that single mutations in functional domains alone were sufficient to elicit 

altered gene expression patterns from various model regulatory sequences. Furthermore, 

heterologous expression of a σ70 ortholog in E. coli also resulted in recognition of non-

native regulatory DNA, highlighting the flexibility of many σ70 factor orthologs to interact 

with RNAP to recognize non-native transcriptional signatures (Gaida et al., 2015; Tomko 

and Dunlop, 2017). While these results suggest that σ70 can be evolved or engineered to 

tune transcription in a variety of ways, the impact of specific σ70 mutations on the global 

transcriptome is still not fully understood.

Here, we performed systematic computational and high-throughput experimental studies to 

profile the sequence-function relationship of σ70 and its impact on host gene expression 

and fitness. Using comparative genomics, we first explored the evolutionary diversity of σ70 

across the tree of life to understand the functional conservation of key residues and domains 

of this global regulator. We then employed deep mutational scanning to systematically 

dissect the impact of individual residue mutations on σ70 function in E. coli to build out 

the most comprehensive experimentally generated fitness landscape of a bacterial σ70 to 

date. Variants from these fitness measurements could be mapped to natural σ70 orthologs 

to assess functional selection during σ70 evolution. Replacement of the endogenous E. 
coli σ70 with natural orthologs revealed large-scale transcriptome rewiring that could be 

further probed using a multiplexed transcriptional reporter assay to dissect determinants of 

transcription. These results offer a high-resolution map of the evolutionary landscape of a 

bacterial primary σ70 factor and its transcriptomic function during evolution.
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RESULTS

Evolutionary diversity of σ70 across bacteria

We first sought to systematically profile bacterial σ70 diversity by mining group 1 σ70 

orthologs of E. coli RpoD from the KEGG ortholog database (Kanehisa et al., 2016; 

see STAR Methods), which yielded ~4,700 sequence variants from mostly Proteobacteria 

(~42.6%), Firmicutes (~15%), Actinobacteria (~15%), and Bacteroidetes (~8%). A 

phylogenetic tree based on multiple sequence alignment (MSA) of these σ70 orthologs 

closely recapitulated the phylum- and class-level organizations of their respective genomes 

of origin (Figure S1A). In addition, the phylogenetic distances between E. coli RpoD and 

σ70 orthologs correlated well with the 16S divergence of E. coli to their corresponding 

bacteria, as expected for a conserved protein that has also been used as a phylogenetic 

marker (Gruber and Bryant, 1997; Figure S1B). At the residue level, the highest amino 

acid conservation (as measured by Jensen-Shannon divergence; Capra and Singh, 2007) 

was observed in RpoD throughout domains 2–4, but not in domain 1, with the exception 

of domain 1.2 (Figure 1A). These evolutionary conservation patterns reflect key functional 

regions of RpoD, with domain 2 (residues 379–449) binding to the −10 promoter motif 

and unwinding the DNA duplex, domain 3 (residues 458–535) interacting with the extended 

−10 motif, and domain 4 (residues 547–600) binding to the −35 motif (Feklístov et al., 

2014; Paget and Helmann, 2003). Next, we used the E. coli RpoD, one of the most 

extensively studied primary σ70 orthologs (others being SigA from Thermus aquaticus; 

Feklistov and Darst, 2011; Murakami and Darst, 2003; and Mycobacterium tuberculosis; 

Manganelli et al., 2004; Rodrigue et al., 2006) as a “reference sequence” to study σ70 

sequence diversity, in part also because of the possibility to experimentally alter E. coli 
RpoD by genome engineering. Each of the four σ70 domains in diverse RpoD orthologs 

had varying amounts of residue differences (i.e., substitutions) from E. coli RpoD (Figure 

1B). Domains 2 and 4 had the lowest fraction of residue differences, which reflected strong 

evolutionary conservation in these domains. Furthermore, the degree of residue differences 

in each domain was well correlated with the 16S phylogenetic distances of σ70 orthologs to 

E. coli as well as the full-length σ70 phylogenetic distances to E. coli σ70 (Figures S2A and 

S2B). Given the functional importance and high evolutionary conservation of domains 2–4, 

we limited our subsequent analyses and studies to these domains (matching to amino acid 

positions 379–613 of E. coli RpoD) and used a subset of 2,833 unique RpoD variants.

The distribution of residue differences in domain 2 of σ70 orthologs exhibited three distinct 

peaks centered on zero, ~15, or ~33 substitutions, which suggests three major branches of 

sequence variants. Comparatively, a more uniform distribution of substitutions was observed 

in domains 3 and 4, with peaks near the median residue difference counts, corresponding 

to ~35 and ~20 substitutions, respectively. Next, we sought to further analyze domain-level 

diversity with a more unbiased analysis method that does not depend on a starting reference 

sequence variant. By clustering domain sequences by similarity, we observed that in domain 

2 majority of orthologs (1,575 out of 2,833) could be captured by four major sequence 

clusters mapping to Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes (Figure 

1C). As expected, domains 3 and 4, on the other hand, required additional sequence clusters 

to capture diversity of similar number of orthologs as domain 2. These analyses suggest that 
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molecular evolution in domains 3 and 4 produced a more continuous spectrum of sequence 

variations than that in domain 2. Lastly, the number of unique amino acids observed at each 

residue position across domains 2–4 also showed that domain 2 residues had access to fewer 

unique amino acids compared to residues in domains 3 or 4 (Figure S2C).

To better understand inter-domain σ70 evolution, we performed pairwise comparisons of 

the substitution ratios between domains (Figure 1D). Substitution ratios were calculated by 

dividing substitution counts in each domain by the length of its specific σ70 domain; this 

normalization allowed us to compare the degree of substitution between domains. Higher 

substitution ratios were observed in domain 3 than in domain 4, and higher ratios were 

observed in domain 4 than in domain 2. This observation suggests that, compared to E. 
coli RpoD as reference, phylogenetically closest orthologs have only domain 3 diversity, 

more distant orthologs have greater domain 3 and 4 diversity, and the most phylogenetically 

distant orthologs exhibit diversity in all three domains. As functionally important residues 

are more likely to have fewer viable substitutions available, the observed domain diversity 

pattern may reflect functional ordering of σ70 domains, with domain 2 being more important 

than domain 4 and domain 4 being more important than domain 3. Lastly, to map 

and compare domain divergence against phylogenetic diversity, we compared substitution 

ratios of each domain stratified by phyla (Figure S3A) and found that domain-specific 

relationships between substitution ratios and phyla were largely similar among all three 

domains. These results highlight important domain-specific patterns of sequence diversity 

reflecting evolutionary diversification of σ70.

Next, we explored whether various genomic signatures could help explain the observed 

patterns of σ70 diversity. While genomic GC content has a strong influence on gene 

expression (Johns et al., 2018), we did not observe any relationship between GC content 

and RpoD residue substitution patterns (Figure S3B). We then analyzed the cis-regulatory 

regions (i.e., upstream of start codons), which are bound by σ70 during transcription 

initiation, to determine if sequence motifs identified in the cis-regions correlated with σ70 

diversity. Sequences upstream of putative σ70-regulated genes in diverse bacteria were used 

to predict σ70-associated regulatory sequence motifs using BioProspector (Liu et al., 2001; 

see STAR Methods). Hierarchical clustering of the motif score correlations showed that 

as expected, many bacteria used similar canonical −10 and −35 σ70 motifs, while some 

had more divergent motifs (Figure S3C). Interestingly, we observed a weak but significant 

inverse relationship between degree of similarity to the E. coli −10/−35 motif and degree 

of divergence from E. coli RpoD (Figure S3D). At the domain level, domain 4 showed the 

strongest relationship between RpoD conservation and motif similarity, suggesting that this 

domain co-evolved with the regulatory DNA more than the other domains. Together, our 

results so far provide insights into global σ70 evolution from a comparative genomics lens 

that could be further contextualized with systematic experimental data to reveal relationships 

between σ70 sequence and function.

