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Abstract

Introduction: The bursa subacromialis (BS) provides the gliding mechanism of the shoulder and regenerates itself
after surgical removal. Therefore, we explored the presence of mesenchymal stem cells (MSCs) within the human adult
BS tissue and characterized the BS cells compared to MSCs from bone marrow (BMSCs) on a molecular level.

Methods: BS cells were isolated by collagenase digest from BS tissues derived from patients with degenerative rotator
cuff tears, and BMSCs were recovered by adherent culture from bone-marrow of patients with osteoarthritis of the hip.
BS cells and BMSCs were compared upon their potential to proliferate and differentiate along chondrogenic,
osteogenic and adipogenic lineages under specific culture conditions. Expression profiles of markers associated
with mesenchymal phenotypes were comparatively evaluated by flow cytometry, immunohistochemistry, and
whole genome array analyses.

Results: BS cells and BMSCs appeared mainly fibroblastic and revealed almost similar surface antigen expression
profiles, which was CD44%, CD73%, CD90", CD105%, CD106%, STRO-1", CD147, CD317, CD347, CD45~, CD144™. Array
analyses revealed 1969 genes upregulated and 1184 genes downregulated in BS cells vs. BMSCs, indicating a high
level of transcriptome similarity. After 3 weeks of differentiation culture, BS cells and BMSCs showed a similar strong
chondrogenic, adipogenic and osteogenic potential, as shown by histological, immunohistochemical and RT-PCR
analyses in contrast to the respective negative controls.

Conclusions: Our in vitro characterizations show that BS cells fulfill all characteristics of mesenchymal stem cells,

pathologies.

and therefore merit further attention for the development of improved therapies for various shoulder

Introduction

With an incidence of about 30 %, degenerative tears of
the rotator cuff emerge as one of the most common
musculoskeletal diseases in the older population [1, 2]
with significant socio-economic impact [3-7]. Interest-
ingly, it has been noted in the clinical area that localized
reactions of the bursa subacromialis (BS) are evident in
cases with rotator cuff tears [8], and that rotator cuff
reconstructions reveal a lower success rate when surgical
techniques are used that include radical resection of the
BS [1]. Furthermore, in revision cases we have observed
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that the BS tissue is restored after complete surgical
resection within approximately three to six months, in-
dicating its high regenerative potential.

The BS represents extraarticular synovialis-like tissue
that is anatomically located between the rotator cuff and
the acromion and provides the gliding mechanism of the
shoulder [9, 10]. Unfortunately, the BS has not received
much attention by the scientific community yet. The
subacromial bursa was traditionally regarded as the main
source of subacromial pain, adhesions and inflammatory
response in rotator cuff disease. This derives mainly
from the concept of Duplay in the 19th century who
influenced generations of orthopedic surgeons to remove
the bursa during subacromial decompression and rotator
cuff repair [11]. These ideas were supported by findings
of increased levels of cytokines and nociceptors in suba-
cromial impingement and rotator cuff tears [12-—14].
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Therefore, in the past most surgeons believed that the
subacromial bursa acts mainly as a mediator of inflamma-
tion and tendon destruction rather than as a useful healing
response for the repair of tendon lesions. Uhthoff and
Sarkar first proved the healing potential of the subacro-
mial bursa in human biopsies [15], and in an experimental
animal model [16], which have been confirmed by others
[17, 18]. However, the cellular mechanism of these find-
ings has not been clarified yet, although BS cells have been
recognized to express several morphogens and cytokines
upon damage of the underlying rotator cuff tendon [19].

Mesenchymal stem cells (MSCs) have been isolated
and extensively characterized from bone marrow [20,
21] and several mesenchymal tissues including bone
[22], fat [23], cartilage [24], muscle [25], tendon [26, 27],
ligament [28-30] and other sources [31, 32]. Given the
self-regeneration capacities of the BS in vivo after surgi-
cal removal along with its localization adjacent to the
rotator cuff, it was the purpose of this study to
characterize the cells that reside within the BS, and
secondly to explore their MSC properties compared to
those of the well-characterized MSCs isolated from bone
marrow (BMSCs).

Materials and methods

Tissue collection and cell isolation

Human BS tissues were harvested aseptically from 10
male 42- to 58-year old patients with degenerative tears
of the rotator cuff undergoing reconstruction surgery
(after informed consent and as approved by the local in-
stitutional review board of the University of Wiirzburg).
The BS tissues were then rinsed twice with serum-free
Dulbecco’s modified Eagle’s medium (DMEM)/F-12
media (PAA Laboratories, Linz, Austria) containing 1 %
penicillin/streptomycin (PAA Laboratories). A small part
of the tissues was reserved for histology, while the rest was
minced to 1-2 mm? pieces and placed in 0.1 % collagenase
1/3 solution (Life Technologies GmbH, Darmstadt,
Germany). The recovered cells from the digest solution
were plated in monolayer cultures in DMEM/F-12 media
containing 10 % fetal bovine serum (Life technologies
GmbH) and 1 % penicillin/streptomycin.

