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Abstract 

Background:  Breast cancer is a serious disease which affects many women and may lead to death. It has received 
considerable attention from the research community. Thus, biomedical researchers aim to find genetic biomarkers 
indicative of the disease. Novel biomarkers can be elucidated from the existing literature. However, the vast amount of 
scientific publications on breast cancer make this a daunting task. This paper presents a framework which investigates 
existing literature data for informative discoveries. It integrates text mining and social network analysis in order to 
identify new potential biomarkers for breast cancer.

Results:  We utilized PubMed for the testing. We investigated gene–gene interactions, as well as novel interactions 
such as gene-year, gene-country, and abstract-country to find out how the discoveries varied over time and how 
overlapping/diverse are the discoveries and the interest of various research groups in different countries.

Conclusions:  Interesting trends have been identified and discussed, e.g., different genes are highlighted in relation-
ship to different countries though the various genes were found to share functionality. Some text analysis based 
results have been validated against results from other tools that predict gene–gene relations and gene functions.
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Background
Introduction
CANCER is one of the most serious and harmful diseases 
threatening humanity and may lead to death. Unfortu-
nately there is no discovered robust treatment which 
leads to guaranteed cure from cancer. Thus, researchers 
from various domains are still working hard to identify 
molecules (mainly genes or proteins) which could be han-
dled and targeted as cancer biomarkers. Various methods 
have been developed. The research spans a wide range 
of techniques from wet-lab testing by biologists to com-
putational methods by computer scientists. The latter 
research is promising because it helps in tremendously 

reducing the number of molecules to consider as poten-
tial biomarkers.

Cancer is a result of damage (mutation) to a cell’s DNA 
(deoxyribonucleic acid), so that the cell loses normal 
functionality and instead gains the ability to indefinitely 
multiply until normal tissue functions are impaired [1]. 
Cancerous DNA mutations may occur from a complex 
mixture of inherited and external (environmental) fac-
tors, where these mutations are usually located in cell 
division genes [1]. There are over 100 known different 
types of cancer, depending on the cell type which was 
originally affected [1]. Additionally, each patient may 
have a different set of cancerous mutations in various 
genes, which may lead to different subtypes of the cancer. 
In order to personalize therapeutic strategies for cancer 
patients, medical researchers aim to identify and char-
acterize the biomarkers of each type of cancer, so that 
they can provide the most accurate diagnosis to patients 
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[2]. A cancer biomarker refers to a substance or process 
that serves as indication of cancer in the body, where one 
common example of a cancer biomarker is genetics [3].

The basic unit of genetic biomarkers are genes. A gene 
is one unit of the DNA which often contains the informa-
tion needed to produce proteins. The central dogma is 
that genes are transcribed into an intermediate molecules 
called RNA, and the RNA is then translated into proteins, 
where proteins carry out the basic functions of life [4]. If 
a gene codes for a protein whose function is to suppress 
cancer, then if that gene is damaged or is downregulated 
(not transcribed enough), then the cell may become can-
cerous. Similarly, if a gene codes for a protein whose func-
tion is to promote cancer, then if that gene is upregulated 
(transcribed more than usual), then that cell may also 
become cancerous. Therefore, finding the different genes 
and conditions which are likely to lead to cancer, should 
the genes be upregulated or downregulated, is an impor-
tant task for characterizing types of cancer. The problem 
is not trivial because there are various internal and exter-
nal factors that might affect the cells leading to cancer. 
People do not have the same habits and behavior. Thus 
they may develop the same cancer differently based on the 
environment they live in, their diet, drinking, etc. Also, 
some types of cancer, such as breast and prostate cancer 
can be strongly influenced by inherited gene mutations, 
and often run in families [5]. Therefore, these heritable 
types of cancer may be predicted by examining a person’s 
DNA before they develop cancer. Identifying the heritable 
genetic mutations that increase the likelihood for cancer 
are critical to developing predictive genetic tests.

Our framework described in this paper is built on the 
hypothesis which could be articulated as follows. To 
investigate cancer biomarkers, one may investigate the 
literature which contains a huge amount of informa-
tion hidden in the form of scientific articles. However, a 
query for “breast cancer” to PubMed can retrieve over 
250,000 articles, which makes it impossible to get a full-
picture of the field by reading them. The trend is that the 
number of PubMed articles are steadily increasing, and 
so are articles on the topic of breast cancer that mention 
gene names argued as potential biomarkers (see Fig.  1). 
Therefore, using text mining techniques to gather new 
knowledge from many existing scientific sources can be 
an effective way to investigate the literature for new bio-
markers. One type of relationship which can be discov-
ered is gene-disease, that shows which gene is involved in 
which disease [6]. Another type of relationship which can 
be found are gene–gene interactions [7].

Some data mining techniques that can be used to 
extract hidden information from a database are hard 
clustering, soft clustering, hierarchical clustering, and 
frequent pattern mining [8]. All of the aforementioned 

techniques are described in more detail in “Results and 
discussion” section. Each data mining technique uti-
lizes different interestingness metrics, so it is useful to 
apply many techniques to a data set. Another technique 
we used on the genes extracted from the breast cancer 
abstracts was network analysis, or “Social Network Anal-
ysis” as it is sometimes referred to [9]. Network analysis 
has its roots in sociology, as it was first used to study 
the relationships and community structures in social 
data. However, network analysis has since been applied 
in other fields such as bioinformatics in order to find key 
molecular markers and communities within an interac-
tion network.

To validate genes linked to cancer, one of the most 
effective ways is to analyze disease specific gene expres-
sion data [10].

Gene expression data is experimental data which 
can be used to check whether a gene has indeed been 
upregulated or downregulated with respect to a dis-
ease. This methodology compares to what level genes 
were expressed in cancerous cells versus healthy cells. 
It is unaffordable and infeasible to try wet-lab analysis 
of such a huge set of genes. Therefore, machine learn-
ing and data mining techniques (including frequent pat-
tern mining, clustering and classification) can be used 
to lower this number of genes down to a manageable set 
of genes which are anticipated to be statistically linked 
with the disease. This way, biologists will concentrate 
only on the identified small set as potential cancer bio-
markers instead of unrealistic case of testing every gene 
in the wet-lab as potential cancer biomarker. In other 
words, data mining techniques can save the time and cost 
of cancer researchers, turning their research goals into 
something potentially achievable. This is illustrated by 
the test results reported in this paper.

The paper is organized as the following sections. The 
problem explanation is made in “Problem explana-
tion” section. “Related work” section describes the work 

Fig. 1  Growth in number of abstracts about breast cancer in Pub-
Med
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related to our solution. In “The developed solution” sec-
tion, the developed methodology is given in detail. The 
experimental results are depicted in “Evaluation of the 
developed solution” section. Lastly, contributions and 
future work are mentioned in “Results and discussion” 
section.

Problem explanation
Identifying cancer biomarkers is not a trivial task. 
Despite all the effort, time, and money invested so far, 
the progress is still very little. Indeed the body is affected 
by various internal and external factors which altogether 
may lead to cancer. As the factors differ from person to 
person, the samples taken from two cancer patients may 
not reveal exactly the same information. Thus, there is a 
need to develop new techniques which could better ana-
lyze the existing sources of data with the hope to lead to 
more useful discoveries.

In this paper, we aimed to perform large-scale text 
analysis of biomedical abstracts in order to generate new 
hypothesis about cancer biomarkers. The target was to 
develop a data mining methodology, which would lead to 
patterns in the genes which are associated with cancer. In 
the this section we will discuss the tasks involved in text 
mining.

Text mining
Text mining is typically comprised of four stages [11, 
12]: (1) information retrieval (IR), where a set of textual 
materials are gathered for a given topic; (2) entity recog-
nition (NER), where textual features are identified from 
the gathered texts; (3) information extraction (IE) which 
aims to extract relationships among the recognized tex-
tual features; (4) knowledge discovery (KD), where the 
extracted relationships are used to identify useful pat-
terns from the data set. The rest of this section is dedi-
cated to explain each stage and how they can be applied 
to biomedical text mining.

Information retrieval for  text mining  The first step in 
text mining is to gather the papers which are relevant to 
the topic of interest. There are a number of IR systems, 
including centralized institutional like PubMed and UK 
PubMed Central (UKPMC), or commercial systems like 
google scholar. The best known one is PubMed [11–13], 
which searches the MedLine database.

First, we can categorize an IR engine by the input. The 
topic may come from a query provided by the user, and 
this method of defining the topic is called ad hoc [14]. 
The other kind of IR system is called text categorization, 
where the input is a set of papers. Ad hoc has some limi-
tations compared to text categorization [13]. PubMed 
is an ad-hoc system. Second, we can also categorize IR 

engines in terms of the scope of content delivered. For 
example, PubMed produces a comprehensive search of 
articles, but only retrieves the abstracts of the articles. In 
contrast, UKPMC returns the full text of articles [13].