Systematic dissection of the E. coli σ70 fitness landscape

To better understand the functional differences between σ70 variants, we sought to 

systematically profile its sequence-function relationship by high-throughput mutagenesis 
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and phenotypic measurements. Because σ70 initiates a majority of cellular transcripts during 

exponential growth, cellular fitness is significantly affected by any σ70 mutations that alter 

its function as a global transcription factor. To systematically interrogate the impact of σ70 

mutations on cellular fitness and gene expression, we used the E. coli RpoD as a model 

and targeted the single-copy rpoD gene in the E. coli genome for saturation mutagenesis. 

We previously showed that high-efficiency oligo-recombineering enables direct genomic 

mutagenesis and fitness measurements of essential genes in a pooled format (Kelsic et 

al., 2016). Accordingly, we used MAGE-seq (multiplex automated genome engineering 

and deep sequencing; Wang et al., 2009) to generate a comprehensive mutagenesis library 

of RpoD along domains 2–4, the most functionally interesting regions (Figures S4A and 

S4B). 236 MAGE oligos were designed to each target a single-residue position tiled across 

domains 2–4 (residues 379–613 and stop codon) of RpoD with degenerate NNN sequences 

to create all 64 codon variants (see STAR Methods). This oligo library yielded a total of 

~15,000 nucleotide variants or ~4,700 amino acid variants. After six rounds of MAGE 

in E. coli using this oligo library, the rpoD gene was amplified from the mutagenized 

cell population by PCR and analyzed by deep sequencing, which showed that ~18% of 

the population carried single-codon rpoD mutations (Figure S4C). After correcting for 

sequencing errors (STAR Methods; Figure S4D), 14,576 out of 14,868 total possible variants 

could be detected in the population, representing a >98% coverage of the mutational 

sequence space.

To determine the fitness of individual rpoD variants, we performed pooled growth 

competition on the mutagenized population over time. Competition experiments were 

carried out in a turbidostat with at least 108 cells under exponential growth to prevent 

population bottlenecks and maintain a constant growth selection pressure. The cell 

population was sampled at regular intervals, and rpoD variant frequencies were assessed by 

deep sequencing. The relative fitness of each mutant was determined by fitting the relative 

change in variant frequency over time to a log-linear regression compared to wild-type 

(WT) rpoD (Figure S4B). A fitness of 1 meant that a mutant had an equivalent growth rate 

as WT RpoD, while a fitness of 0 represented no measurable growth and subsequent loss 

from the population at the turbidostat dilution rate. These growth measurements yielded 

a near-comprehensive fitness landscape of all single-codon variants of RpoD (Figures 2A, 

S5A, and S5B).

The RpoD fitness map showed both expected and novel features of the protein. As 

anticipated, premature stop codons had a low mean fitness of 0.23, with a standard deviation 

of 0.25 (Figure S5C). The non-zero fitness of premature stop codons could be attributed 

to experimental noise at low-growth regimes and residual RpoD proteins that may have 

contributed to some background growth. Interestingly, premature stop codons were tolerated 

in the last three residues, suggesting that RpoD could support C-terminal truncations of 

the last three residues without any negative functional impact. On the other hand, sense 

mutation of the WT rpoD stop codon showed reduced fitness, suggesting that a C-terminal 

translational run-on is not well tolerated (i.e., the next in frame downstream stop codon is 49 

residues away). As expected, synonymous mutations showed little fitness impact, while non-

synonymous mutations had a wide range of fitness effects (Figure S5D). Notably, proline 

substitutions, which increase conformational rigidity and often significantly change protein 
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secondary structure, exhibited low fitness throughout RpoD. Using principal-component 

(PC) analysis, we further assessed the global biochemical determinants of RpoD and found 

that the first four PCs could explain ~85% of the variance in the fitness data (Figure S6). 

These PCs matched key amino acid biochemical properties including free energy (PC1), 

hydrophobicity (PC2), steric hinderance or size (PC3), and helices (PC4).

To better assess the RpoD fitness landscape, we analyzed its distribution of fitness effects 

(DFEs) (Figure 2B). The RpoD DFE is bimodally distributed, with a narrow fitness peak 

centered near 1 (i.e., neutral mutations) and a wide fitness peak centered at ~0.25 (i.e., 

detrimental mutations) (Figure S5B). From other systematic mutagenesis studies (Firnberg 

et al., 2014; Jacquier et al., 2013; Kelsic et al., 2016; Konaté et al., 2019; Sarkisyan et 

al., 2016; de Visser and Krug, 2014), bimodal DFEs are commonly observed in fitness 

landscapes of many proteins that are essential for cellular function, confer antibiotic 

resistance, or produce fluorescence. Using a fitness threshold of 0.95 (i.e., 3 standard 

deviations below the mean fitness of synonymous mutations) to separate between neutral 

(≥0.95) and deleterious (< 0.95) mutations, we find that 52.9% of RpoD mutants were 

deleterious. In comparison, 48% and 38% of mutations in essential proteins IF1 and DHFR, 

respectively, were deleterious based on similar MAGE-seq fitness measurements (Kelsic et 

al., 2016; Konaté et al., 2019). At the domain level, 70.9% of domain 3 mutations were 

near neutral (≥0.95) compared to 22.4% and 36.6% for domain 2 and domain 4, respectively 

(Figure 2B). Therefore, the mutational paths that do not yield significant negative fitness 

effects are notably more restricted in domains 2 and 4 than in domain 3.

The mutational fitness patterns of E. coli RpoD also matched natural RpoD evolution. 

Generally, neutral residues are not evolutionarily conserved, while functionally important 

residues are highly conserved. As expected, plotting the mean fitness of all amino acid 

substitutions against the evolutionary conservation for each residue position revealed an 

inverse correlation (Figure 2C). To determine the relationship between mean fitness of 

substitutions and conservation between RpoD domains, we compared the linear regression 

slopes of non-neutral (mean fitness < 0.95) residues in each domain. Upon further 

stratification by domain, we observed that the slopes between fitness and conservation were 

different between domains. Domain 3 had the flattest slope (−0.65 ± 0.22) followed by 

domain 2 (−1.26 ± 0.45) and then domain 4, which had the steepest slope (−2.12 ± 0.34). 

These slopes suggest that fitness impacts differed between domains for residues with similar 

degrees of conservation. As such, different selective forces may be driving the evolution of 

each RpoD domain separately.

We next sought to better contextualize the RpoD fitness landscape at a residue position level 

resolution by leveraging the wealth of structure-function literature available for primary 

σ70. First, to facilitate straightforward comparisons between literature-derived functional 

residues and fitness landscape derived functional residues, we applied hierarchical clustering 

to the fitness landscape, yielding three discrete types of residue positions, with 37 positions 

(15% of the protein) being highly deleterious (almost all substitutions exhibit fitness 

costs), 76 positions (33%) being variably deleterious (some amino acid substitutions exhibit 

fitness costs while others are neutral), and 118 positions (51%) being near neutral (most 

substitutions are neutral) (Figure S7A). From the literature, a set of 63 residue positions 
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that been reported to be important for RpoD function was compiled (Bae et al., 2015; 

Campbell et al., 2002; Feklistov and Darst, 2011; Feng et al., 2016; Fenton et al., 2000; 

Hook-Barnard and Hinton, 2007; Panaghie et al., 2000; Zhang et al., 2012; Figure S7B). 

One of the core RpoD function is −10 motif recognition, which is mediated through residues 

in domain 2. Specifically, the stretch of residues between positions 383 and 389, which is 

known to mediate interactions with the −7 position of the −10 motif, and positions 414–429, 

which are reported to mediate interactions with the −12 and −11 position, were regions 

associated with high fitness defects. DNA duplex unwinding at the −10 motif is mediated 

through the two tryptophan residues at 433 and 434; mutagenesis of residue 433 yielded 

highly deleterious phenotypes (no variants with mutations at position 434 were recovered). 

Furthermore, the extended −10 motif, is another cis-regulatory motif that can regulate 

transcription, especially for promoters that lack a −35 motif (Paget and Helmann, 2003). 