BMSCs were isolated from surgical waste of 10 male 45-
to 65-year old patients undergoing total hip arthroplasty
surgery after informed consent, and as approved by the
Institutional Review Board of the University of Wiirzburg
as described previously [22]. Briefly, bone-marrow ream-
ings were harvested aseptically, resuspendend in DMEM/
F-12 (PAA Laboratories), filtered through a 40 pm filter
(BD Biosciences, Heidelberg, Germany), and plated in tis-
sue culture flask. Non-adherent cells were removed after
two days, and attached cells were washed with PBS,
cultured in complete medium for 10 to 14 days to a
subconfluent state, with medium changes every 3 to 4
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days. Second to third passage cells were used for all
experiments.

For analysis of chondrogenic differentiation, the BS
and BMSC populations were expanded in the presence
of 10 ng/ml fibroblast growth factor (FGF)-2 (PeproTech,
Hamburg, Germany) as recommended [33].

Cell proliferation assay

Proliferation rates of BS cells and BMSCs were deter-
mined by luminometrical measurements of adenosine-
5'-triphosphate (ATP) activity using the CellTiter-Glo®
Luminescent Cell Viability Assay (Promega GmbH,
Mannheim, Germany) according to the manufacturer’s
instructions. In short, 1,000 first passage cells per well
were seeded in 96-well plates and cultured in 100 pl of
complete medium for 17 days with media changes every
second day. On days 1, 3, 5,7, 9, 12, and 17 the lumines-
cence of ten wells per donor and cell type was deter-
mined by addition of an equal volume of Cell Titer-Glo®
reagent to the cells, incubation at room temperature for
five minutes, and final detection of the luminescence
signal for 0.1 seconds using an Orion II Luminometer
(Berthold Detection Systems, Pforzheim, Germany). A
total of five donors for each cell type were included.

Flow cytometrical analyses

Flow cytometrical analyses were performed as previously
described [28]. Briefly, monolayer BS cells and BMSCs
from three different donors were detached from the
culture flasks using ethylenediaminetetraacetic acid,
suspended in PBS with sodium azide and transferred to
96-well V-bottom plates. After centrifugation at 400 g
for three minutes, the supernatant was discarded. The
cell pellets were then carefully washed twice with block-
ing buffer. For staining of intracellular antigens [alkaline
phosphatase (ALP), FGF] an additional incubation step
with Flow Cytometry Permeabilization Buffer I (R&D
Systems, Heidelberg, Germany) was added. Following
incubation at 4 °C for 30 minutes direct single- or multi-
color immunofluorescent staining was performed with
either 100 ul of an antigen-specific fluorescent mono-
clonal antibody or an immunoglobulin isotype control.
After incubation at 4 °C for 30 minutes, the samples
were centrifuged, and washed four times in 4 °C cold
PBS with sodium azide. The prepared samples were
either stored in 2 % paraformaldehyde or analyzed
directly after preparation using a Cryonics FC 500 flow
cytometer (Beckman Coulter). Monoclonal antibodies
for CD34, CD53, CD73, CD90, CD105, CD106, CD133,
CD144, CD166, ALP, FGF and Stro-1 conjugated with ei-
ther allophycocyanin (APC), fluorescein isothiocyanate
(FITC) or phycoerythrin (PE) were purchased from AbD
Serotec, Beckman Coulter, BD Biosciences, Dako or
R&D Systems. Non-specific monoclonal antibodies for
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each fluorochrome used, served as negative controls.
Marker specifications are listed in Table 1.

RNA isolation

RNA from three different BS and five different BMSC
donors was extracted using the RNeasy extraction kit
(Qiagen GmbH, Hilden, Germany) according to the
manufacturer’s instructions. Synthesis of cDNA was per-
formed with a total of 1 pg purified RNA using random
hexamers (Life Technologies GmbH) and reverse tran-
scriptase (RT) (Bioline GmbH, Luckenwalde, Germany)
as indicated by the suppliers. RT-PCR was performed in
a reaction volume of 50 pl containing 100 ng of synthe-
sized ¢cDNA, Taq DNA polymerase (Bioline GmbH) as
well as target specific sense and antisense primers listed
in Table 2, which also provides a summary of the primer
specific annealing temperatures, optimal cycle numbers
and expected fragment sizes. The resulting PCR prod-
ucts were separated by agarose gel electrophoresis con-
taining 1.5 % agarose and 0.1 pg/ml ethidium bromide.
Since the elongation factor la (EFla) is a well-known
housekeeping gene, it served as an internal control for
normalization of gene expression.

Genome-wide gene expression profiling of bursa cells

and BMSCs

For genome-wide gene expression profiling, hybridization
experiments were performed and analyzed using Affyme-
trix Gene Chips HG-U133 Plus 2.0 (54,000 probesets for
47,400 transcripts and 38,500 genes, High Wycombe, UK)
as described previously [34]. Total RNA expression of
three different BS and five individual BMSC preparations
were analyzed using the Affymetrix Gene Chip Scanner
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3000, the Affymetrix GeneChip Operating Software 1.4,
and comparatively evaluated using the significance analysis
of microarrays (SAM) approach [35].

To assess differentially expressed genes between BS
and BMSC groups, pre-defined conditions were estab-
lished: the number of “present” calls for a given gene
had to be greater than 50 % in at least one of the groups
and only those genes were taken into account that
displayed a fold change (FC) less than 0.5 and more than
2. Probesets which showed an FC between 0.5 and 2
were stated as “not differentially expressed”. In order to
obtain reliable data, the g-value, i.e. false discovery rate
had to be less than 10 %. For heatmap generation and to
identify significantly overrepresented gene clusters, Gene
Ontology (GO) analysis and mapping was performed
with all differentially expressed probesets by using the
web service for microarray data analysis CARMAweb
[36]. Confirming RT-PCR analyses from five up- and five
downregulated genes were performed using primers and
PCR conditions as listed in Table 2.