Entity recognition (NER)  Once we have a subset of the 
available scientific literature which pertains to our topic, 
we must identify terms which are relevant to our study. 
NER has the aim of identifying terms within the gathered 
text, such as the names of different proteins or genes. 
The first task of these systems is to identify the biologi-
cal entity names. The second task of NER is to identify 
the unique entity names. However, identifying biological 
terms is challenging due to the following reasons [12]:

• • Biomedical terms often have synonyms (e.g., PTEN 
and MMAC1 refer to the same gene).

• • A term may have different meanings (e.g., Cancer can 
also mean the astrological sign).

• • Acronyms may lead to ambiguities (e.g., BC may 
mean breast cancer or it may mean British Colum-
bia).

These challenges can make the naming of the biologi-
cal entities quite imprecise. However, some strategies 
to overcome these drawbacks have been implemented 
in NER systems. One method is to integrate different 
vocabularies and ontologies which hold complete lists of 
biological entity names [12]. For example, gene ontology 
is a classification effort to describe what we know about 
genes, including to develop controlled vocabularies about 
those genes.

Early NER systems were rule-based with manually 
designed rules based on word structures. More recently 
NER systems have shifted to machine learning tech-
niques which can recognize characteristics of words. A 
third type of NER systems is dictionary-based, which is 
the most effective due to the fact that it can recognize 
synonyms. In addition, it is also possible to use algo-
rithms which can disambiguate acronyms automatically 
[11]. Some examples of NER systems that recognize bio-
medical entities are NCBO annotator, cTAKES, Meta-
Map, and BeCAS. A study which compared these four 
systems using their own ground truth determined that 
BeCAS performed differently compared to the other 
three systems [15]. BeCAS performed more poorly over-
all, but BeCAS recognized larger sentences than the 
other systems, which may have been underrepresented in 
their evaluation [15].

Figure 2 shows how an NER system may annotate bio-
medical terms. For example, in our problem, we require 
the genes associated with breast cancer. Therefore, we 
may use BeCAS to first find biomedical terms, then to 
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label proteins and genes, followed by verification with 
the UniProt database using the given UniPROT ID. 
UniProt is a database which stores genes and proteins 
information.

Information extraction (IE)  The aim of IE is to extract 
relationships between the biological entities mentioned in 
the text. There are two approaches for this: co-occurrence 
processing and natural language processing (NLP) [11]. In 
co-occurrence processing, the entities are deemed to be 
related if they occur in the same text. For example, the 
relationships found are usually of the type gene–gene, or 
gene-disease. However, in co-occurrence processing, one 
cannot extract directional relationships between entities.

Through NLP, the directionality of the relationship 
between the biological entities can also be found. NLP 
analyzes the syntax and semantics of the sentence which 
contains the entities. However, NLP is better suited for 
full-text mining rather than abstract mining. The con-
cise nature of abstracts makes it difficult to analyze the 
context of the biological entities [14]. Also, due to their 
complexity, NLP systems are designed for limited and 
specific types of relationships, and only a few systems can 

recognize multiple types of relationships [14]. As further 
discussed in “The developed solution” section, we used 
BeCAS API [16] to annotate and extract co-occurrences 
of biomedical concepts such as gene, protein, etc.

Knowledge discovery (KD)  KD is the extraction of 
knowledge from a large volume of structured and/or 
unstructured data. The goal of KD is to uncover novel 
knowledge from existing data. Novel data can be in the 
form of hidden relationships among biological entities. 
For example, if A is related to B, and B is related to C, text 
mining can infer the relationship that A is related to C. It is 
difficult for people to discover indirect relationships from 
a large amount of data. KD is often used to gain biologi-
cally meaningful knowledge about how biological entities 
are related.

Hypothesis generation
One of the newer approaches described in the literature 
is to generate scientific hypotheses through text mining 
[11, 13]. KD can be used to generate scientific hypoth-
eses, for example about relationships between entities, 
which have yet to be validated. Whereas KD attempts to 
discover biological meaning about a set of facts, hypoth-
esis generation attempts to discover whole new relation-
ships. Hypothesis generation can be useful at directing 
scientists to which genes they should study without wast-
ing much resources on the exploration.

The work described in [11] describes two ways in which 
hypothesis generation can occur: one way is to start with 
the microarray data to identify genes hypotheses, and 
then to support these hypotheses with literature mining. 
The second is to generate hypotheses through literature 
mining, and then validate the hypotheses through experi-
mental data, such as microarray data. We decided to 
investigate the second method of hypothesis generation; 
actually, Faro et al. [11] identified the field as more lack-
ing in research.

Evaluation
Some related work that use biomedical text mining to 
generate hypotheses have evaluated their results with 
experimental data [11, 17]. Experimental data can consist 
of gene expression data, which often comes in the form of 
microarray data. Gene microarray experiments are per-
formed using specific tissue samples, and they measure 
the presence of the intermediate molecule RNA, so that 
we can know which genes are important in particular 
conditions [18]. Some genes may be up- regulated, which 
means that they were transcribed more, and we say that 
these genes were ‘expressed’. Otherwise, the genes may 
be down-regulated, which means that the genes were 
not ‘expressed’. Genes that were expressed together at the 

Fig. 2  Text annotation using BeCAS
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same time may have a relationship together, and we say 
they are ‘co-expressed’.

There are publicly available online repositories that 
store experimental data, as well as the gene–gene rela-
tionships and gene functionalities derived from experi-
mental data. Some tools such as GeneMania have been 
built that show the relationships between genes by inte-
grating information from various databases [19]. Tools 
such as GeneMania may be useful for validating the 
gene–gene relationship hypotheses. There are also tools 
such as DisGeNet [20, 21] and FunDo [22] that identify 
gene-disease relationships from curated sources.

Related work
Faro et al. [11] described the methodology of hypothesis 
generation from literature, combined with experimental 
data evaluation, to be quite novel in 2011. In this section, 
we will describe some of the tools and methodologies 
which have been used for hypothesis generation from 
biomedical literature.

GeneWizard is an application which allows users to 
generate biological hypotheses based on text mining, 
and then evaluate the hypotheses through gene expres-
sion data [17]. One advantage of this tool is that it can be 
used to generate hypotheses about genes of any disease, 
whereas our methodology has so far been focused on 
breast cancer. However, in the future we aim to try our 
methodology on other cancer or diseases as well.

For the IR step, GeneWizard also used PubMed to 
retrieve articles related to the disease of interest, just as 
we did in our methodology. For NER, GeneWizard recog-
nizes the biological entities related to a disease by using 
dictionaries created for the disease and for the genes. 
To identify relationships between genes, GeneWizard 
performs clustering of the abstracts, based on similarity 
matrices constructed from abstracts, based on the fre-
quencies of the disease and gene terms.

Another goal of GeneWizard is to be highly usable, 
so that not much experience with text mining methods 
is required of the users. Faro et  al. [11] stress that it is 
important for tools that generate biological hypotheses 
to have a high usability, since the audience who use these 
tools are likely to be biologists, not computer scientists.

Another tool is called BioWizard, which is very similar 
to GeneWizard, yet it performs full-text analysis instead 
of abstract analysis [23]. Also, BioWizard was tested 
against gold standard gene-disease relationships in order 
to check the precision of the recall, in addition to experi-
mental data in the form of microarray data. This system 
was then moved to the cloud in order to perform more 
intensive computations in a shorter amount of time [24].

Another study which generated hypotheses from litera-
ture performed the IE step by splitting the abstracts into 

sentences and considered the sentences which contained 
an interaction plus two gene names [25]. A network of 
genes was built from the extracted genes and interac-
tions. The genes which ranked the highest in centrality 
measures were manually validated by looking through 
literature. A similar study was done by [6], and high accu-
racy was achieved for finding actual gene-disease rela-
tionships in prostate cancer. Interestingly, even genes 
which were missed later turned out to have an article 
written about how they were indeed involved in prostate 
cancer [6].

Our contribution is that we will use different data min-
ing techniques and various APIs for the different stages of 
the text mining, and that we will investigate relationships 
such as gene-country, gene-year, and abstract-country 
which have not been investigated by other papers so far. 
We explored how these new types of relationships can 
help to generate hypotheses about which genes should be 
studied.

Methods
The developed solution
Overview
Figure  3 illustrates the steps of the methodology. Our 
goal is to contribute novel ideas for KD and hypothesis 
generation related to genes involved in breast cancer. We 
decided to use ready-API’s for IR, NER, and IE parts of 
the developed framework. The first step in our solution 
was the IR step, where our goal was to retrieve all rele-
vant papers related to our topic of interest: breast cancer.