This interaction is mediated by residues 455H and 458E, both of which were associated 

with highly deleterious phenotypes, highlighting that the extended −10 motif interaction 

is a critically important function of RpoD in E. coli. In domain 4, which recognizes and 

binds to the −35 motif, the fitness landscape confirmed the previously known functional 

importance of arginine rich regions 583–589, all of which displayed highly deleterious 

fitness costs (Figure S7C). Additionally, RpoD also interacts with the core RNAP through 

various residues across all three domains, including 384L, 387V, and most residues between 

402 and 413 in domain 2; 504P and 506S in domain 3; and 563F, 565I, and 598L in domain 

4. Almost all of these residues, which included many branched chain amino acids, had 

highly or variably deleterious phenotypes, illustrating that these RNAP interaction residues 

are functionally important at a single-residue level. Overall, of the 63 residues compiled 

from the literature, we confirmed fitness defects for all residues except for 7; of these 7 

residues, 1 was related to core binding (487M) (Campbell et al., 2002), 2 were related to 

DNA duplex binding (401F and 446Q) (Fenton et al., 2000; Zhang et al., 2012), and 4 

were related to −3 and −4 non-template strand binding residues (514D, 516D, 517S, and 

522F) (Zhang et al., 2012). While these residues still may be associated with proper RpoD 

function, we did not observe any fitness effects associated with disruption of these positions 

through single-residue mutagenesis. Together, these data highlight that specific residues the 

DNA-binding structural elements as well as core RNAP binding are major determinants of 

sigma factor impact on cellular fitness (Figures 2D and S7D).

Importantly, the fitness landscape also identified residues with fitness effects that were 

not compiled in our literature search. Domain 2 residues 408G, 411G, 415A, 431A, 450I, 

and 453P and domain 4 residues 576V, 577G, 582V, 590I, and 591E all exhibited highly 

deleterious phenotypes. For domain 2 residues, we suggest potential associated functions 

based on nearby annotated residues, including 408G, 411G, and 415A for core RNAP-

binding-related functions; 431A for proper −10 motif DNA melting; and 450I and 453P 

for proper extended −10 promoter motif interaction. Domain 4 residues were all located 

within the helix-turn-helix motif mediating the −35 motif recognition. Furthermore, of the 

76 variably deleterious residue positions identified through MAGE-seq, only 28 residue 

positions had been known to be functional, meaning 48 novel functional residue positions 

were potentially discovered. Together, our RpoD fitness landscape map paints a rich residue-

level picture of protein function and evolutionary diversity.
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Predicting fitness landscapes of σ70 orthologs

Given that the primary σ70 factor has rich sequence diversity across bacterial genomes yet 

has highly conserved essential functions, we explored ways to functionally map diverse σ70 

orthologs at the sequence level. We assumed that within a genome, the native σ70 protein 

has evolved to a near-optimal sequence. Thus, we wondered whether the protein fitness 

landscapes of different σ70 orthologs (as measured by global cellular fitness) were similar 

and if we could use the E. coli RpoD saturation mutagenesis data to assess the fitness impact 

of sequence variations in different orthologs. We first took the subset of 2,833 unique σ70 

orthologs from the ~4,700 sequence set and identified residue differences compared to the 

E. coli RpoD sequence. A total of 236,101 residue differences (i.e., variants) were found, 

with an average of ~83 residue variants per ortholog. We then mapped each ortholog residue 

variant to the E. coli RpoD fitness values generated from the saturation mutagenesis data 

to assess fitness of observed natural residue variants. In general, the majority of variants 

exhibited a fitness values of ≥0.95 across domains 2–4 (Figure 3A), suggesting that mostly 

residues with near-neutral fitness impact were observed in σ70 orthologs. Interestingly, 

~21% of residue variants had lower fitness values (<0.95) compared to 53% of all possible 

variants. At the individual-domain level, domain 4 (33%) had more residues with lower 

fitness than domain 2 (30.4%) and domain 3 (14%) compared to all possible domain 

variants (63%, 78%, and 29%, respectively) (Figure S8A). This result implies that domain 

4 acquired seemingly deleterious mutations more frequently than expected, as compared to 

domains 2 and 3. Furthermore, we find that evolutionarily distant orthologs (measured in 

16S divergence) tended to accumulate more deleterious mutations (Figure 3B).

To assess how observed residue variants behave together in an ortholog, we explored 

a simple “additive” fitness model. We calculated the expected aggregate fitness of each 

ortholog by integrating the fitness values of individual residue variants together, under the 

assumptions that residues do not interact and that each residue’s function is independent 

of one another. In this simple model, the expected aggregate fitness is the product of 

fitness values of all observed residues in each ortholog (Figure S8B). For example, the 

expected aggregate fitness of an ortholog with four observed residue variants, each with a 

fitness value of 0.99, 1.01, 0.90, and 0.80, would be 0.72 (0.99 × 1.01 × 0.90 × 0.80). We 

calculated the expected aggregate fitness for the 2,833 σ70 orthologs and plotted these values 

against their sequence diversity as measured by the number of residue differences with 

E. coli RpoD (Figure 3C). Interestingly, orthologs with fewer than 20 residue differences 

had near-neutral expected aggregate fitness values (≥0.95). Orthologs with more diversity 

(>20 residue differences) had lower expected aggregate fitness values, ranging down to 

0.01 for the most distant orthologs (>100 residue differences or less than ~57% sequence 

identity to E. coli). These results suggest that neutral mutations are more often observed 

in phylogenetically similar organisms, while more distant organisms can contain seemingly 

deleterious mutations. To contextualize this pattern to a naive model, we generated synthetic 

orthologs of varying degrees of sequence diversity to E. coli RpoD with random residue 

differences and calculated their aggregate fitness (Figure 3C). As expected, the aggregate 

fitness of natural orthologs was much higher than that of synthetic orthologs across all 

sequence diversity distances.
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We also calculated domain-level aggregate fitness and found distinct domain-specific 

patterns. Particularly, the aggregate fitness for domain 4 reached a lower value relatively 

faster than domain 2, suggesting that more seemingly deleterious mutations are acquired 

faster (Figure S8B). This result was somewhat surprising given that overall, domain 2 

mutations in general had lower individual fitness values than domain 4 mutations. Upon 

plotting the domain-level aggregate fitness against sequence diversity across the entire 

ortholog (i.e., domains 2–4), we found that domain 2, and to some extent domain 4, 

contained residue variants that impacted aggregate fitness in more distant orthologs (Figure 

3D). Even though many orthologs had low calculated aggregate fitness, we expected all σ70 

orthologs to be optimally fit for their respective natural genetic backgrounds (e.g., fitness 

of 1). Therefore, we can consider a “fitness deficit” metric for each ortholog compared 

to E. coli RpoD through a simple transformation of (1 – expected aggregate fitness). This 

fitness deficit can arise from differences in the fitness landscapes between the ortholog and 

the E. coli RpoD due to compensatory or epistatic mutations. We speculate that neutral 

mutations may alter the fitness landscape to facilitate otherwise detrimental mutations that 

incur prohibitive fitness costs. In turn these results suggest that domain 3 residue variants, 

which are observed more frequently in closely related organisms to E. coli, may explain the 

fixation of seemingly detrimental mutations observed in more distant orthologs.

Functional characterization of σ70 orthologs in E. coli

In previous studies, σ70 orthologs heterologously expressed on a plasmid led to changes in 

host gene expression, showing that orthologs could interact with non-native transcriptional 

machinery (Gaida et al., 2015; Tomko and Dunlop, 2017). To more rigorously measure the 

degree of functional conservation of σ70 orthologs in a non-native host, we replaced the 

endogenous E. coli RpoD with different RpoD sequences from other bacteria and measured 

growth and transcriptional changes in the resulting strains. For σ70 orthologs with high 

functional conservation to E. coli σ70, we expected minimal growth and transcriptional 

changes. On the other hand, differences in growth rate and transcriptional responses would 

reflect differences in σ70 function. We used recombineering and CRISPR selection to 

replace the chromosomal E. coli RpoD with orthologs from diverse bacteria (see STAR 

Methods). E. coli mutants (EcJP1–15), each carrying one of 15 orthologs with 3- to 

96-residue differences from E. coli RpoD, were successfully generated (Table 1). These 

orthologs represented a diverse panel of σ70 sequences mostly belonging to Proteobacteria 

(six Gammaproteobacteria, four Alphaprotepbacteria, three Betaproteobacteria, and one 

Deltaproteobacteria) and one Actinobacteria (Figure S9A) and contained residue differences 

of varying fitness impacts (Figure 4A).