Chondrogenesis

Chondrogenic differentiation was performed in high dens-
ity cultures as previously described [37]. Briefly, 3 x 10°
cells were resuspended in 0.5 ml chondrogenic medium
DMEM high glucose (PAA Laboratories) supplemented
with 50 pg/ml L-ascorbic acid 2-phosphate, 100 nM dexa-
methasone, 100 pg/mL pyruvate, 40 pug/ml L-proline, 1 %
ITS+ (all Sigma Aldrich GmbH, Munich, Germany), 10
ng/ml transforming growth factor-p1 (TGF-f1) (R&D
Systems) and pelleted. The generated aggregates were
maintained in chondrogenic medium for three weeks with
medium changes every two to three days. Control pellets

Table 1 Expression of cell surface antigens and secreted proteins in BS cells and BMSCs

Antigen Manufacturer Label Marker specification Positive cells (%)

BS cells BMSC
CD34 Beckman Coulter PE Hematopoietic stem cell marker, cell adhesion 769 (+) 1.05 (=)
CD53 AbD Serotec FITC Osteoblast and osteoclast signal transduction 0.00 (-) 0.14 (-)
CD73 BD Biosciences PE Mesenchymal, epithelial and endothelial cell marker 9746 (+++) 98.67 (+++)
CD90 Beckman Coulter PE Fibroblast, stromal and hematopoietic stem cell marker 95.18 (+++) 9837 (+++)
CD105 Beckman Coulter PE Mesenchymal and erythroid progenitor cells 98.05 (+++) 99.10 (+++)
CD106 AbD Serotec FITC Cell adhesion 409 (-) 55.55 (++)
CD133 Beckman Coulter PE Hematopoietic stem cell marker 0.14 (-) 1.20 (=)
CD144 AbD Serotec FITC Endothelial cells, cell adhesion 0.01 (-) 0.58 (-)
CD166 BD Biosciences PE Mesenchymal, epithelial stem cells, fibroblasts, monocytes, cell adhesion 88.06 (++) 9842 (+++)
ALP R&D Systems APC Alkaline phosphatase 2279 (+) 5550 (++)
FGF R&D Systems FITC Fibroblast growth factor 4506 (+) 4264 (+)
Stro1 Dako FITC Mesenchymal stem cell marker 015 (-) 0.68 (-)

+++ marker expression on >95 % of the cells, ++ marker expression on 50-95 % of the cells, + marker expression on 5-50 % of the cells, - marker expression on
<5 % of the cells
ALP alkaline phosphatase, APC allophycocyanin, BMSC bone marrow-derived MSC, BS bursa subacromialis, CD cluster of differentiation, FGF fibroblast growth factor,
FITC fluorescein isothiocyanate, MSC mesenchymal stem cells, PE phycoerythrin
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Table 2 Primer sequences and PCR conditions
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Gene

Oligonucleotide primer sequence

Number of cycles

Annealing temp. (° C)

Product size (bp)

Verfication of array data

PRG4

FGF18

FGF9

Meox

WISP3

CD200

BSP

FOXP2

MUC1

S: 5'—GCTTGCACCCACCACCACCA—3'

A: 5'—AGCTCCTTGGGGGCAGGCTT—3'

S: 5'—GTGGGGAAGCCCGATGGCAC—3'

A: 5'—GAAGCTCCGGCTGCCCCTTG—3'

S: 5'—AATGTGCCCGTGTTGCCGGT—3'

A: 5'—GCCTTCCAGTGTCCACGTGCT—3'

S: 5'—CCAACTGGCACCTCCCGCAG—3'

A: 5'—CCGCAGGTGACAGTGCCTGG—3'

S: 5'—CTGTGTTACATTCAGCCTTGCGAC—3'
A: 5'—CTTGGTTTTACAGAATCTTGAGCTC—3'
S: 5'—TGGCAGCAGTGGTGCTGTGC—3'

A: 5'— AGACGGTGAGGCAGGCCGTT—3"

S: 5 —AATGAAAACGAAGAAAGCGAAG—3'
A: 5'—ATCATAGCCATCGTAGCCTTGT—3'
S 5'—AATCGCTGCCTCAAGCTGGC—3'

A: 5'—GGTTTGGGCTCTGAGGGTCGC—3'

S: 5'— AATGAATGGCTCAAAACTTGG —3'
A: 5'— CACTAGGTTCTCACTCGCTCAG —3'

Differentiation assays

Chondrogenic marker genes

AGN

DEC

FM

SOX9

IHH

coL 1l

S: 5'—TGAGGAGGGCTGGAACAAGTACC—3'
A: 5'—GGAGGTGGTAATTGCAGGGAACA—3'
S: 5'—AATTGAAAATGGGGCTTTCC—3'

A: 5'—GCCATTGTCAACAGCAGAGA—3'

S 5'—CTTACCCCTATGGGGTGGAT—3'

A: 5'—GTACATGGCCGTGAGGAAGT—3'

S: 5'—ATCTGAAGAAGGAGAGCGAG—3'