Although full-text analysis contains more informa-
tion than abstracts [11, 12, 14], we chose to examine 
abstracts because they contain the most important and 
concise keywords. Also, due to their shorter length, their 
analysis would be much faster to compute, so this would 
enable us to do a larger scale text analysis. Moreover, we 
speculated that full-texts may contain references to other 
genes which are not necessarily related to breast cancer, 
or genes that may be relevant to other cancer, which may 
add to the noise. In other words, although full-text min-
ing may produce a higher recall, abstract based text min-
ing may produce a higher precision. Therefore, our first 
step was to retrieve as many biomedical abstracts related 
to breast cancer as possible. All of the abstracts which we 
used for the analysis were retrieved using the PubMed 
API to the MedLine database. We chose to use PubMed 
because it is the most well-known search engine for bio-
medical papers [11, 12, 14]. The search keywords that we 
used were “breast cancer”. The total amount of abstracts 
which were retrieved from PubMed was 289,510 in the 
month of October, 2014. We then filtered the papers so 
that the remaining subset of 225,059 that had an abstract, 
title, authors, and a journal name. Of the paper set that 
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was excluded, 62,752 papers did not have an abstract and 
257 did not have a date.

The PubMed API also provided extra information about 
the articles, such as keywords, title, abstract, authors, 
affiliation of authors, publishing date, and journal name. 
In addition to the abstracts, it was useful to receive most 
of the extraneous data in a standardized format, because 
we could use it to perform additional analysis on breast 
cancer data. However, not all of the data was clean and 
therefore they required more processing, such as author 
affiliation. We will later discuss how we processed author 
affiliation in order to use it for the analysis. In the next 
step, we recognized the named entities in the abstracts 
and titles. We used an online API called BeCAS, which 
identifies biomedical concepts in text [16]. In our opin-
ion, BeCAS is a well-documented API; it performs well 
enough at identifying biomedical terms. Further, another 
important reason for using BeCAS was because it is inte-
grated with PubMed such that it requires only the Pub-
Med ID of the abstract in order to perform the analysis. 

Thus, we did not need to upload the abstract itself into 
BeCAS. This saved computational memory and time.

The named entities we were interested in are genes and 
proteins. Since we wanted to consider only genes for our 
analysis, we collected the genes from the text, but we also 
collected genes which were associated with proteins that 
were mentioned in the text. Another reason for using 
BeCAS is because it is well-integrated with the UniProt 
database [26] which stores genes and proteins informa-
tion. For each protein and gene, BeCAS provided the Uni-
Prot ID in order to verify the entity. The UniProt ID also 
allowed us to retrieve genes which were associated with 
the proteins mentioned in the text. UniProt also helps to 
address one of the biggest challenges in biomedical text 
mining, i.e., genes may contain many synonyms. UniProt 
stores known synonyms for each gene name. This helps 
to reduce the number of duplicate genes listed within the 
abstracts under alternative names. After recognizing genes 
within the abstracts as well as those associated with the 
proteins mentioned in the abstracts, we filtered the paper 

Fig. 3  Outline of the workflow and resources used in the proposed solution
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set to include only abstracts which contain genes. There-
fore, our final paper-set used in the analysis was reduced to 
117,339 papers. The abstracts which were excluded follow-
ing the NER step may be related to other aspects of breast 
cancer, possibly from a health care or psychological per-
spective, not the genetic side which we are interested in.

The next step was to generate hypotheses about the 
relationships between genes, and also between genes 
and other information associated with them, such as the 
abstracts and authors. The relationships between the genes 
were measured as co-occurrences within the abstracts, 
and the semantic relations or directionality between 
the genes were not extracted to be used in the analysis. 
Although many hypothesis-generating methodologies use 
gene–gene relationships to generate hypotheses about 
which genes should be investigated, our methodology uses 
additional information, such as the authors, locations, and 
dates. Therefore, we developed a methodology to create 
hypotheses that stem from different types of information 
that is typically used by other researchers.

One of the features that we examined was the country 
of an author’s affiliation. By extracting the country of an 
author’s affiliation, we then related the countries which 
published breast cancer papers to the genes. Interesting 
correlations were then found, such as the genes that par-
ticular countries focused on. Researchers might use the 
gene-country information to see which genes are hot top-
ics to study in a country. Another feature that we consid-
ered was the year that the abstract was published in. The 
gene-year relationship allowed us to find which genes were 
frequently mentioned together every year, which might 
lead a researcher to believe that these genes might have 
a hidden connection that needs to be further explored 
in the wet-lab. A third relationship that we explored was 
gene–gene co-occurrence frequency within the abstracts. 
An ideal analysis technique to explore the gene–gene rela-
tionships was network analysis, as the genes could be the 
“actors” and the number of abstract co-occurences could 
be the “action” between two genes. The network analysis 
technique is further discussed in “Results and discussion” 
section. Lastly, we also examined how many abstracts each 
country published in order to find which countries are the 
top contributors to breast cancer research.

For the data mining analysis, we used the software 
KNIME.1 For the social network analysis, we used 
Gephi.2 The web tools that we used to evaluate some of 
our results were GeneMania, DisGeNET, and FunDO. 
The computer used for the analysis has the following 
main specifications: Intel i5-4570 CPU, 8gb RAM, Win-
dows 10 OS.

1  http://www.knime.org (last visited 24 Nov 2014).
2  http://gephi.github.io (last visited 24 Nov 2014).

Country identification
To find countries associated with each retrieved arti-
cle, we needed to process the string which contains the 
affiliation(s) of authors, called the position (Fig.  4). The 
extra processing was required because the position often 
contained extraneous information, such as the names of 
the institution(s) and the author’s e-mail. The number of 
authors was around 500,000, but after we grouped them 
by first name, last name, and affiliation, the number rose 
to 601,287, most likely due to authors changing institu-
tions throughout their careers or having popular names 
referring to different authors at different institutions, e.g., 
‘Ken Barker’ is a popular name who exists at three insti-
tutions. There were 193,000 different possible affiliations 
for the authors who published abstracts with genes men-
tioned in them. Many authors contained multiple institu-
tions in their affiliations.

For each of the affiliations, we then wanted to find the 
associated country name. We used google maps API3 to 
retrieve the country name. We split the string into sub 
addresses using the comma delimiter. Each search was 
performed using the rightmost delimited address, which 
often contained the country name. However, when the sub 
address string was insufficient to achieve exactly one coun-
try name, we repeatedly increased the size of the string 
with the next rightmost element of the sub address. As 
seen in Fig. 4, we first made a query using sub address 1, 
and if that did not return precise enough results to reveal 
the country of origin, then we made another query which 
also included sub address 2, etc. The final set excluded all 
of the institutions inside each affiliation which did not con-
tain a valid address, which was about 1 %. One limitation 
of google maps API is that it had a daily quota of queries 
which could be submitted to the service. With our large 
number of institutions, we needed to optimize the number 
of online queries. We achieved this by constructing a cache 
system which stored all special keywords existing in the 
affiliations; this helped us to distinguish the institutions 
directly. Using the cache system, we submitted only 8558 
queries to google maps API. Altogether, we found that 
there were 159 countries with articles published under 
“breast cancer” category and contain genes.

Results
Evaluation of the developed solution
Overview
Our gene–gene results were evaluated by comparison to 
results retrieved through a web tool called GeneMania4 
which uses publicly available curated and experimental 

3  https://developers.google.com/maps/ (last visited 24 Nov 2014).
4  http://www.genemania.org (last visited 24 Nov 2014).

http://www.knime.org
http://gephi.github.io
https://developers.google.com/maps/
http://www.genemania.org


Page 8 of 35Jurca et al. BMC Res Notes  (2016) 9:236 

data to derive gene–gene relationships [19]. GeneMania 
also shows predicted relationships [19]. If most of the 
relationships that we hypothesize are also reported by 
GeneMania, then our hypothesis would be strengthened. 
Any gene–gene relationships that are missing in the 
GeneMania results have the potential to be newly discov-
ered relationships that may warrant more investigation 
by wet-lab researchers.

Our gene-disease results were evaluated by comparing 
our results to DisGeNet and FunDo, which are two web 
tools that identify gene-disease relationships.

Resources used
Evaluation of  gene clusters and  communities  For the 
evaluation of our results, we used GeneMania in order to 

link our text-mining results to results drawn from experi-
mental data [19]. GeneMania accounts for a few different 
types of interactions between genes, such as co-expres-
sion, physical interaction, genetic interaction, shared 
protein domains, co-localization, pathway, as well as pre-
dicted relationships using orthological functional data 
from other organisms. For all of our evaluations, we used 
datasets that described human genes.

Co-expressed genes are genes which had the same 
expression levels over the same conditions in a published 
study, where most of the gene expression data came from 
the gene expression omnibus (GEO) database. Another 
interaction in GeneMania is physical interaction, which 
means if two genes code for proteins that have a physical 
interaction, then the two genes have a connection. These 

Fig. 4  The extraction of the country
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protein–protein interactions were pulled from BioGRID5 
and pathwaycommons databases, which store protein–
protein interactions. The other interactions we consid-
ered from GeneMania were shared protein domains, 
Co-localization, and pathway interactions. Two genes 
partake in the shared protein domain interaction if their 
proteins have the same protein domain. Two genes have 
co-localization interaction if their proteins are found in 
the same body tissue. Finally, two genes share in the path-
way interaction if they participate in the same reaction in 
a pathway. The sources of data that GeneMania uses are 
listed in the highly cited published paper [19].