To measure the global fitness impact of each ortholog on E. coli growth, we pooled all 

strains with the WT E. coli and grew them in a turbidostat. Sampling from the population 

over time and amplicon sequencing the rpoD region yielded relative fitness measurements 

of each σ70 ortholog, which showed high correlation across two independent competition 

assays, and also matched growth rates derived from individual growth assays (Figure S9B). 

We compared the measured fitness with the expected aggregate fitness derived from the 

saturation mutagenesis data and found a good positive correlation (Figures 4B and S9C). 

We noted that the measured fitness values were generally higher than the expected aggregate 
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fitness values, which implied that residue differences in orthologs had positive synergistic 

effects on fitness. Importantly, this fitness differential (i.e., fitness difference between 

expected aggregate fitness and measured fitness) positively correlated with the number of 

residue differences (Figure 4C). Furthermore, we analyzed the evolutionary coupling scores 

for all pairs of residue positions in rpoD in an attempt to identify strongly coupled residue 

positions that might explain the differences between measured and predicted fitness. While 

we observed that the sum of evolutionary coupling scores of orthologs correlated with 

fitness differentials as expected, no individual residue pairs made significant contributions 

to the coupling score sum, suggesting that it was the cumulative effects of weakly coupled 

residue pairs that yielded the observed fitness differentials (Figure S9D). These results 

demonstrate that distant orthologs can function in a non-native host and that synergistically 

beneficial interactions between residues likely buffer against otherwise deleterious mutations 

as sequences diverge over time.

To further probe the effects of σ70 orthologs on cellular fitness, we performed detailed 

gene expression profiling on two strains (EcJP9 and EcJP14) that contained a σ70 ortholog 

derived from either Myxococcus xanthus (Mx σ70) or Oligella urethralis (Ou σ70). While 

these orthologs had a similar number of residue differences from E. coli σ70 (51 for Mx 

σ70 and 50 for Ou σ70), their measured fitness differentials were quite different. Mx σ70 

exhibited a low measured fitness (~0.49), similar to its expected aggregate fitness (~0.48). 

In contrast, Ou σ70 exhibited a high measured fitness (~0.95), while its expected aggregate 

fitness was much lower (~0.71). We therefore performed RNA sequencing (RNA-seq) of 

the Mx σ70 and Ou σ70 strains to profile their transcriptional changes compared to WT E. 
coli (Ec σ70) across biological replicates. Interestingly, compared to Ec σ70, the number of 

differentially expressed genes (DEGs) for Ou σ70 was fewer than the number of DEGs for 

Mx σ70 (Figures 4D and S10A), in line with what might be expected from the measured 

fitness data. Accordingly, the transcriptome of Ou σ70 was also more similar to Ec σ70 than 

that of Mx σ70 (Figure S10B).

In general, about three times more DEGs were observed in Mx σ70 than in Ou σ70, but 

there was not a big difference in the direction of gene expression change (approximately 

half were upregulated and half were downregulated) (Figures 4D and S10C). Among the 

~300 essential E. coli genes (Baba et al., 2006), both Mx σ70 and Ou σ70 upregulated a 

similar number of essential genes (8 for Mx and 5 for Ou), while Mx σ70 downregulated 

33 essential genes compared to just 2 in Ou σ70 (Figure 4E). The larger number of 

downregulated essential genes in Mx σ70 likely contributed to the significant fitness 

decrease observed in the strain. While it might have been expected that the transcriptional 

differences in Mx σ70 and Ou σ70 could be due to differences in their respective optimal σ70 

binding motif, we could not identify any significant motif differences from the regulatory 

regions of their DEGs. Together, these results highlight the complex functional and fitness 

constraints that shape σ70 evolution in bacteria.

Transcriptional activation potential of σ70 orthologs

To more deeply profile the global transcriptional changes due to different σ70 factors in 

E. coli, we utilized a multiplexed reporter assay to characterize the activity of a library of 
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diverse regulatory sequences in strains EcJP9 (Ou σ70), EcJP14 (Mx σ70), and EcNR2 (Ec 

σ70). Measurement of non-native regulatory sequences in E. coli that possess alternative 

σ70 orthologs allowed us to directly determine differences in σ70 specificity or function 

independent of the endogenous regulatory network. We thus mined for 5′ intergenic 

sequences that are >100 bp in the E. coli, M. xanthus, and O. urethralis genomes to yield 

a library of ~6,000 regulatory sequences (Figure S11A; see STAR Methods). This library 

was synthesized as a pool of barcoded oligonucleotides, cloned into a reporter vector, and 

transformed into strains EcJP9, EcJP14, and EcNR2, which possessed different σ70 factors 

(Figure S11B). We next performed targeted DNA sequencing (DNA-seq) and RNA-seq to 

yield relative abundance measurements of DNA and RNA levels that were then used to 

compute a relative transcription activity (Tx value) for each regulatory sequence. Tx values 

were normalized to qPCR-derived expression levels of an invariant control gene, infC, which 

enabled comparisons of Tx activity between different E. coli strains (i.e., TxO, TxM, and 

TxE). These Tx measurements showed high correlation between replicates (both biological 

and barcode replicates) (Figure S11C) and with qPCR-based expression measurements 

(Figure S11D) and spanned over three orders of magnitude.

Comparing σ70 orthologs, we observed that the median TxM was lower than the median 

TxE or median TxO (Figure 5A), suggesting that Mx σ70 had lower transcriptional output 

overall, which is in agreement with its observed reduced fitness (~0.49). Interestingly in all 

orthologs, regulatory sequences derived from the Ou genome had the highest expression, 

followed by Ec- and Mx-derived sequences. Given the genomic GC content of Ou, Ec, 

and Mx (46%, 50%, and 69%, respectively), our observed Tx trends are in agreement 

with previous studies that found that lower GC regulatory sequences yield higher gene 

expression (Chen et al., 2007; Johns et al., 2018; Figure S12B). To understand how the 

σ70 orthologs’ Tx activity changed compared to WT E. coli, we normalized TxO values 

for each regulatory sequence with their corresponding TxE values (TxO/E) and similarly for 

TxM with TxE (TxM/E) and further sub-grouped these values by the genomic source of the 

regulatory sequences (i.e., TxO/E
O, TxO/E

E, TxO/E
M, etc.). We observed that TxO/E

M was 

notably higher than TxO/E
O, and TxO/E

E (Kolmogorov-Smirnov [KS] test, p < 10−104 and 

p < 10−168, respectively) (Figure 5B), indicating that Mx sequences had a higher activity 

with Ou σ70 than Ec σ70. We also observed small but statistically significant differences 

in the distributions of TxM/E
O, TxM/E

E, TxM/E
M (KS test: TxM/E

M and TxM/E
E, p < 10−22; 

TxM/E
M and TxM/E

O, p < 10−22; TxM/E
O and TxM/E

E, p < 0.0164), indicating not only that 

GC content inversely affected expression within each σ70 orthologs as previously known, but 

also that the magnitude of GC content effect seemed to vary by σ70 ortholog.

To better understand the differences in the relationships between GC content of regulatory 

sequences and the resulting gene expression patterns from different σ70s, we performed a 

linear regression to identify correlations between GC content and Tx values between σ70 

orthologs. The slope of the Mx σ70 regression indicated the strongest inverse relationship 

between GC content and Tx levels, while the Ou σ70 slope showed the weakest relationship 

(t test, p < 0.05 for all pairwise slope comparisons) (Figure 5C). This result suggested 

that the same degree of decrease in regulatory sequence GC content generally yielded a 

larger transcriptional increase in Mx σ70 compared to Ec σ70 or Ou σ70. Interestingly, this 

relationship also correlated with genomic GC content, implying that the gene expression 
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patterns from higher GC genomes may be more sensitive to GC content in the regulatory 

region. We speculated that this GC-dependent sensitivity may be due to the fact that the 

canonical σ70 motif is rich in A/T bases. In a GC-rich genome, simply having higher AT 

content in intergenic regions may be sufficient to facilitate recognition and binding. In 

contrast, AT-rich genomes may require a more stringent sequence similarity to the optimal 

σ70 motif for recognition and binding by σ70 factors, as there is an abundance of A/T 

bases throughout. Therefore, in GC-rich genomes, σ70 binding sites should have more A/T 

bases than the background GC distribution of intergenic regions and a higher variance in 

GC content in the intergenic regions than in AT-rich genomes. Indeed, when we mined 5′ 
upstream intergenic regions of coding sequences from ~1,300 bacterial genomes (see STAR 

Methods) and compared the GC content against the GC variance, we observed significantly 

higher variance in GC content for GC-rich genomes (Figure S12C). Together, these results 

suggest that higher GC variance in intergenic regions may be a consequence of σ70 evolution 

that is influenced by genomic GC content of the organism.