A: 5'—TCAGAAGTCTCCAGAGCTTG—3'

S: 5'—GAGGAGTCCCTGCATTATGA—3'

A: 5" —CAGGAAAATGAGCACATCGC—3'

S 5'—TTTCCCAGGTCAAGATGGTC—3'

A: 5'—CTTCAGCACCTGTCCACCA—3'

Osteogenic marker genes

ALP

CoL |

Chbfal

S: 5 —TGGAGCTTCAGAAGCTCAACACCA—3'
A: 5'—ATCTCGTTGTCTGAGTACCAGTCC—3'
S: 5" —GGACACAATGGATTGCAAGG—3'

A: 5'—TAACCACTGCTCCACTCTGG—3'

S: 5'—ACAGATGATGACACTGCCACC—3'

A: 5'—CATAGTAGAGATATGGAGTGCTGC—3'

Adipogenic marker genes

LPL

PPARy2

S: 5'—GAGATTTCTCTGTATGGCACC—3'
A: 5'—CTGCAAATGAGACACTTTCTC—3'
S 5'—GCTGTTATGGGTGAAACTCTG—3'

38

35

35

37

40

33

30

30

30

27

35

35

30

35

25

30

30

30

30

60

62

60

62

54

60

54

61

60

54

53

54

58

54

58

51

54

55

51

51

210

208

421

204

337

354

450

493

231

392

220

389

263

321

374

454

461

324

276

351
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Table 2 Primer sequences and PCR conditions (Continued)
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A: 5'—ATAAGGTGGAGATGCAGGCTC—3'
Internal control
EF1a S: 5'—AGGTGATTATCCTGAACCATCC-—3'

A: 5'—AAAGGTGGATAGTCTGAGAAGC—3'

54 234

A antisense, AGN aggrecan, ALP alkaline phosphatase, bp base pair, BSP integrin-binding sialoprotein, Cbfal core binding factor alpha 1, CD200 cluster of differentiation
200, COL I collagen type |, COL Il collagen type II, DEC decorin, EF1a elongation factor 1a, FGF fibroblast growth factor, FM fibromodulin, FOXP2 forkhead box P2, IHH
indian hedgehog, LPL lipoprotein lipase, Meox mesenchyme homeobox 2, MUCT mucin 1, PPARy2 peroxisome proliferator-activated receptor gamma 2, PRG4 proteoglycan
4, S sense, SOX9 SRY (sex determining region Y)-box 9, temp. temperature, WISP3 WNT1 inducible signalling pathway protein 3

were maintained without TGFP1 supplementation. For
histological and immunohistochemical analyses, aggre-
gates were fixed in 4 % paraformaldehyde, dehydrated in a
graded series of alcohols and embedded into paraffin.
Thick sections (4 pm) were mounted on slides, washed
with xylene, and rehydrated in a series of graded alcohols.
Stainings were performed using standard protocols for
matrix-associated proteoglycans using alcian blue. Immu-
nohistochemical detection of collagen type II (COL II)
was performed as described in detail previously [37] using
a primary monoclonal COL II antibody (Acris Antibodies
GmbH, Herford, Germany), while negative controls were
treated with mouse serum instead. Detection of the stain-
ing was done using the Biogenex Super Sensitive' ™ Link-
Label IHC Detection System (DCS Innovative Diagnostic
Systems, Hamburg, Germany) according to the manufac-
turer’s instructions.

Expression of chondrogenic marker genes was per-
formed using RT-PCR analyses with the lineage specific
primers and PCR conditions summarized in Table 2. Six
pellets per group were initially frozen in liquid nitrogen,
ground using pellet pestles and added to 1 ml of Trizol
reagent (Life Technologies GmbH), with an additional
purification step using RNeasy separation columns
(RNeasy kit; Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. Three different donors for
each cell type were analyzed.

Osteogenesis

For osteogenic differentiation 1 x 10° cells per cm? were
seeded in four-well chamber slides and 25 cm?® culture
flasks (both Nunc). Once the cell layers reached con-
fluency, osteogenic differentiation was induced by culti-
vation in complete osteogenic DMEM high glucose
medium (PAA) supplemented with 100 nM dexametha-
sone, 50 pg/ml L-ascorbic acid 2-phosphatase, 10 mM
[-glycerophosphate (all Sigma Aldrich GmbH) as well as
25 ng/ml recombinant human BMP2 (R&D Systems
GmbH). Cultures maintained in control medium (lack-
ing the above listed supplements) served as a negative
control for differentiation. Osteogenesis was conducted
for three weeks with medium changes every two to three
days. Histological analyses were performed by staining
for alkaline phosphatase (ALP) using the Leukocyte ALP

Staining Kit (Sigma Aldrich GmbH) according to the
manufacturer's instructions. Matrix mineralization was
evaluated by staining with alizarin red, as described pre-
viously [22]. The parameters for expression analysis of
osteogenic marker genes are listed in Table 2 and semi-
quantitative RT-PCR analyses were performed as de-
scribed above. Three different donors for each cell type
were analyzed.