Disease identification  To find the disease which was 
most associated to each gene, we used the DisGeNET6 
API [20, 21]. DisGeNet finds gene-disease relationships, 
from either curated sources, literature based associations, 
or predicted associations. For our study, we were inter-
ested only in human gene-disease relationships, so there-
fore we only used the curated sources. The curated sources 
for DisGeNET include human gene-disease relationships 
from the comparitive toxigenomics database (CTD) and 
UniProt. We used DisGeNET to find the gene-disease 
associations for the genes found through the gene-year 
and gene-country clustering (Appendix: Tables 9, 10). The 
diseases were identified on a gene by gene basis.

For the social network analysis, we used FunDO7 to 
identify the diseases which were common between large 
groups of genes [22]. FunDO takes a list of genes and 
retrieves the related diseases, based on the disease ontol-
ogy database. The reason that we used FunDO instead of 
DisGeNET for analyzing the gene communities, is that 
FunDO provides a better analysis for common diseases 
between a group of genes. DisGeNET provides exclusive 
lists of diseases for each gene, whereas FunDO provides a 
list of shared diseases among the genes. An automated 
identification of diseases shared among groups of genes 
was beneficial, because the smallest community we 
obtained had 229 genes in community 1 (Appendix: 
Table  8). For each community from the social network 
analysis, we retrieved the top five diseases within the 
community.

Discussion
Results and discussion
Hard clustering
Clustering is the process of grouping items together into 
“clusters”, so that the items within each cluster have more 
similarity to each other than to items in other clusters. 

5  http://thebiogrid.org (last visited 24 Nov 2014).
6  http://www.disgenet.org/web/DisGeNET/v2.1 (last visited 24 Nov 2014).
7  http://django.nubic.northwestern.edu/fundo (last visited 24 Nov 2014).

Hard clustering separates items into distinct groups, 
where each item belongs to exactly one cluster. We per-
formed hard clustering on genes with respect to the 
country affiliation of the authors who published papers 
on the genes. In this section, we present our results and 
some of the interesting genes a researcher might find to 
study from the results.

Which countries have studied the largest number of breast 
cancer genes?  In Table 1, the country which published 
the largest number of articles on the topic of breast can-
cer is the United States; authors affiliated with the United 
States also published the largest number of articles which 
mention breast cancer genes. In Fig.  5, the genes were 
clustered by colour of the countries that published the 
most amount of papers on those genes. Figure 5 shows 
that the United States has studied the largest number of 
genes by far, since most of genes have been mentioned 
by abstracts affiliated with the United States. Countries 
which ranked second and third are China and United 
Kingdom respectively. The United States, United King-
dom, and China seem to have the largest support for 
breast cancer research and are leading the research 
worldwide.

In general, the difference between the top countries 
which published articles pertaining to breast cancer was 
not very different from the top countries which published 
articles containing breast cancer genes. Therefore, in 
these top countries, the molecular side of breast cancer 
was just as studied as are other aspects of breast cancer; 
this shows the importance of genetics in breast cancer 
research.

Collaborations  We assume a collaboration if a paper 
had affiliations with institutions in different countries. 
The number of collaborations between countries on arti-
cles which had to do with breast cancer occurred most 

Table 1  The number of gene mentions

All Abstracts Abstracts with gene mentions

United States 62,013 United States 33,373

United Kingdom 11652 China 6553

China 8858 United Kingdom 6041

Japan 8807 Japan 5299

Italy 8667 Italy 4621

Germany 7394 Germany 4148

France 6757 France 3642

Canada 6476 Canada 3573

The Netherlands 4071 South Korea 2144

Australia 3601 The Netherlands 1844

http://thebiogrid.org
http://www.disgenet.org/web/DisGeNET/v2.1
http://django.nubic.northwestern.edu/fundo
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likely between United States and China (see Fig. 6). How-
ever, when we considered collaborations on articles which 
mentioned breast cancer genes, countries which had the 
largest number of published articles such as United States, 
United Kingdom, and China had a slightly lower number 
of collaborations. However, countries with a lower amount 
of publications had more collaborations than before (see 
Fig.  7). Collaboration information allows researchers to 
recognize countries which are most involved in research 
as a partnership with others.

What are the top studied genes in  the breast cancer 
field?  Researchers may want to know the top studied 
genes in the breast cancer field, so that they may focus 
their research on promising genes. The top two most 
mentioned genes in the breast cancer abstracts were ESR1 
and ERBB2 (Fig. 8). The next five most studied genes were 
EGF, PGR, CDKN2A, BRCA1, and SLC20A2 (Fig. 8). In 
total, there were 21 unique genes, when we considered 
the top 10 most studied genes for the top 10 countries 

Fig. 5  The top 500 most frequently mentioned genes are shown, where radius represents the number of abstracts which mentioned the gene, and 
the colour represents the country which mentioned the gene the most

Fig. 6  Collaboration between the top 10 countries in regard to 
breast cancer abstracts
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in breast cancer research. Related to these genes, more 
detailed information is listed in Appendix: Table 11. How-
ever, please note that the curated source from DisGeNET 
did not contain information for CEAMC3, MUC21, and 
DHPS.

To measure the amount of effort that a country X put 
into a gene Y, we divided the number of abstracts from 
country X which mentioned gene Y, by the number of 
papers published from country X. All of top 10 countries 
for breast cancer research put most of their effort into 
ESR1 and ERBB2 (Fig. 9). Gene ESR1 received 11–20 % 
of the effort, with the United Kingdom contributing the 
highest effort. Gene ERBB2 is contained in 9–17 % of the 
effort, with France contributing the highest effort. For all 
the 21 unique genes, the effort ranged from 2–20 %.

Unsurprisingly, the protein products of ERBB2 and 
ESR1 are targets of drug and hormone therapy for breast 
cancer.

ERBB2, popularly known as HER2, codes for a recep-
tor tyrosine-protein kinase, which is found in membrane 
signaling complexes, and facilitates the transmission of 
cell messages [27]. If ERBB2 is over-expressed, then the 
cell may get too many messages to proliferate and to 
survive, which may lead to breast cancer. Breast cancer 
patients which are ERBB2 positive (30 % of patients) can 
be treated with the medication trastuzumab, with the 
trade name Herceptin [28].

On the other hand, ESR1 codes for the first out two 
types of estrogen receptors, which is found in breast can-
cer cells.

The estrogen receptor is a transcription factor found 
in the cytosol, but when activated by the hormone estro-
gen, it can move into the nucleus and regulate growth 

Fig. 7  Collaboration between the top 10 countries in regard to 
breast cancer abstracts that contain genes

Fig. 8  For the top 21 most frequently mentioned genes, the distribution of gene mentions by country is colored
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and proliferation genes. Estrogen receptors are over-
expressed in about 70  % of breast cancer cases. [29]. 
Three hormone drugs that are used to block estrogen 
receptors are tamoxifen, toremifene (fareston), and ful-
vestrant (faslodex) [29, 30].

We were also interested to find whether some countries 
had a greater interest in some of the genes, as compared 
to other countries. For this analysis, we wanted to avoid 
genes that had been sparsely studied, so that the results 
would not be skewed. For example, consider the situation 
where gene X has only been mentioned in two abstracts 
and studied by two countries. Then the results would 
indicate that one of the countries has invested much 
effort into this gene, although that country may have only 
published one paper on the gene. Therefore, we analyzed 
the top 21 genes, where the number of abstracts for each 
gene ranged from 419 to 11,215.

When considering the number of abstracts, the United 
States has published the greatest number of papers for 
each gene, except in one case (Fig. 10). For gene MYLIP, 

China has more abstracts than United States, with 327 
versus 312. Notably, there are some countries that follow 
closely behind the United States for some of the genes. 
For gene CEACAM3, the United States has 212 abstracts 
and Japan has 151. For gene CTSD, the United States has 
145 abstracts, and France has 114.

However, when considering the effort put into each 
gene, the United States did not hold the largest propor-
tion of effort (Fig. 11). Since the United States has pub-
lished a lot of work on many genes, then the amount of 
effort for each gene decreases. For example, although the 
United States has published five times more papers than 
the United Kingdom on gene ESR1, the United Kingdom 
placed 20  % of its effort into gene ESR1, whereas the 
United States placed only 16 %. Information on country 
effort can be useful to find the priorities that each coun-
try places on the genes, relative to other countries.