DISCUSSION

Here, we explored the evolutionary sequence diversity of the primary σ70 and its fitness 

landscape in E. coli and compared its functional capacity with σ70 orthologs. While there 

is generally high evolutionary conservation of σ70, domain-level differences suggested 

different evolutionary forces driving diversification of this global regulator. Using MAGE-

seq, we generated a saturation mutagenesis library that tiled across domains 2–4 of 

the E. coli σ70 and characterized the resulting fitness landscape. By contextualizing 

evolutionary sequence divergence with the E. coli σ70 fitness landscape, we found that 

E. coli σ70 tolerated most individual residue differences found in natural orthologs. 

Interestingly, residues that incurred significant fitness costs were observed in orthologs 

that were phylogenetically distant from E. coli, suggesting reshaped fitness landscapes 

that compensated for these otherwise predicted fitness deficits. Accordingly, when natural 

orthologs were used in place of the endogenous E. coli σ70, we found that fitness losses were 

generally lower than predicted from a simple aggregate fitness model. Decreased cellular 

fitness with different σ70 orthologs could be attributed to downregulation of essential genes 

based on transcriptomic measurements. Finally, we used a regulatory sequence library to 

identify differences in regulatory activation capacity of two σ70 orthologs compared to E. 
coli σ70 and identified unique patterns of expression that were dependent on both regulatory 

GC content and the source species of the σ70 orthologs.

Bacterial genomic GC content appears to correlate with genome size and regulatory 

complexity (McCutcheon and Moran, 2011). Genomic GC drift is thought to arise from 

mutational processes and selective biases (Hershberg and Petrov, 2010; Hildebrand et al., 

2010; Musto et al., 2006; Raghavan et al., 2012) that also affect GC content of intragenic 

UTRs (Muto and Osawa, 1987). In this study, we observed that σ70 orthologs derived from 

Myxococcus and Oligella species with very different GC content exhibited distinct patterns 

of transcription activation potential. While σ70 appeared to be largely functionally conserved 

and portable between bacteria within the phylum level, σ70 of GC-rich Myxococcus yielded 

a stronger inverse relationship between regulatory GC content and expression levels than 

that of σ70 of AT-rich Oligella. GC-rich genomes were also observed to have UTRs with 
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larger variances in GC content, which further supports the link between the magnitude of 

GC content effect on transcription and σ70 functionality.

In this study, fitness effects of single amino acid mutations were used in a simple additive 

model, assuming each mutation contributes to fitness independently, to extrapolate fitness 

of orthologs with multiple amino acid differences. In reality, epistasis, the notion that 

functional consequences (e.g., fitness) of amino acid changes depend on the specific protein 

sequence context, is likely involved in σ70 evolution (Starr and Thornton, 2016; Storz, 

2018). The role of epistasis is suggested in the observation that in orthologs with few 

amino acid differences to E. coli σ70 (more similar protein sequence context), fitness 

effects of amino acid differences were neutral in the E. coli σ70 sequence background. 

Conversely, in orthologs with many amino acid differences (less similar protein sequence 

context), fitness effects of amino acid differences were more deleterious in the E. coli σ70 

sequence background. Furthermore, fitness differentials between predicted and measured 

fitness of the 15 ortholog mutant strains are also suggestive of possible epistatic effects. 

Efforts to more systematically profile epistasis, such as using pairwise mutagenesis or 

saturation mutagenesis across multiple sequence backgrounds, will yield more insights 

into the relationship between epistasis and σ70 evolution. Lastly, σ70 is a DNA-binding 

protein, unlike many enzymes that have substrates that do not evolve. Therefore, a complete 

model of σ70 fitness would not only incorporate epistasis but also accurately incorporate 

covariation and co-evolution of cognate promoter sequences.

For practical reasons, we mainly focused on domains 2–4 of σ70 in our study. However, 

domain 1, which is more variable than domains 2–4, may further contribute to shaping 

the evolutionary trajectory of σ70 not accounted for here. Another caveat of this study is 

that the σ70 orthologs were characterized in the context of E. coli and that suboptimal 

interactions of specific residues in σ70 orthologs with the native E. coli RNAP could 

impede the global transcriptome in very complex ways. For instance, Mx σ70 exhibited 

a lower overall transcription level based on our promoter library measurements, which may 

have been caused by one of its many residue differences from E. coli σ70, potentially 

reducing its ability to bind or interact with the E. coli RNAP. Exploration of other 

bacterial backgrounds could shed light on host-specific differences to better explore σ70 

orthologs beyond Proteobacteria. In this study, efforts to introduce σ70 variants from more 

phylogenetically distant bacteria were mostly unsuccessful, highlighted by significant fitness 

costs and functional differences that may be found in these more distant σ70 orthologs. 

Lastly, we note that MAGE-seq protocol used here only allowed grow at 30°C (i.e., the 

recombineering system is induced at 37°C–42°C). As environmental selection pressures 

can dictate fitness, some degree of fitness variations may be observed at different growth 

temperatures; MAGE-seq using arabinose-inducible pKD46 (Datsenko and Wanner, 2000) 

could enable fitness measurements at other growth temperatures. Further explorations could 

propel understanding and better modeling of bacterial regulation to allow precise control 

and engineering of gene regulation in a variety of non-model bacteria while accounting for 

complex evolutionary forces driving the selection of global regulators.
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STAR⋆METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Harris Wang (hw2429@columbia.edu).

Materials availability—Requests for plasmids and strains described in this study can be 

made to the Lead Contact, Harris Wang (hw2429@columbia.edu).

Data and code availability

• All sequencing data have been deposited at ArrayExpress and are publicly 

available as of the date of publication. Accession numbers are listed in the Key 

resources table.

• Code used for analysis are publicly available as of the date of publication. Github 

repository links are listed in the Key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacteria culture—E. coli MegaX DH10B strain was cultured in liquid medium (LB) at 

37°C. E. coli EcNR2 strain and all its derivatives were cultured at 30°C.

METHOD DETAILS

Saturation Mutagenesis of E. coli RpoD—E. coli EcNR2 strain was used to generate 

a saturation mutagenesis library of rpoD using MAGE. 236 70-mer oligonucleotides were 

designed to systematically mutate all positions between 379–613 (which covers Domains 2–

4) and the stop codon of E. coli rpoD gene (Synthego). Each oligonucleotide was designed 

with 34 and 33 base pairs of 5′ and 3′ homology to rpoD respectively. Homology regions 

flanked an NNN codon for mutagenesis of all 64 codon variants. Mutagenesis region 

(positions 379–613) was split into six bins and MAGE oligos were pooled accordingly 

to achieve full sequencing coverage. First two bins covered 44 and 48 amino acids, 

respectively, while the subsequent four bins covered 36 amino acids each. Six iterative 

rounds of MAGE were carried out. EcNR2 strain was inoculated from a glycerol stock and 

cultured overnight at 30°C. Next morning, 100uL of the overnight culture was inoculated 

into 3mL of LB with 50 ug/mL carbenicillin (Fisher Scientific, BP26485) and grown 

until 0.5 OD600 was reached. Then the cultures were transferred into a 42°C shaking 

water bath for 15 minutes to induce recombineering proteins. Following induction, the 

culture was chilled down immediately in an ice-slurry. 1mL of cells were pelleted in a 

pre-chilled centrifuge (Eppendorf, 5424R) and then washed twice with pre-chilled distilled 

water (ThermoFisher, 15230162). Washed cell pellet was resuspended in 50uL of 5uM 

MAGE oligo pool, transferred to a 0.1cm electroporation cuvette (Bio-Rad, 1652089), 

electroporated at 1.8kv (Bio-Rad, Micro-Pulser), and recovered in 3mL LB at 30C until 

0.5 OD600 was reached. This protocol was repeated until 6 total MAGE cycles were 
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performed at which point resulting populations were transferred immediately to a turbidostat 

for competition experiments.