Adipogenesis

Adipogenic differentiation required the initial seeding of
cells at a density of 1 x 10° cells per cm®. After the cell
layer reached about 50-70 % confluency, the cells were
further cultivated in adipogenic induction medium, con-
sisting of complete DMEM high glucose supplemented
with 1 uM dexamethasone, 1 pg/ml insulin, 0.5 mM
3-isobutyl-1-methylxanthine (IBMX) and 100 pM indo-
methacin for three weeks with media changes every two
to three days. Control cells were cultivated in supplement-
free adipogenic control medium. Histological analyses
using oil red O staining were conducted to detect forma-
tion of lipid droplets. RT-PCR analyses were performed as
stated previously using lineage specific primers and PCR
conditions as summarized in Table 2. Three different
donors for each cell type were analyzed.

Histology and immunohistochemistry of BS cells and tissue
Following fixation with 4 % paraformaldehyde, paraffin
embedding, sectioning to 4 pm and rehydration of BS
tissues was performed as described previously [28]. A gen-
eral histological assessment of the sections was given using
hematoxylin and eosin (H&E) staining, whereas mucines
were stained using periodic acid-Schiff (PAS) staining and
collagenous structures were detected by Azan, Masson-
Goldner trichrome (MG), or van Gieson (VQ) staining as
described in detail earlier [28]. Immunohistochemical
detection of surface antigens was performed as described
above making use of antibody dilutions specific for CD44
(1:200), CD90 (1:25), CD105 (1:50) and the Strol (1:20)
antigen (all Dako Deutschland GmbH, Hamburg,
Germany) after tissue processing. For more detailed ana-
lyses of the intracellular distribution of positive Strol
staining we also employed a fluorescein isothiocyanate
(FITC) labeled Strol antibody with counterstaining of the



Steinert et al. Stem Cell Research & Therapy (2015) 6:114

nuclei using 4, 6-diamidino-2-phenylindole (DAPI) and
phase contrast (bright field) and fluorescence micros-
copy (1:10; Santa Cruz Biotechnology Inc., Heidelberg,
Germany).

Statistical analyses

The numerical data are expressed as means +/- standard
error (SEM). Determination of the statistical significance
between groups was performed using student’s ¢-test, or
the Mann-Whitney U test as indicated.
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Results

Cell morphology, proliferation and surface antigen
expressions of BS cells and BMSCs

Cells isolated from human BS as well as BMSCs have a
similar spindle-shaped, fibroblast-like morphology (Fig. 1a),
and formed colonies upon adherent culture (Fig. 1a; day
5). Proliferative analysis using the Cell Titer Glo® Lumines-
cent Cell Viability Assay showed an increase of ATP
activity over time with equal activity dimensions for both
cell types. Nevertheless time-dependent differences were
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Fig. 1 Morphology, proliferation and surface antigen analysis of BS cells and BMSCs. a BS cells have a fibroblast-like morphology typical for
mesenchymal progenitor cells like BMSCs. Scale bar = 200 um. b Comparative cell proliferation rates as determined by measurement of ATP
activity showed an increase of ATP activity in BS cells at early and a decrease at late time points as compared with BMSCs. Proliferation of both cell
types increased over time. A total of five donors were included with ten measurements for each time point and cell type. Significant differences
between the two groups are indicated by asterisks as determined by t-testing. ¢ Immunohistochemical analysis was verified by the use of mouse serum
instead of primary antibodies. The mesenchymal cell surface antigens CD44, CD90 and CD105 could be detected on BS cells as well as on BMSCs and
exhibit similar staining intensities on both cell types whereas Stro1 intensities were low for BS cells and BMSCs. Periodic acid-Schiff (PAS) staining for
mucines was exclusively positive in BS cells whereas BMSCs where negative. Scale bar = 100 pm. d For more detailed analyzes of the Stro1* areas in BS
cells and BMSCs, immunostaining with a FITC-labeled Stro1 antibody and DAPI counterstain of the nuclei was performed, revealing positive staining at
similar levels for both cell types at high resolution. Scale bar = 25 um. BMSCs bone-marrow derived mesenchymal stem cells BS bursa subacromialiss
DAPI 4, 6-diamidino-2-phenylindole FITC fluorescein isothiocyanate
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observed as BS cells have significantly higher proliferation
rates on day 3 while BMSCs surpass BS cell proliferation
at day 7-17 (Fig. 1b).

Immunohistochemical detection of the MSC-associated
surface markers CD44, CD90 and CD105 was strongly
and equally positive for BS cells and BMSCs (Fig. 1c).
Staining for the Strol antigen in contrast resulted in weak
but positive signals for both cell types (Fig. 1c). Control
cells incubated with mouse serum instead of the respective
primary antibodies showed no staining and therefore
validated the immunohistochemical investigations. Add-
itionally PAS staining for the histological detection of
mucines showed positive signals for BS cells, while BMSC
monolayer cells remained unstained (Fig. 1c). For a more
detailed analysis of the distribution of STRO1" areas in BS
cells and BMSCs, immunostaining with a FITC-labeled
STROL1 antibody and DAPI counterstain of the nuclei was
performed, revealing positive staining at similar levels for
both cell types in the respective phase contrast (bright
field) and corresponding fluorescence microscopy images
(Fig. 1d).