The MYLIP gene has seen more priority from China, 
with 5.0  % of China’s research effort into these gene, 
versus 0.2–1.2  % of effort coming from other countries 

Fig. 9  The division of effort by the top 10 countries, for the top 100 genes for those countries
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(Fig.  11). MYLIP also had more papers overall com-
ing from China, rather than the United States, so this 
gene seems to be quite important for Chinese affiliated 
research. Although MYLIP does not appear to be a drug 
target, it seems to be upregulated by tamoxifen [31].

MYLIP codes for a myosin regulatory light chain 
(MRLC) interacting protein [32]. The MYLIP protein 
mediates ubiquitination, which is followed by degrada-
tion of the MRLC. When the MRLC is degraded, then 
neurite (an axon or dendrite of a neuron) outgrowth is 
also inhibited.

Some other genes that received more interest and pri-
ority from particular countries were ARL11 and 4.1  % 
of effort from Australia, CASP3 and 3.1 % of effort from 
China, BCL2L14 and 3.7  % of effort from The Nether-
lands, CEACAM3 and 2.8  % of effort from Japan, and 
CTSD and 3.1 % effort from Italy (Fig. 11).

An interesting point to consider is how regulated 
breast cancer research is in each country. If the direc-
tion of breast cancer research is tightly regulated in some 
countries, then our study of publication effort towards 
the genes may reveal that direction. One way that the 

Fig. 10  The proportion of gene mentions by each country

Fig. 11  In consideration of other genes that these countries have studied, this figure shows how much of that effort was placed on these genes
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government of a country might regulate breast can-
cer research is to encourage funding for groups which 
are studying particular genes. Promising genes to study 
might be the ones which have high potential for target 
drugs, or the ones that have a higher impact on breast 
cancer for that country’s population.

One limitation is that that our paper set may also 
include genes which have only been studied in mouse 
or rat models. Therefore, it may be difficult to confirm 
how these genes have a relationship to breast cancer in 
humans.

Which genes were never mentioned by  the top 10 coun-
tries?  In total, there are 445 genes which were not men-
tioned in any of the abstracts written by the top 10 coun-
tries. The largest frequency of a gene not mentioned in 
the abstract of a top country is seven abstracts. Such a low 
frequency of seven, as compared to 18,913 for the ESR1 
gene, indicates that the top 10 countries covered most 
genes. However, examining these genes may be interest-
ing to to understand whether they have the possibility to 
be candidate genes or if they are outliers. To test this, we 
closely inspected some of genes, such as GLCE, which has 
abstract frequency of seven.

Gene GLCE codes for a protein called d-glucuronyl 
C5-epimerase, an enzyme which biosynthesizes the car-
bohydrate portion of heparan sulphate proteoglycans 
(HSPGs) present on cell surface [33]. Enzymes which 
biosynthesize cell-surface sugar have the potential to be 
implicated in cancer growth because cell-surface sugar 
and proteins (proteoglycans) are involved in signal-
ling to cells. Signalling may indicate to a cell whether it 
should divide or not. If genes or proteins which have a 
role in such a signalling pathway are defected, then the 
cell may begin to divide infinitely, and therefore become 
cancerous.

Interestingly, in one of the few research articles that 
mentioned GLCE, it was shown to have an antiprolifer-
ative effect on breast cancer cells. It was found that the 
down-regulation of GLCE may indeed lead to breast can-
cer [33]. Therefore, the case study of GLCE shows that 
although some genes may not be mentioned as frequently 
as others in the abstracts, they still have potential to be 
important genes to breast cancer.

Another example is CHRM1 gene, which had a fre-
quency of five abstracts. However, CHRM1 seems to be 
much involved in prostate cancer [34]. It codes for an 
acetylcholine receptor involved in the autonomous nerv-
ous system. Again, cell-surface receptors have a high 
potential to be involved in cancer because they form a 
crucial part of cell signalling. CHRM1 has been shown to 
have an effect on prostate cancer in a high-impact arti-
cle with 56 citations to date, although it was published 

in 2013 [34]. Therefore, another reason that some genes 
may have a low mentioning in the abstracts is that they 
have been shown to be important in another cancer, yet 
researchers are only recently investigating their connec-
tion to breast cancer. Genes which are not mentioned 
in many breast cancer abstracts may guide researchers 
to genes which require further investigation. With more 
research invested in these other genes, they may prove to 
be important biomarkers for breast cancer.

Hierarchical clustering
Hierarchical clustering is used to build a hierarchy of 
clusters, where two possible similarity measures that 
can be used are single-link and complete-link [8]. From 
a high-level perspective, Single-link clustering pro-
duces clusters based on how similar the items are to one 
another, whereas complete-link clustering produces clus-
ters based on how dissimilar the items are.

We applied hierarchical clustering between the coun-
tries, based on the genes that each country studied. We 
used the complete-linkage measure, because this meas-
ure has the advantage or producing more compact clus-
ters, which leads to a clearer hierarchy. Our clusters were 
already very similar to each other, so we wanted to create 
more separateness. The results of the hierarchical clus-
tering are displayed in Fig.  12. The hierarchical cluster-
ing revealed that Germany, Italy, and China formed one 
branch, and then the second branch was formed United 
Kingdom, Japan, United States, France, Australia, and 
Canada. Lastly, a third branch was formed by the Nether-
lands. A researcher can use Fig. 12 to see which countries 
have research interests in common.

Frequent pattern mining
Frequent pattern mining is used to find sets of items 
that occur frequently together in a database, and is often 
applied in grocery stores to discover which items the 
customers tend to purchase together [8]. Different algo-
rithms such as apriori and FP-growth may be applied to 
generate frequent item sets from a collection of transac-
tions. We applied the FP-growth algorithm to find the 
frequent item sets using the tool KNIME.

One measure of significance for item sets is support. 
Support is a decimal value that represents the proportion 
of transactions in the database that contain a particular 
item set. For example, if the item set A, B, C is found in 
10 % of all transactions, then that item set has a support 
of 0.1.

To produce more concise and pruned results, we addi-
tionally considered other constraints on the item sets, 
where each of the item sets had to be maximal closed. An 
item set is maximal if none of its super sets are frequent, 
and an item set is closed if none of its super sets have 
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an equal support value. For an additional explanation of 
maximal closed item sets, please refer to [8].

Genes frequently mentioned together by  countries  We 
computed the maximal closed frequent item set to find 
which genes are frequently mentioned together by each 
country. We arbitrarily considered the top five item sets 
and they are listed in Table 2. We then took a closer look 
at the item set which contained the following genes: 
BRCA1, ERBB2, ESR1. In Fig. 13, we used GeneMania to 
show that there is a relationship between the aforemen-
tioned genes, as found in the gene expression data and the 
literature. Red edges represent physical interaction, and 
purple edges represent co-expression.

Genes frequently mentioned together every year  Again, 
we computed the maximal closed frequent items sets for 
genes that are mentioned together every year. We arbi-
trarily considered the top five item sets and they are listed 
in Table 3. We then took a closer look at the item set which 
contained the following genes: AMN, CD40LG, CD79A, 
CEACAM3, ESR1, PRL. In Fig. 14, we used GeneMania to 
show that there is a relationship between the aforemen-
tioned genes, as found in the gene expression data and the 
literature. Blue edges represent co-localization, purple 
edges show co-expression, and turquoise lines show genes 
that belong to the same pathway.

The major genes related to top 10 diseases are repre-
sented in Table  4. Related to this table more detailed 
analysis for each gene is listed in Appendix: Tables  9 
and 10. These tables show more details about disease 

associations for genes, studied country information, and 
genes that share more diseases with related genes.

Soft clustering
Soft clustering techniques are useful when items cannot 
be distinctly separated into clusters [8]. The clusters are 
formed such that each item has degrees of membership 
to the clusters. For example, item A may have a 0.1 mem-
bership value to cluster X and a 0.7 membership value to 
cluster Y. This technique is often used when there are 
items that may belong to a ‘grey’ area. We used soft clus-
tering techniques, such as fuzzy c-means, because the 
separation between the clusters was not very clear (see 
Fig.  16). Before deciding to use fuzzy c-means, we 
attempted to use density-based clustering techniques, yet 
they were unsuccessful and only returned one cluster. We 
used Matlab toolbox8 to perform fuzzy c-means (FCM) 
clustering.

8  http://www.mathworks.com/matlabcentral/fileexchange/7486-clustering-
toolbox (last visited 24 Nov 2014).