Competition Experiments—Competition experiment with the saturation mutagenesis 

library was performed on a custom built turbidostat in a 30°C incubator. A single 

competition was performed for each MAGE mutagenesis bin. An LED and a photodiode 

were used to monitor the optical density of the culture over time. When an OD600 threshold 

of 0.4 was reached, turbidostat automatically diluted the culture by half to OD600 of 0.2 

through peristaltic pumps that added fresh LB and removed excess media. This ensured that 

the competition cultures were constantly maintained at exponential growth phase, between 

OD600 0.2–0.4. Cells from the final MAGE round were inoculated into a culture tube 

containing 10mL LB and then placed in the turbidostat. First time point was collected when 

the population reached 0.4 OD600 for the first time. Subsequent time points were collected 

at 1, 2, 3, 4, 5, 6, 9, and 12 hours after the initial time point for a total of 9 time points. 

To collect time point samples, we removed 1 mL of the culture with using a 1mL Luer-Lok 

syringe (BD, 309628) with a blunt needle (Air-Tite, NB18212), pelleted in a pre-chilled 

centrifuge (Eppendorf, 5424R), washed once with pre-chilled PBS (GIBCO, 10010049), 

pelleted again, removed supernatant, and stored the pellet at −20°C until all samples were 

collected. For competition experiments with E. coli strains expressing ortholog σ70 variants, 

we used the eVOLVER (Wong et al., 2018) on the turbidostat mode. All parameters for 

the turbidostat were kept same. Overnight cultures of sigma factor ortholog variants were 

pooled to equal volume and used to inoculate an eVOLVER culture tube containing 20mL 

LB. Samples were harvested using the same regimen as described above for MAGE mutants.

Library Preparation and Sequencing—Genomic DNA was prepped from each time 

point sample (GE life sciences, 28904259). 1uL gDNA (~20ng) was used to amplify 

the mutagenesis loci of each MAGE bin in a 20uL PCR reaction with 1x Q5 Hot start 

HiFi Master Mix (NEB, M0543L), 1x SYBR Green (Invitrogen, S7567) and 0.5uM of 

forward and reverse primer pools (Data S2). PCR (95°C 30 s, cycle: 95°C 10 s, 65°C 

10 s, 72°C 10 s; and 72°C 2min) was performed on a real time PCR machine (Bio-Rad, 

CFX-96) and the reaction was terminated during exponential amplification. Same PCR steps 

were used to amplify gDNA prepped from ortholog competition samples using primers 

(Data S2) designed to amplify a region (corresponding to RpoD residues 532–581) that 

could differentiate all ortholog sequence variants. 0.1uL of the first PCR was used to 

perform a second 20uL (1x Q5 Hot start HiFi Master Mix, 1x SYBR green, 0.5uM of 

p5_X and p7_X amp2 primers;Data S2) PCR (95°C 30 s, cycle: 95°C 10 s, 72°C 30 

s; and 72°C 2min) reaction (ran on real time PCR machine to terminate reaction during 

exponential amplification) to add sample barcode indexes and Illumina p5 and p7 adaptor 

sequences. Samples were pooled together for sequencing following quantification of dsDNA 

concentration (Invitrogen, Q32851) of each sample, cleaned up using 2x SPRI beads 

(Beckman Coulter, A63881), and sequenced according to Illumina sequencing protocols. 

Three Illumina NextSeq 300-cycle (150 pair-end) mid-output kits were used to sequence six 

RpoD MAGE mutagenesis bins (two bins each) (Illumina, 20024905). Ortholog competition 

library was sequenced using an Illumina MiSeq 300-cycle micro-output mode (200 single-

end) (Illumina, MS-103–1002).
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Cloning RpoD Ortholog Sequence Strains—To generate orthologous sigma factor 

strains we first generated an EcNR2 strain lacking carbenicillin resistance by inserting three 

stop codons and a frameshift mutation into the bla gene through MAGE (EcJP0) (Wang and 

Church, 2011). Next, plasmid pMA7CR encoding an inducible cas9 gene was introduced 

into EcNR2 through electroporation using standard transformation protocols. Plasmids 

encoding gRNA targeting different rpoD loci (rpoD_pam0, rpoD_pam1, rpoD_pam4, 

rpoD_pam6) were cloned into pMAZ-SK plasmid using USER cloning as previously 

described (Ronda et al., 2016) (pMAZ-rpoD_pam0, pMAZ-rpoD_pam1, etc.). Dual gRNA 

plasmid constructs were cloned through Gibson assembly (NEB, E5520S) of gRNA 

expression cassette of one gRNA plasmid into a linearized plasmid encoding a different 

gRNA sequence. Specifically, pMAZ-rpoD_pam14 plasmid was made through Gibson 

assembly of pam1 expression loci (amplified from pMAZ-rpoD_pam1 plasmid with primers 

JP559 and JP560 and pam4 linearized plasmid (amplified from pMAZ-rpoD_pam4 plasmid 

with primers JP561 and JP562). pMAZ-rpoD_pam06 gRNA plasmid was constructed using 

the same approach with pMAZ-rpoD_pam0 and pMAZ-rpoD_pam6 plasmids in place of 

pMAZ-rpoD_pam1 and pMAZ-rpoD_pam4 plasmids respectively.

Ortholog sigma factor sequence variants were synthesized as dsDNA fragments (IDT, 

gBlocks). To generate orthologous sigma factor strains, dsDNA fragment encoding sigma 

factor variant and a dual gRNA plasmid (pMAZ-rpoD_pam14 for all fragments except 

for construct F9Y183 which was cloned with pMAZ-rpoD_pam06) were electroporated 

together into EcNR2 strain with pMA7CR. Following electroporation, samples were 

inoculated into 3mL LB + 100ug/mL carbenicillin and recovered at 30°C for 1 hour. 

Then, kanamycin (Fisher Scientific, BP9065) was added to the culture at 50ug/mL final 

concentration and was recovered for another 2 hours at 30°C. Then, anhydrous tetracycline 

(Cayman, 10009542) was added to the culture at 200ng/mL final concentration and 

recovered for another 2 hours at 30°C. Dilutions of the recovered culture was used to plate 

on LB-agar plates with 100ug/mL carbenicillin and 50ug/mL kanamycin and was incubated 

at 30°C overnight. Recombinant RpoD clones were screened via sanger sequencing with 

primers JP130 and JP131.

Regulatory Sequence Library Construction—Intergenic regions from 5′ upstream 

of start codons of every annotated gene coding sequence were mined from the genomes 

of Escherichia coli (NC_000913), Myxococcus xanthus (NC_008095), Oligella urethalis 
(NZ_AQVB00000000.1). Upstream sequences shorter than 100 base pairs were discarded 

and 100 base pairs directly upstream of each start codon of the remaining sequences 

were compiled. To each regulatory sequence, we added a start codon, a unique 12-mer 

barcode (> 1 hamming distance to all other barcodes), and flanking restriction digest 

cut sites (BamHI and Pstl) and common amplification sequences to yield a final 165bp 

construct. Each regulatory sequence was synthesized twice with two unique barcodes to 

yield a 12,254-member library which was synthesized as an oligonucleotide pool (Agilent, 

G7721A). The oligo pool was amplified in 16 parallel 20uL reactions (1x Q5 Hot start HiFi 

Master Mix (NEB, M0543L), 0.5uM each primer JP194, JP195) for 7 cycles to prevent 

overamplification (95°C 30 s, 7 cycles: 95°C 10 s, 72°C 30 s; and 72°C 2min). PCR 

reactions were pooled and cleaned up with beads (Beckman Coulter, A63881). Purified 

Park and Wang Page 17

Cell Rep. Author manuscript; available in PMC 2021 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



library and pNJ7 plasmid (Johns et al., 2018) were digested with BamHI (NEB, R0136M) 

and PstI (NEB, R0140M), PCR purified (Zymo, D4033), and ligated with T4 DNA ligase 

(NEB, M0202M). Resulting ligation reaction was PCR purified, mixed into a 100uL aliquot 

of E. coli MegaX DH10B electrocompetent cells (Invitrogen, C640003), and aliquoted into 

four prechilled 1mm cuvettes (BioRad, 1652089) and electroporated. Following recovery, 

we used 5uL of the culture and plated dilutions to quantify cloning coverage (> 1000x 

cloning coverage). Rest of the recovery culture was inoculated to 1:25 ratio into LB with 

20ug/mL chloramphenicol (Sigma, C0378). Following an overnight incubation, 1mL of the 

culture was used to inoculate 100mL LB with 20ug/mL chloramphenicol. The culture was 

incubated until mid-log growth was reached (OD600 0.5) and 50mL was used to prep 

plasmid DNA (Zymo, D4200). Rest of the culture was used to generate frozen stocks. 