Further in-depth analyses of cell surface markers using
flow cytometry revealed that expression of the antigens
CD73, CD90 and CD105 was strongly positive on BS
cells and BMSCs (Table 1). Furthermore, CD166 is
highly expressed on BMSCs while BS cells have a small
subset of cells, which are negative for the respective
antigen. In contrast, CD53, CD133, CD144 as well as the
Strol antigen were not, or almost not, detectable on
both cell types. Heterogeneous cell distributions were
found for FGF, which is expressed by half of the BS cells
and BMSCs. Further differences were found concerning
the secretion of ALP: while about half of the BMSCs
were positive, only a quarter of the BS cells showed posi-
tive signals. The expression of CD34 was negative in
BMSCs, while a small subset of BS cells (7.69 %)
expressed the respective antigen. On the other hand, BS
cells showed no expression of CD106, which is in con-
trast to the moderate expression (55.55 %) of this marker
in BMSCs.

Microchip hybridization of RNA from BS cells and BMSCs

Comparative microchip hybridization analysis of the RNA
from three donors of BS cells, or five donors of BMSCs
revealed a different gene regulation pattern for the two cell
types. Significance analysis of microarray (SAM) is sum-
marized in Fig. 2a, showing a Venn diagram, depicting the
upregulation of 1,969 probesets in BS cells as compared to
BMSCs, and the downregulation of 1,184 probesets in
contrast, as well as a total of 23,866 unregulated probesets.
The 50 most up- and down-regulated probesets are
depicted in a heatmap (Fig. 2b), showing remarkable
expression differences between BMSCs and BS cells, for
example in the chondrocyte-associated genes proteoglycan
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4 (PRG4), asporin (ASPN), hyaluronane and proteogly-
can link protein 1 (HAPLN1), as well as in genes asso-
ciated with junctions and adhesion, such as laminin y2
(LAMC2), R-spondin 2 (RSPO2) and protocadherin 10
(PCDH10). Validation of the microchip hybridization was
conducted using RT-PCR (Fig. 2c). The genes for fibro-
blast growth factor (FGF) 9 and 18, proteoglycan 4
(PRG4) and mesenchyme homeobox 2 (MEOX) were up-
regulated in BS cells compared to BMSCs (Fig. 2¢). In con-
trast the genes for the markers cluster of differentiation
200 (CD200), forkhead box P2 (FOXP2), integrin-binding
sialoprotein (BSP) and WNT1 inducible signaling pathway
protein 3 (WISP3) were highly expressed in BMSCs but
nearly not detectable in BS cells and confirmed the results
of the microarray analyses (Fig. 2c). In order to identify a
molecular pattern behind this transcriptomal shift, we
performed Gene Ontology (GO) analysis with all 3,153
differentially expressed probesets. As a result, these differ-
entially expressed probesets were assigned to “molecular
function”, “cellular component” and “biological process”
and GO clusters composed of various sub-clusters such as
“stem cell development”, “stem cell differentiation”, “fibril-
lar collagen” and classes including “extracellular matrix”
or “fibrillar collagen”, among others, as indicated in Fig. 2d.
To further explore functional differences between BS cells
and BMSCs, expression of the epithelial marker for mucus
secretion mucus 1 (MUC1) was analyzed, and shown to
be expressed in both cell types with somewhat stronger
bands in the BS cells, indicating a role of this marker not
only in epithelial cells but also in stem cells of mesenchy-
mal origin.

Chondrogenic differentiation of BS cells and BMSCs
Differentiation along the chondrogenic lineage resulted
in the deposition of proteoglycans in the extracellular
matrix as determined by alcian blue staining for BS cells
and BMSCs (Fig. 3a) with staining being less intense at
the outer rim of the aggregates. Alcian blue staining of
pellets maintained in chondrogenic control medium on
the other hand showed a vanishingly low proteoglycan
secretion as compared to the induced aggregates. These
data are consistent with the mRNA expression levels of
the proteoglycans aggrecan (AGC), decorin (DEC), and
fibromodulin (FM) which are upregulated in chondro-
genic differentiated cells as compared to pellets cultured
in chondrogenic control medium (Fig. 3b).
Immunohistochemical detection of COL II was posi-
tive for both cell types after chondrogenic induction,
and negative for the control pellets (Fig. 3a). The
staining was very prominent in the inner areas of the
aggregates. Analysis of RNA expression validates the
staining with COL II being exclusively expressed by
chondrogenic differentiated pellets and not by the re-
lated controls (Fig. 3b). Furthermore, maintenance of
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BS cells and BMSCs in chondrogenic medium instead of  prehypertrophy-related marker gene indian hedgehog
control medium resulted in higher expression of the chon-  (IHH), while both mRNAs were not expressed in the cor-
drogenic SRY transcription factor box9 (SOX9), and the responding controls (Fig. 3b).
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to cells cultivated in control medium (a). Left scale bar = 200 um; right scale bar = 100 um. b Expression of chondrogenic marker genes was
evaluated using RT-PCR. Cultivation in the presence of chondrogenic medium (Ch) resulted in an increased expression of aggrecan (AGN), decorin
(DEC), SRY (sex determining region Y)-box 9 (SOX9), indian hedgehog (IHH), and collagen type Il (COL II) as compared to untreated cells (Co) for
both cell types. Expression levels of the housekeeping gene elongation factor 1a (EF1a) are shown in the last row. Representative images from

three different donors are shown. BMSCs bone-marrow derived mesenchymal stem cells BS bursa subacromialiss

Osteogenic differentiation of BS cells and BMSCs
Maintenance of BS cells and BMSCs in osteogenic
medium resulted in increasing activities of the early osteo-
genic marker ALP in comparison to untreated control
cells (Fig. 4a) with staining intensities being similar in both
cell types. Alizarin red stainings show equal amounts of
matrix mineralization in osteogenic differentiated BS cells
and BMSCs, and nearly no staining in the respective con-
trol cells (Fig. 4a).