Table 2  Represented 5 highest maximal closed frequent 
item sets for Gene-Country

Gene maximal closed frequent item set Support

ERBB2, ESR1, PGR 48.43

EGF, ERBB2, ESR1 46.54

BRCA1, ERBB2, ESR1 45.91

BRCA1, BRCA2 45.28

CDKN2A, ESR1 45.28

Fig. 12  Hierarchical clustering of the countries, based on the genes that each country studied. This figure shows how similar the research interests 
are across the countries

http://www.mathworks.com/matlabcentral/fileexchange/7486-clustering-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/7486-clustering-toolbox
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Finding the optimal number of  clusters  To find the 
optimal cluster number, we did cluster validation anal-
ysis. No validation index is reliable only by itself, so that 
is why all the indexes c (cluster numbers) between 2 
and 15 are shown in Fig. 15, and the optimum can be 
only detected with the comparison of all the results. 
We consider that partitions with less clusters are better, 
when the differences between the values of a validation 
index are minor. Cluster validation is used to evaluate 
how well the partitions have been produced [35], which 
is the reason why we chose the number of clusters as 3 
and 4. For the cluster validation, we used four valida-
tion indexes: partition coefficient (PC), classification 

entropy (CE), partition index (PI) and the Xie-Beni 
index (XBI).

In Fig. 15a, the main drawback of PC is that the values 
are monotonically decreasing as c increases. CE has the 
same problem: it monotonically increases as c increases, 
with a hardly detectable elbow point. Out of the scores 
for PC and CE, the number of clusters can be only rated 
to 3. More informative diagram is shown: PI sharply 
decreases at the c = 3 point. The XBI index is also mono-
tonically decreasing and reaches the local minimum 
while c is increasing. Considering that PI is more useful, 
when comparing different validation indexes with the 
same c, we chose the optimal number of clusters as 3.

In Fig. 15b, PC and CE again have the same problems: 
they are monotonically decreasing or increasing while c 
is increasing, which results in a hardly detectable elbow 
point. Out of the scores for PC and CE, the number of 
clusters can be only rated to 3. The more informative dia-
gram is PI, which decreases at the c = 3 point. The XBI 
index also reaches its local minimum at c = 5. Consider-
ing the PI and XBI indexes, we chose the optimal number 
of clusters as 4. To reduce the number of dimensions to 
2 (from 159 for gene-country, and 52 for gene-year) we 
used Principal component analysis (PCA) through Mat-
lab in order to visualize our data (See Fig. 16).

Table 3  Represented 5 highest maximal closed frequent 
item sets for Gene-Year

Gene maximal closed frequent item set Support

CEACAM3, ESR1 82.69

ALPPL2, CD99, CEACAM3, CHI3L1, ESR1, MUC21, SOD1 78.85

AMN, CD40LG, CD79A, CEACAM3, ESR1, PRL 78.85

AFP, CEACAM3, ESR1 76.92

CD99, DHPS, POMC 76.92

Fig. 13  Black nodes are genes listed in the third gene-country item set in Table 2. As described by GeneMania, the purple connections represent co-
expression, whereas the red connections represent physical interaction between the gene products
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Where do key genes lie in  the soft clusters?  We wanted 
to answer the following questions: Do key genes lie in 
the fuzzy areas of the clusters? Did the key genes belong 
among different clusters? Did all the key genes belong to 
one cluster? We wanted to compare the results of the fre-
quent pattern mining to that of the soft clustering.

The genes frequently mentioned together by country 
and year (see Tables 2, 3) which were found from a fre-
quent mining analysis (FCM) are marked by a blue lxl 
in Fig. 16 which represents the soft clusters in 2D space. 
We then cross-matched the genes of the frequent pattern 
mining itemsets from Tables  2 and 3 with the genes of 
the FCM clusters. All of the genes were found to be in 
the fuzzy areas of the clusters, which means that none of 
the genes strictly belonged to one of the clusters (Fig. 16). 
This might mean that the genes in the closed maximal 

Table 4  Top 10 diseases associated with  genes derived 
from  the union of  the top 5 gene-year and  gene-country 
itemsets

Disease name Genes

Breast neoplasms ERBB2, ESR1, PGR, EGF, BRCA1, 
BRCA2, CD99, AFP

Adenocarcinoma ERBB2, PGR, EGF, CDKN2A, CD99

Mammary neoplasms, experimental ERBB2, PGR, BRCA1, AFP

Carcinoma ESR1, PGR, BRCA1, CD99

Prostatic neoplasms ERBB2, EGF, BRCA1, BRCA2

malignant neoplasm breast PGR, BRCA1, BRCA2

Glioma ERBB2, CDKN2A, CHI3L1

Hypertension CHI3L1, SOD1, POMC

Neoplasm BRCA1, CDKN2A, CD99

Ovarian neoplasms ERBB2, BRCA1, BRCA2

Fig. 14  Black nodes are genes listed in the third Gene-Year item set in Table 3. The connections between the genes are described by GeneMania as 
blue for co-localization of the gene products and purple for co-expression of the genes
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frequent item sets are key genes that are often mentioned 
with other genes as well across articles.

Network analysis
Network analysis, often called “Social Network Analysis” 
because it was first developed to study social structures, 

is a strategy to find communities within data [9]. Net-
work analysis takes into consideration a set of “actors” 
and a set of “actions” between the actors. The character-
istics of the actors are secondary in importance to the 
relationships between the actors.

Fig. 15  Validation of the number of fuzzy clusters using various measures

Fig. 16  Two dimensional representations of the fuzzy clusters for the gene-year (a) and for gene-country (b) relationships. For the gene-year clus-
ters, the number of clusters was set to 3, whereas for the gene-country clusters the number of clusters was set to 4. Each color represents a different 
cluster. Points marked by a blue’x’ are the maximal closed items from the frequent mining analysis in Tables 2 and 3
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There are various measures that one can use to find 
key actors within the network. One measure is called 
modularity, which is an integer that denotes what com-
munity a particular actor belongs to. Another measure is 
called closeness, which is a relative measure for the num-
ber of shortest paths an actor has to all other actors. The 
higher the closeness value that an actor has, the more 
connected this actor is to all other actors through short 
paths. In terms of sociology, an actor with a high close-
ness would be highly efficient at spreading information 
to a lot of people. A third measure that we will reference 
in our work is betweenness. Betweenness measures the 
number of shortest paths that pass through an actor. In 
terms of sociology, an actor with high betweenness is the 
best “middle man”, and if removed from the network, will 
disconnect a lot of people and communities.

We applied network analysis on the genes that we 
collected by considering the genes as “actors”, and the 
“actions” as co-occurrences within the abstracts. To con-
duct network analysis, we first built a weighted adjacency 
matrix between all of the genes we collected, such that 
each intersected value between two genes represented 
the number of abstracts that these two genes co-occurred 
within.

After creating the gene–gene network from the adja-
cency matrix, the network contained noise comprised of 
some genes which were unconnected to any other genes 
which made it difficult to comprehend, as seen in Fig. 17. 
The full network contained 8400 nodes with 213,894 
edges (Table 5). To get more concise results, we then did 
connected component analysis in order to reduce the 
number of edges and nodes to get the giant component. 

Fig. 17  The full gene–gene network derived from the co-occurrence of genes within the abstracts. The ring of noise (disconnected genes) sur-
rounds the network. The network is difficult to understand in this form, prior to pruning
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If the largest component takes a significant part of the 
graph, then it can be considered as the giant component 
[36]. Our giant component contained 90.71 % of the full 
network (see Table 5). However, the number of edges in 
the giant component, 213,877 was almost unchanged 
from the number of edges in the full network.

To further prepare the network for analysis, we pruned 
edges with weight less than 10, where edge weight is the 
frequency of genes’ co-occurrence in the abstracts. The 
pruned network was therefore more condensed and 
showed stronger connections, or the heart of the full 
network 18. To the pruned network, we applied some 
network measurement techniques: closeness, between-
ness, and modularity. The results of the measurement 
are reported in Table  6, ordered by their closeness and 
betweenness values. Depending on these measurements, 
we can see the first 10 most important genes in the net-
work, which are listed in Table 6.

In Table 6, the modularity values show which genes are 
making communities together, similar to clustering. For 
example, ESR1, ERBB2, SLC20A2, EGF, and PGR are part 
of the same community because they all have a modular-
ity class of 2. To validate these results, we wanted to see 
if this community could also be found in experimental 
data. We manually validated the genes listed in Table  6 
using BioGrid which is similar to GeneMania, because it 

uses analyzed experimental data from published articles 
in order to show communities of genes. We found that all 
genes except SLC20A2 had a physical interaction in the 
community. However, when we entered ESR1, ERBB2, 
SLC20A2, EGF, and PGR into GeneMania, it showed that 
all genes were indirectly related, either through shared 
protein domains, co-expression, pathways, etc. We, 
therefore, found some experimental evidence that genes 
in group 2 were indeed related, although the interaction 
may be indirect. Researchers can use these communi-
ties to find genes which may be indirectly connected, and 
then use experimental evidence to potentially strengthen 
the connection of these genes into the community.