Plasmid DNA was used to transform EcJP9, EcJP14 and EcNR2 strains at > 100x coverage.

Regulatory Sequence Library Sequencing Preparation—Overnight culture of each 

library was prepared by adding 1mL of thawed frozen library glycerol stock to 25mL 

LB and was grown overnight at 30C. 2mL of the overnight culture was used to inoculate 

60mL LB and was grown until mid-log phase was reached. 5mL of the culture was used 

to isolate plasmids (QIAGEN, 27106). Rest of the culture was pelleted, washed once with 

PBS and harvested for RNA using the RNAsnap (Stead et al., 2012) protocol and cleaned 

up with RNA clean and concentrator kit (Zymo, R1018). DNA library was prepared through 

the same two-step amplification as MAGE libraries using 1uL of plasmid miniprep. RNA 

library was prepared by first digesting DNA with turbo DNase and cleaned up using RNA 

clean and concentrator. RNA samples were reverse transcribed with Maxima H minus 

reverse transcriptase (Thermo Scientific, EO0751) using gene specific primers against 

sfGFP reporter gene (12.5uL of RNA, 1uL of primer JP750, 1uL of 10mM dNTPs incubated 

at 65C for 5 minutes, then on ice 1min, then add 4uL 5x RT buffer, 0.5uL RNase inhibitor 

(Thermo Scientific, EO0381), 1uL Maxima RT, then incubate with the following protocol: 

42°C 90 minutes, cycle 9 times: 50°C 2 minutes, 42°C 2 minutes; 85°C 5 minutes, 4°C 

hold). 1uL RNase A (Thermo Scientific, EN0531) and 1uL RNase H (NEB, M0297S) were 

added to the reaction and incubated for 30 minutes at 37°C. Then, bead cleanup was used 

to purify cDNA. Adaptor was ligated using T4 RNA ligase (NEB, M0437M) (5.1uL cDNA, 

2uL 40mM DNA adaptor oligo, incubate 75°C for 3 minutes, 1 minute on ice, add 2uL 10x 

T4 RNA ligase buffer, 0.8uL DMSO, 0.2uL 100mM ATP, 8.4uL 50% PEG, 1.5uL T4 RNA 

ligase, and incubate at 22C for 16 hours). Adaptor ligated cDNA samples were then purified 

with beads. Sequencing library was then prepared through a two-step amplification, using 

the same protocol as for DNA samples. For measuring expression of regulatory element 

isolates, total RNA was harvested from a 5mL cell culture in mid log growth phase. cDNA 

was prepped using the same protocols as above. qPCR was performed with primers against 

sfGFP reporter gene and infC gene was used as a reference house-keeping gene.

QUANTIFICATION AND STATISTICAL ANALYSIS

Evolutionary Sequence Divergence Analysis—Orthologs of E. coli RpoD were 

initially mined using the KEGG (Kanehisa et al., 2016) orthology database (K03086, RNA 

polymerase primary sigma factor). We refined the ortholog set by limiting the scope to 

bacterial proteins that also encoded the following Pfam (El-Gebali et al., 2019) domains: 
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Sigma-70 region 2 (PF04542), Sigma-70 region 3 (PF04539), Sigma-70 region 4 (PF04545). 

Furthermore, alternative sigma factors entries (e.g., rpoH, sigS, rpoS) were removed from 

the ortholog set. Sequences and corresponding UniProt accessions were downloaded on 

2020–08-25 to yield a final ortholog set of 4,703 sequence variants. Taxonomic data of each 

orthologs were extracted from each UniProt entry’s metadata. GC contents of each coding 

sequences were extracted from parsing through linked nucleotide refseq accessions. Amino 

acid sequences of orthologs were used to generate a multiple sequence alignment (MSA) 

with Clustal Omega (Sievers et al., 2011) using the following parameters:–full,–full-iter,–iter 

= 5. Resulting MSA was used to quantify σ70 conservation via Jensen-Shannon divergence 

(Capra and Singh, 2007). Maximum Likelihood phylogenetic tree was constructed using 

FastTree2 (Price et al., 2010). Phylogenetic tree was visualized through iTOL (Letunic 

and Bork, 2019). We extracted RpoD evolutionary divergence distances using the branch 

length distances between E. coli RpoD and all other orthologs on the phylogenetic tree. 

Corresponding 16S sequence for each UniProt RpoD ortholog entry was extracted from 

Greengenes database by matching the NCBI taxa IDs from Greengenes accessions and 

Uniprot metadata for each entry. Compiled 16S sequences were aligned with MAFFT 

(Katoh et al., 2002) using default settings. Resulting MSA was used to generate a 

phylogenetic tree with FastTree2. 16S evolutionary divergence distances were compiled 

using the branch length distance between E. coli 16S and all other 16S sequences. To 

normalize for uneven phylogenetic sampling bias in the databases and account for over-

represented sequences, we collapsed sequences down to unique Domain 2–4 sequences to 

yield a set of 2,833 sequence variants which were used to study domain level sequence 

divergence.

σ70 Sequence Motif Analysis—To screen for genes regulated by primary σ70 we sought 

to identify cellular functions under σ70 regulation. From regulonDB (Gama-Castro et al., 

2016), we isolated all genes regulated by E. coli σ70 and compared their COG functional 

categories (Galperin et al., 2015) against all E. coli genes and found that F/K COGs 

(nucleotide metabolism and transcription categories, respectively) were enriched in σ70 

regulated genes (Figure S3E). Next, we mined 5′ upstream regions (from 25 to 100 base 

pairs upstream of start codons) of all F/K COG genes in each bacterial genome in the COG 

dataset. BioProspector (Liu et al., 2001) was used to generate bipartite sequence motifs for 

each genome using the following standard parameters: -d 1 -n 200 -w 8 -W 8. Each motif 

search was background normalized using its cognate genomic sequence. 12 motifs were 

generated for each genome with varying maximum and minimum gap parameters (min gap: 

13–16, max gap: 19–21) and the best motif from each set was selected by comparing the 

sum of all motif correlations against all other motifs. Next, each motif was subjected to 

score (BioProspector score > 2) and counts (upstream region counts > 50) thresholds. Lastly, 

we selected a subset of motifs from genomes which primary σ70 were present in our σ70 

ortholog dataset, yielding a final set of 188 motif and σ70 ortholog pairs.

Saturation Mutagenesis Library Sequencing Analysis—Raw reads from each 

sample were pair-end merged with SeqPrep using default settings. Next, expected error score 

was calculated for each read and any reads with expected error score > 1 was designated as 

low quality read and then discarded from further analysis. Then each high-quality read was 
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tallied as a WT sequence or a mutant sequence. Any sequences with mutations in more than 

one codon were discarded. Counts of each sequence variants were used to calculate relative 

frequencies of WT and mutants. To correct for miscalls, relative frequencies of mutants 

from sequencing of the control WT was used to subtract the relative frequencies of mutants 

from each time point. For each mutant sequence, corrected relative frequencies from each 

time points were used to generate a log linear regression. The slope of the regression was 

normalized to the dilution rate of the culture during the competition experiment to yield a 

fitness metric from 0 to 1. Fitness of 1 means that the mutant has the same growth rate as the 

WT sequence while fitness of 0 means that the mutant does not grow.

Transcriptomic analysis of orthologous rpoD mutants—EcNR2 strains encoding 

three different σ70 sequence variants (Ec σ70, Mx σ70, Ou σ70) strains were grown overnight 

from a glycerol stock. 166uL of the overnight culture was used to inoculate a 5mL culture 

and was harvested for total RNA when the culture reached mid-log growth (OD600 0.5). 