Expression of ALP mRNA is upregulated in osteogenic
differentiated cells compared to cells maintained in osteo-
genic control medium for both cell types (Fig. 4b). Other
osteogenic markers such as collagen type I (COL I) and
Cbfal were also upregulated following differentiation

along the osteogenic lineage, with Cbfal being exclusively
expressed in differentiated cells of both cell types and not
in the related controls (Fig. 4b).

Adipogenic differentiation of BS cells and BMSCs

Olil red O staining was used for histological detection of
lipid droplets associated with adipogenic differentiated BS
cells and BMSCs (Fig. 5a) showing formation of red lipid
droplets in contrast to control cells, which lack staining.
For BS cells and BMSCs no differences could be detected
in RNA expression of mRNAs from lipoprotein lipase and
PPARy2, which were exclusively expressed in cells cul-
tured with adipogenic medium and absent in the control
cells (Fig. 5b).
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Histological and immunohistochemical characterization of
tissue sections from bursa subacromialis

For further characterization of native BS tissue, sections
were stained using several histological methods and im-
munohistochemistry for detection of surface antigens
characteristic for MSCs. H&E staining (Fig. 6a) illustrates
the general cellular composition of the tissue with its
structural units. Three different stains for the detection of

collagenous fibers were used, showing positive staining for
MG (Fig. 6b), VG (Fig. 6¢) and Azan (Fig. 6d), thus verify-
ing the rich presence of collagens within the bursa.
Periodic acid-Schiff (PAS) staining was positive for the BS
tissue revealing its gland-associated origin (Fig. 6e). Immu-
nohistochemical analyses resulted in no staining for the
mouse serum treated control cells (Fig. 6f), but stained
positive for the mesenchymal markers CD44 (Fig. 6g),

a Bursa
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o
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PPAR 12 [
= — —

Control

Fig. 5 Adipogenic differentiation of BS cells and BMSCs. Cells cultivated in adipogenic medium showed formation of lipid droplets in BS cells and
BMSCs as determined by Oil Red O staining. Cultivation in control medium in contrast did not result in droplet enrichment (a). Scale bar = 100
um. b Expression of the adipogenic marker genes lipoprotein lipase (LPL) and peroxisome proliferator-activated receptor gamma 2 (PPARy2) was
increased in BS cells and BMSCs treated with adipogenic medium (Adi), but was not detectable in cells cultivated with control medium (Co). The
housekeeping gene EF1a showed equal expression levels in all groups observed. Representative images from three different donors are shown
BMSCs bone-marrow derived mesenchymal stem cells BS bursa subacromialiss.
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bar = 100 um. Representative images of six different donors are shown

Fig. 6 Histological and immunohistochemical characterization of paraffin embedded tissue sections from bursa subacromialis. Tissue sections
were histologically analyzed and stained for general evaluation with a hematoxylin and eosin stain (H&E), stained positive for collagens using
b Masson-Goldner trichrome (MG) staining, ¢ Van Gieson (VG) staining or d Azan staining. e Detection of mucines was performed using
Periodic-Acid-Schiff (PAS) staining. Immunohistochemical detection of surface antigens was negative for incubation with f mouse serum instead of the
primary antibody serving as a negative control, but clearly positive for g CD44, h CD90, i CD105 and j Stro-1. Left scale bar = 200 pm; right scale

CD90 (Fig. 6h), CD105 (Fig. 6i), and also to some extent
for the Strol antigen (Fig. 6j).

Discussion

Bursae are saclike cavities situated in places in the body
where friction would otherwise strongly occur, facilitat-
ing the gliding of tendons over solid surfaces [10].
Bursae in shoulder joints retain the ability to regrow
after partial or total surgical removal according to our
own clinical observations. The subacromial bursa (BS)
vividly responds to rotator cuff injuries [8] and degener-
ation [19] and successfully augments rotator cuff repair
surgery [15]. Therefore the purpose of the current study
was to characterize the phenotype of BC cells compared
to the well-characterized BMSCs. Our results provide

evidence for the existence of a rich population of multipo-
tent MSCs within the BS with similar fibroblastic appear-
ance and almost similar proliferation profile compared
with BMSCs (Fig. 1). This is consistent with findings of
different MSC populations in the literature with differ-
ences in cell proliferation being attributed to different
tissue sources and disease pathologies [38—40].
Characterization of cell surface markers of BS cells and
BMSCs revealed the markers CD44, CD90, and CD105
positive by immunohistochemistry (Fig. 1c) and flow
cytometry (Table 1) which is consistent with the abundant
literature in the MSC field [28, 41, 42]. In contrast, the
Strol antibody showed only a slight staining in immuno-
histochemistry and was not detectable at marked levels in
either cell type using flow cytometrical methods. This
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might be an antibody-related effect [43] and corresponds
with previous findings in ligament MSCs [28]. Marked
differences between cell types could be seen in the expres-
sion of CD34, CD106 and ALP (Table 1), indicating that a
subset of cells identified in BS could be CD34" endothelial
progenitors, while a larger amount of ALP* bone progeni-
tors is present in BMSCs [44—46]. Additionally, PAS stain-
ing of mucopolysaccharides could be detected in BS cells
but not in BMSCs illustrating a major difference between
the donor sources of the two mesenchymal cell types used,
which did not impair the multilineage potential of the BS
cells (Figs. 3, 4 and 5). This finding was supported by a
strong expression of mucin marker MUCI in BS cells
(Fig. 2e). As this marker, however, was also present in
BMSCs, we can speculated on the role of secretory path-
way activation in stem cells of mesenchymal origin.