Similarly, for genes CDKN2A, BRCA1, and HLA-H 
which all belong to modularity class 6, we performed 
analysis similar to that of modularity class 2. Using 
BioGRID, we found published evidence that CDKN2A 
and BRCA1 have a direct physical interaction, but not 
with HLA-H. However, using GeneMania, we found that 
there is an indirect interaction between HLA-H and the 
other two genes. For CDH1, we performed a different 
analysis, to confirm that this gene has a strong gene-dis-
ease relationship with breast cancer. We found that 
CDH1 has been experimentally shown to strongly influ-
ence the presence of breast cancer.9 For ACAD-9, we per-
formed analysis similar to that of CDH1. To the best of 
our knowledge, we could not find experimental data 
which linked ACAD-9 to breast cancer. However, we 
decided to look further down the list of the most con-
nected genes to find the next two genes which belong to 
class 5, so that we could perform an analysis similar to 
class 2 and 6. The next two well-connected genes of class 
5 are MAPK10 and KRAS. GeneMania indicated that 
these genes are indirectly connected. Since MAPK10 
codes for a protein centrally involved in a host of signal-
ling pathways,10 it is likely that it is involved in cancer. 
Signalling proteins indicate to the cells whether they 
should proliferate or not, so should the protein function 
be defected, the cell may divide indefinitely as a cancer 
[34].

We examined the smallest community (community 
1 is chosen, yellow nodes in Fig. 18, which includes 229 
nodes) from the pruned network to see how well the gene 
nodes were connected using the GeneMania resource. 
The results of the analysis are displayed in Fig. 19, where 
all genes are connected through co-expression, except 
for four genes: SPRR2A, C5orf27, FOXP4, and MT-ND3. 
The large number of connections through co-expres-
sion provides experimental support for this community. 
Genes which were not co-expressed with the others in 

9  http://ghr.nlm.nih.gov/gene/CDH1 (last visited 24 Nov 2014).
10  http://www.ncbi.nlm.nih.gov/gene/5602 (last visited 24 Nov 2014).

Table 5  Statistical information for gene–gene network

Nodes % Edges %

Full network 8400 100 213,894 100

Giant component 7620 90.71 213,877 99.99

Pruned giant component 1089 12.96 6815 3.19

Table 6  Network Analysis measurements for  the gene–
gene network

The top 10 genes with the highest betweenness are shown, as well as the top 10 
genes with the highest closeness. The modularity class is also shown, where it 
denotes the community that the gene belongs to

Between-
ness 
centrality

Modularity 
class

Closeness 
centrality

Modularity 
class

ESR1 0.09 2 ESR1 0.62 2

ERBB2 0.06 2 ERBB2 0.6 2

CDKN2A 0.04 6 CDKN2A 0.58 6

SLC20A2 0.03 2 SLC20A2 0.57 2

EGF 0.02 2 EGF 0.57 2

PGR 0.02 2 PGR 0.56 2

BRCA1 0.02 6 ACAD9 0.55 5

CDH1 0.02 0 CDH1 0.55 0

ACAD9 0.02 5 MAPK10 0.55 5

HLA-H 0.02 6 TKT 0.55 2

http://ghr.nlm.nih.gov/gene/CDH1
http://www.ncbi.nlm.nih.gov/gene/5602
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the community may be genes which have yet to be vali-
dated into the community; this community may serve as 
a hint to primary researchers who wish to find other con-
nections for these genes. If a researcher would like to fur-
ther validate the other communities with GeneMania, we 
have provided the full list of network analysis genes and 
their modularity class (the community they belong to) in 
Additional file 1.

Table  7 shows which diseases are more common in 
each community so that we can group and target these 
communities based on their problem to cure. More 
detailed information about community-disease relation 
is represented in Appendix: Table  8. This table shows 
the top five diseases for each community and the num-
ber of genes related to each disease and the name of 
these genes. For example, communities 0, 2, 3, 4, and 6 
are more related with cancer and its types such as breast 
cancer. While these communities are targeted for can-
cer treatment, communities 1 and 4 for diabetes mel-
litus, and community 7 for leukemia may be focused on 
treatment.

Castro et al. [37] have reported in their work that ESR1, 
FOXA1, GATA3, SPDEF, AR, RARA and XBP1 are criti-
cal for ER+ disease and known to be central to breast 
cancer risk. In our results, all these genes are found in 
community 2 which is the mainly related to the breast 

cancer, except that XBP1 is in community 3 (see Addi-
tional file 1).

Conclusions
The work described in this paper contributes a novel 
framework which is capable of investigating how 
research groups in various countries address breast can-
cer. We investigated the genes or proteins studied by vari-
ous research groups by carefully analyze their published 
research articles to identify the molecules they reported 
as biological biomarkers of breast cancer. Interestingly, 
we realized that researchers have reported interest in a 
variety of genes over time and even based on the coun-
try where the research is conducted. This might be due 
to other external factors particular and specific to each 
community or country, though some of the discovered 
genes were reported to have similar function. Thus we 
demonstrated how the gene–gene, gene-year, and gene-
country relationships provide some interesting gene 
hypotheses that primary researchers might consider in 
their research. Further, this paper shows the power of 
integrating data mining and network analysis techniques.

As future work, we will also account for the seman-
tic relations or directionality between the genes. For 
example, we will find relationships such as “gene A up-
regulates gene B”, rather than “gene A and gene B have a 

Fig. 18  The gene–gene network. Each community is represented as a different color
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relationship due to co-occurence within an abstract”. We 
will also attempt to upgrade the text mining application 
to perform full-text analysis, rather than abstract analy-
sis. Although abstracts are useful because they summa-
rize the articles, the full text of the articles contain more 

information, especially the experimental analysis and 
discussion sections. However, full-text mining presents 
many more challenges, such as errors from conversion 
to plain text, and problems with reading text from tables 
and figures [38]. We are currently investigating other 

Table 7  Common diseases in each community

Cancer Breast 
cancer

Prostate 
cancer

Diabetes 
mellitus

Colon 
cancer

Obesity Leukemia Hyperten-
sion

Athero-
sclerosis

Rheu-
matoid 
arthritis

Embryoma

Community 0 X X X X X

Community 1 X X X X X

Community 2 X X X X X

Community 3 X X X X X

Community 4 X X X X X

Community 5 X X X X X

Community 6 X X X X X

Community 7 X X X X X

Fig. 19  The co-expression network retrieved from GeneMania, which was used to validate the relationships between the genes within the smallest 
community (community 1) from our gene–gene network. Each circle represents a gene, and each purple line represents co-expression between the 
connected genes



Page 23 of 35Jurca et al. BMC Res Notes  (2016) 9:236 

types of cancer and diseases in general. We expect to 
report some interesting finding shortly.

Authors’ contributions
GJ helped in developing the methodology, in running the tests and in analyz-
ing the results. OA helped in developing the methodology, in crawling the 
data and in running the tests. AA helped in the design of the study, in drawing 
the figures and in the analysis of the results. SG participated in integrating the 
various processes to produce the integrated framework, and in the analysis. TO 
helped in crawling the data and in developing the methodology. DD helped in 

Additional file

Additional file 1. Additional Tables.

the analysis and validation of the results. RA participated in the development of 
the methodology and in the analysis of the results. GJ, OA, AA and RA drafted 
the manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Computer Science, University of Calgary, Calgary, AB, Canada. 
2 College of Computer Science and Technology, Jilin University, Changchun, 
China. 3 Department of Computer Engineering, TOBB University, Ankara, 
Turkey. 4 Departments of Pathology, Oncology and Biochemistry & Molecular 
Biology, University of Calgary, Calgary, AB, Canada. 5 Department of Computer 
Science, Global University, Beirut, Lebanon. 

Competing interests
The authors declare that they have no competing interests.

Appendix
See Tables 8, 9, 10 and 11.