For each strain, a total of four biological replicates were harvested across two independent 

days via RNAsnap (Stead et al., 2012). DNA was removed from the total RNA with turbo 

DNase (Invitrogen, AM2239). Next, rRNA was depleted with the Ribo-Zero magnetic kit 

for Bacteria (Illumina, MRZB12424). DNA free, rRNA depleted RNA samples were used to 

prep a sequencing library with NEBnext ultra directional RNA library kit (NEB, E7420L). 

Sequenced on the Illumina Nextseq platform with 300 cycle mid output kit. Analysis of 

resulting RNaseq data was carried out with Trimmomatic (Bolger et al., 2014) for cleaning 

up reads, bowtie (Langmead et al., 2009) for alignment, HTSeq (Anders et al., 2015) for 

RNA counts, and DEseq2 (Love et al., 2014) for differential gene expression analysis.

Regulatory Sequence Library Analysis—Raw sequencing reads were pair end merged 

using SeqPrep. Then using a custom python script, merged reads with low quality scores 

were removed (expected error > 2 for the full merged read). Next, counts of each regulatory 

sequence construct with correct barcode identifiers were tallied with up to 4% mismatch 

tolerance in regulatory sequence regions and no mismatch allowed in barcode regions. 

Counts of each construct were divided by the total sum of all constructs to yield relative 

abundance measurements. For constructs with 10+ DNA and RNA counts, we calculate a 

Tx value by dividing its relative RNA abundance by its relative DNA abundance. To enable 

comparison of Tx values between samples, Tx values were normalized using the qPCR 

expression ratios.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Evolutionary sequence diversity of bacterial primary σ70 factors

• High-resolution fitness landscape map of E. coli σ70

• Mapping natural diversity to fitness map predicts varying fitness deficits

• σ70 replacement in E. coli with natural orthologs elicits transcriptional 

changes
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Figure 1. Evolutionary sequence analysis of primary σ70 orthologs
(A) Evolutionary conservation of primary σ70 (by Jensen-Shannon divergence) based on 

alignment of 4,702 σ70 sequences. Residue positions are based on E. coli σ70 with different 

domains shown (σ70
1, σ70

2, σ70
3, and σ70

4).

(B) Distribution of amino acid substitution counts of σ70 orthologs for domains 2–4 

compared to the E. coli σ70 sequence. Colors in each bar correspond to ortholog host 

phylogeny at the phylum level, with the exception of Proteobacteria, which are separated at 

the class level.

(C) Cumulative distribution of orthologs clustered to 90% sequence identity for each 

domain.

(D) Pairwise comparisons of substitution count ratios between σ70 domains. Dashed lines 

denote 1:1 ratio.
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Figure 2. Mapping the fitness landscape of E. coli σ70

(A) Fitness landscape of E. coli σ70 at residues 379–613 profiled by MAGE-seq. Columns 

of the heatmap correspond to positions along the σ70 protein and rows correspond to all 

20 amino acid residues plus stop codons (*). Open circles denote the wild-type E. coli 
σ70 residue at each position. Gray squares denote data not available. Regions of structured 

alpha helices, relative solvent accessibility, and average fitness at each residue position are 

displayed above the heatmap.

(B) Histogram of the distribution of fitness effects (DFEs) for each σ70 domain. Dotted lines 

denote fitness of 0.95, deemed as the separation between neutral and detrimental fitness.

(C) Scatterplot of σ70 evolutionary conservation and mean fitness for each residue position. 

Neutral residues (fitness ≥ 0.95) are displayed in gray, while detrimental residues (fitness < 

0.95) are colored by their respective domains. Colored dash lines indicate linear regressions 

of detrimental residue positions in each domain.

(D) Protein structure of σ70 (ribbon model) bound to an open DNA complex (stick model) 

using PDB: 6CA0. Red color scale represents mean fitness at each residue position on the 

σ70 structure; dark gray regions are residues not profiled with MAGE-seq.
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Figure 3. Fitness predictions of orthologous σ70 sequences using E. coli σ70 fitness landscape
(A) DFEs of residue variants observed in natural ortholog sequences (top) compared to 

DFEs of all possible single-residue mutations in σ70 (bottom). Fitness threshold of 0.95 is 

designated by the dotted line.

(B) Plot of residue fitness in σ70 orthologs versus binned 16S phylogenetic distance to E. 
coli showing higher fraction of deleterious fitness variants at greater evolutionarily distance 

from E. coli.
(C) Blue boxplots show expected aggregate fitness (EAF) distributions of natural orthologs 

(pink) with increasing binned number of residue differences to E. coli σ70. Fitness at 0.95 

is denoted by the dotted line. Gray boxplots show null EAF distributions of synthetically 

generated σ70 sequences with random mutations at each residue difference bin.

(D) EAF for each σ70 domain against the total binned number of residue differences across 

domains 2–4.
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Figure 4. Characterization of orthologous σ70 sequence variants in E. coli
(A) Residue-level fitness map in the 15 σ70 orthologs measured in E. coli.
(B) Plot of EAF of each σ70 ortholog and their measured fitness in E. coli. Measured fitness 

values represent the average from two independent fitness competition experiments.

(C) Plot of fitness differential (measured fitness minus EAF) and proportion of residue 

differences of orthologs from E. coli RpoD.

(D) Number of differentially expressed genes in Mx σ70 and Ou σ70 transcriptomes 

compared to Ec σ70.

(E) The number and grouping of essential genes that are differentially upregulated or 

downregulated in Mx σ70 and Ou σ70.
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Figure 5. Multiplexed transcriptional measurements of a metagenomic regulatory sequence 
library in E. coli strains with orthologous σ70

(A) Distribution of normalized Tx values of regulatory sequences transcribed by strains 

expressing Ou σ70 (EcJP9), Mx σ70 (EcJP14), and Ec σ70. Regulatory sequences grouped by 

their genomic origins is shown in the boxplots in each graph.

(B) Expression fold change by Ou σ70 and Mx σ70 normalized to Ec σ70 data (statistical 

significance based on KS test; p values shown in key).

(C) Relationship between GC content and Tx values of regulatory sequences using different 

σ70 proteins. Linear regression for each dataset is plotted.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

E. coli ECNR2 Addgene / Wang et al., 2009 26931

RpoD ortholog mutants This paper See Table S1

Chemicals, peptides, and recombinant proteins

Kanamycin Fisher Scientific BP9065

anhydrous tetracycline Cayman 10009542

Critical commercial assays

Genomic DNA prep kit GE 28904259

Q5 polymerase NEB M0543L

Maxima H minus reverse transcriptase Thermo Scientific EO0751

Sybr Green Invitrogen S7567

SPRI beads Beckman Coulter A63881

NextSeq 300-cycle kit Illumina 20024905

Miseq 300-cycle kit Illumina MS-103–1002

Deposited data

RpoD ortholog mutants RNA-seq raw data ArrayExpress E-MTAB-9099

MAGE-seq raw data ArrayExpress E-MTAB-9103

Metagenomic regulatory sequence library raw data ArrayExpress E-MTAB-9111

Oligonucleotides

MAGE oligos This study See Data S2

Oligos used in this study This study See Data S2

Regulatory sequence oligo library Agilent/This study G7721A/See Data S5

Recombinant DNA

Orthologous sigma factor sequences This study See Table S2

Software and algorithms

Clustal Omega Sievers et al., 2011 NA

FastTree2 Price et al., 2010 NA

iTOL Letunic and Bork, 2019 NA

BioProspector Liu et al., 2001 NA

Trimmomatic Bolger et al., 2014 NA

Bowtie Langmead et al., 2009 NA

HTSeq Anders et al., 2015 NA

DEseq2 Love et al., 2014 NA

Cell Rep. Author manuscript; available in PMC 2021 December 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Park and Wang Page 33

REAGENT or RESOURCE SOURCE IDENTIFIER

MAGE-seq analysis code files This study https://github.com/jiminpark66/MAGEseq

Regulatory sequence library analysis code files This study https://github.com/jiminpark66/
regulatorysequence_library

Other

Turbidostat This Study NA

eVOLVER Wong et al., 2018 NA
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