Not only did the immunohistochemical staining of
monolayer cells show a strong correlation of BS cells and
BMSCs, but detection of the same MSC markers, CD44,
CD90, and CD105, showed that positive areas for these
markers could be located on the fibrous as well as the
mucinous portions of the BS tissue, indicating the pres-
ence of MSCs within different parts of the BS (Figs. 1c and
6). Notably, variability in staining intensity may reflect dif-
ferent stages of vascularity rather than different staining
intensities in the stromal matrix of the bursa tissue. This
corresponds to the finding of MSCs in the palatine tonsil,
where stem cell niches could also be located in mucinous
and fibrous regions of this gland [39]. Therefore, it re-
mains to be seen in future experiments, whether the PAS*
subset of exocrine cells within the BS population exhibits
a different multipotency profile compared to the PAS”
fraction of the BS population (Fig. 6), and also to explore
the regenerative capacities of these cell types.

Differences between BS cells and BMSCs could be fur-
ther resolved on a molecular level using analyses of the
respective transcriptomes, indicating 7.29 % up- and
4.38 % downregulated probesets in BS cells compared to
BMSCs (Fig. 2a). Interestingly, further examinations
revealed that several cartilage and bone-associated genes
(e.g. BSP, WISP3, COL X) were exclusively upregulated
in BMSCs but not in BS cells, indicating the relevance of
the tissue source in the evaluation of transcriptional
profiles [34, 47]. This is in agreement with the finding of
FGF9 and FGF18 expression in BS cells and not in
BMSCs, with FGF9 being an inverse regulator of BMP2
[48], and FGF18 responsible for dedifferentiation of
chondrocytes and fibroblast proliferation [49]. CD200, a
regulator of macrophage activation and novel MSC
marker [49, 50], was only confirmed for BMSCs but not
for BS cells, holding the advantage to distinguish be-
tween both cell types. While microchip array analyzes
are powerful screening tools, significant variation and
room for interpretation of results has to be considered.
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Apparently, the BS is often a site of pathology in im-
pingement of the shoulder [1]. In this study, all BS cells
were obtained from patients undergoing rotator cuff
repair surgery as a result of degenerative full-thickness
tears. It is known that the size of the tear has a direct
influence on the inflammatory status of the adjacent
bursa [13], as evidenced by the increasing levels of
inflammatory cytokines, such as interleukin 1 (IL1), IL6,
metalloproteases, tumor necrosis factor o [14, 51] and
myofibroblast invasion [52]. Therefore, we cannot rule
out that myofibroblasts from the underlying rotator cuff
might have entered the bursa and added to the BS cell
population examined, as BS tissues from healthy donors
could not be retrieved, which is a limitation of this
study. Indeed, it is not possible to know where these
inflammatory bursal cells may have migrated from, or
whether they existed in the bursa to start. Thus, future
studies are necessary to understand better the impact of
the inflammatory microenvironment on MSCs for their
application in therapeutic protocols.

Only recently, the BS has been identified by others as
a novel source of MSCs within the shoulder, confirming
their differentiation potential into the chondrogenic,
osteogenic and adipogenic lineage and expression of the
surface antigens CD73 and 90 [53]. Furthermore BS cells
were also found to express the surface markers CD29 and
platelet-derived growth factor receptor-beta (PDGEFRB)
[53], which have not been tested in this study. Addition-
ally, we are able to provide detailed insight into the
expression of a series of commonly used surface antigen
markers of BS cells compared to BMSCs (Table 1) and
give insights into the comparative transcriptome charac-
teristics between these two cell types (Fig. 2). Interestingly,
BS cells have also been shown to be able to undergo
neurogenic [54] and tendogenic differentiation [55] under-
lining their potential impact for the treatment of subacro-
mial pathology. Because of the similarities between both
cell types, as shown in this work, it is also conceivable that
BMSCs, which can be easily obtained from bone marrow,
might be harnessed to augment reconstitution of the suba-
cromial bursa after surgical removal, providing potential
support for the restoration of the gliding mechanism after
such treatments.

Conclusions

The present study shows that cells isolated from the
subacromial bursa of the shoulder meet the minimal
criteria for their classification as MSCs [56]. Although
in certain areas, marked differences between BS cells
and BMSCs could be resolved on molecular levels (e.g.
ALP expression, transcriptome), both cell types could
be expanded using plastic adherence, are capable of
multilineage differentiation, and showed a similar ex-
pression of several MSC surface markers, indicating the
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MSC potential of the BS cells. Such multipotent BS
cells can be located at high density in the fibrous, as
well as the mucinous parts of the BS tissue. Thus, we
conclude that BS tissues can be regarded as a reservoir
rich in MSCs within the shoulder, and it remains to be
seen in further investigations, whether this knowledge
might be harnessed for the development of improved
treatments for subacromial pathologies.
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