Table 8  Gene-disease associations from gene–gene analysis

Community 
ID

Disease 
names

# of total 
genes in  
community

# of genes 
sharing 
disease

Gene names

0 Cancer 2105 133 EPHB4, MYCN, SOX9, RPL22, SPARC, ABL1, EAF2, PDGFA, PDGFB, SLC39A1, SPP1, RPS3, 
UNC5B, PIWIL1, GALR2, ETS1, DAG1, ETV4, EWSR1, CHD4, ITGA3, F2R, MMP20, ITGAV, 
ADAM10, ITGB3, ITGB4, TUBA4A, ZEB2, PTHLH, PTH1R, NMU, TWIST1, STRAP, JAG2, S100A4, 
HOXA9, BMI1, GJA1, BMP2, BMP4, BMP7, JUP, BMPR1A, JTB, CD82, HOXC8, GPC3, RHOU, 
NUAK1, CTNNBIP1, ITIH1, BSG, YAP1, GLI1, CTAGE1, PVRL1, KIF14, PLAU, ALAS1, MMP1, 
MMP2, MMP7, MMP9, MMP11, MMP14, SDC1, NANOS1, ARHGEF6, KIF11, VGF, KLK11, 
NID2, SFRP1, SFRP2, SFRP4, CD248, ADAMTS1, PODXL, ANXA1, USP28, WNT1, WNT2, 
WISP1, WNT5A, WNT7A, ARL6IP5, SLIT2, WNT2B, RIN1, SHH, GEMIN5, LAMC2, MMP26, 
HIF3A, RUNX2, RUNX3, KLK3, CLDN2, CLDN1, SLC2A4, ARPC2, POSTN, USP6, ORM2, HHIP, 
SMURF2, EFNB2, SPINT2, CD9, FAM107A, CYR61, TIMP2, TIMP3, YKT6, SNAI2, SP5, ROBO1, 
IRAK3, NDC80, SNAI1, CTNNB1, LUM, CTSB, KLK13, PCDH8, BCR, DKK3, RPL10, SMAD2, 
SMAD4, RGL4, SMAD7

Breast cancer 65 HOXA5, WISP3, WISP2, MEST, PTPN1, HOXB13, BMP5, BMP6, UBE2B, TLK1, ETV1, KLK4, NMI, 
NEUROD1, ADAM28, CSF1R, PER2, RHOU, LIMD1, PTPRJ, TIMP1, ARNT2, ARID4A, TIMP4, 
INHBA, LATS2, TNC, USP28, SLC2A3, IGHMBP2, IBSP, VCAN, VTN, AFF3, WASF2, SERPINE1, 
CST3, POLI, ETS2, CSTA, LAMA3, CTGF, ADAMTS8, FURIN, MMP3, MMP8, LCN2, SIX1, 
MMP13, WNT9A, PCBP1, F2RL1, F3, CTSK, F7, TUBA4A, F10, SERPINA5, SDC4, RNF11, 
BMPR2, ANXA8L2, KLK2, PINK1, HOXA1

Prostate 
cancer

63 AMBP, RNF14, KLK4, KIAA0196, PTPN1, BMP5, BMP6, BMPR1B, BMPR2, PTPN12, HOXC8, 
CSF1R, PDX1, EAF2, SERPINA5, PAGE4, SPINT1, SLC39A1, ACAT2, PLG, DSPP, GLI2, COPE, 
IBSP, VCAN, CLPTM1, EHF, SERPINE1, DVL1, ETV1, PDGFD, LATS2, CDCP1, PLAU, CRISP3, 
DAZL, TREX2, ELK4, TIMP1, TSPY1, RLN2, ACVR2A, CYSLTR1, ITGA7, MMP12, KLK3, MMP15, 
MMP17, F2RL1, ATP2A1, F3, CTSK, INHA, GFI1, HOXB13, TIMP4, RPL10, KLK2, ADAMTS9, 
CST3, RLN1, ZNFX1, ADAMTS13

Diabetes 
mellitus

60 RLN2, XYLT2, SERPINB2, PKLR, GJA1, BMP4, BMP6, BMP7, GREM1, NEUROD1, FBP1, UTS2, 
CALD1, TIMP1, HLA-DMB, TIMP3, PTPRN2, SPP1, TJP1, TNC, PTX3, KCNJ10, PLA2G4A, CLPS, 
SERPINE1, CST3, CD9, MTTP, SHH, LRP5, ANKRD1, PTPN22, KIF11, CTGF, MMP14, GCK, ISL1, 
MMP1, MMP2, FTO, MMP8, TIMP2, DCN, F2, CTSB, AKR1B1, F3, ITGB3, CLOCK, AQP7, SDC2, 
PTGES2, SLC2A4, GGT1, FABP1, FABP2, PINK1, CYBA, SMAD7, FOXC2

Colon cancer 51 PMP22, MMP25, RNF14, HSPE1, PTPN1, C1GALT1C1, BMPR1A, DKK4, HTR2A, CYSLTR1, 
STRAP, TIMP1, TIMP4, LLGL1, TJP1, TNC, ASCL2, KLF9, FDPS, TOMM34, CNOT7, ZKSCAN3, 
SER- PINE1, CEACAM7, SOX17, OLFM4, LYPD3, PLA2G4A, HRH2, DLL1, NTN1, ADAMTS13, 
MMP3, ACVR2A, LCN2, MMP10, CDCP1, MMP13, ADAMTSL3, SRPRB, F2RL1, AKR1B1, CTSH, 
CLDN12, ITGB6, SDC2, KLK1, GGT1, B3GNT8, CD226, ACTR2

1 Diabetes 
mellitus

229 29 GH1, GHR, SOCS2, NAMPT, LIPE, RETN, IGF2R, IGFBP1, IGFBP3, NUDT1, LNPEP, ADIPOR2, INS, 
FGF21, LPL, RBP4, POMC, APOA1, APOA2, IRS1, IDE, APOC3, HSD11B1, CFI, PLTP, LEPR, 
SLC2A2, ADD1, FABP4

Obesity 23 GH1, GHSR, LIPE, IGF1, IGF2, IGFBP3, IGFBP6, ADIPOR2, INSR, SOCS3, SHBG, POMC, APOA2, 
IRS1, HSD11B1, RETN, SERPINA6, LEP, LEPR, SLC2A2, RBP4, FABP4, ADRB1

Breast cancer 22 GH1, GH2, GHR, SOCS2, SLC12A6, VIP, IGF1, ADIPOQ, IGFALS, IGFBP1, TIAL1, FOXL2, INS, 
FBXO31, INSR, SOCS3, SHBG, SLC12A7, LEP, LEPR, ADIPOR2, IGFBPL1

http://dx.doi.org/10.1186/s13104-016-2023-5
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Table 8  continued

Community 
ID

Disease 
names

# of total 
genes in  
community

# of genes 
sharing 
disease

Gene names

Cancer 21 IGFBP5, GHRH, GHRHR, GHSR, TPP2, TMPO, CLIC4, ELAVL1, PLAG1, PAPPA, LRP1, IRS1, 
PTP4A3, ADCYAP1R1, IGF1R, IGF2, IGF2R, OXT, IGFBP2, IGFBP3, IGFBP4

Prostate 
cancer

17 GNA13, GHR, VIPR1, MYO6, PMEPA1, LAMB1, NUDT1, INS, SOCS3, LEP, VIP, ADIPOR2, AD- 
CYAP1, IGF1, ADIPOQ, IGFBP1, IGFBP2

2 Cancer 876 47 S100A2, NAT1, S100A11, NES, CDR2, ERBB2, ERBB3, ERBB4, EREG, BCL11B, MET, SCGB2A2, 
RARB, EGF, LRIG1, RET, NKX2-1, TK1, PA2G4, AXL, ESR1, RARRES1, CYP24A1, RBP1, PROM1, 
CD24, MKI67, AGR2, GATA4, ETV6, MCM2, ALCAM, MME, GPNMB, KRT7, SCEL, KIR3DL2, 
CTSD, TACSTD2, KIT, AKR1C1, ALK, AR, RXRA, CXADR, CCKBR, CDX2

Breast cancer 40 NEDD8, RNF5, LHCGR, GABRP, PLAC1, CARM1, NCOR1, KRT5, CD1A, NCOA2, SCGB2A1, 
SCGB1D2, LATS1, RARA, SRA1, STS, MAOA, KRT18, EML4, BTC, HBEGF, TNN, CYP19A1, 
ESRRA, GABARAP, PIP, HTATIP2, CYP27B1, GATA3, NRG2, NCOR2, GNA12, WWTR1, NRG3, 
KIAA0100, F8, AKR1C2, AKR1B10, GFRA1, AREG

Prostate 
cancer

28 MSR1, CARM1, NCOA2, LHB, NCOR2, NR2C1, ERBB3, RARA, STS, PELP1, HPN, CADM4, 
CYP19A1, ESRRA, ESRRB, HTATIP2, CYP27B1, LPXN, CYP7B1, GC, GNA12, HSD3B2, CHGA, 
WDR77, AR, RXRB, RXRG, AREG

Leukemia 24 CISH, NCOA2, CKMT2, RHOH, MYH11, BCL11B, RARA, CEBPE, HOXD3, HOXD13, TLE1, GRAP2, 
PVRL2, GATA1, IRF8, NSD1, ETV6, GNA12, CBL, CTSG, IL2RG, ENO2, F8, SLC4A1

Diabetes 
mellitus

20 IRF8, MAP4K5, HTR1A, ACTG2, ADRA2B, GAD2, BTC, GC, AR, ESR1, TRPC6, DBI, CYP24A1, 
AKR1B10, CHGA, CYP27B1, MME, CD24, EGF, PLXDC1

3 Cancer 1210 101 SOX2, VPRBP, ALOX12, HSP90B1, TRAF2, HIF1A, HK2, MAT2A, HSPH1, BAD, GATA6, BCL2, 
BCL2L1, TNFRSF10A, SPAG1, PTGS2, HNRNPK, NRP2, NRP1, TYMS, SEMA3A, TUBB3, S100P, 
RHBDF1, KCNA1, NDRG1, CEBPB, SPIN1, RBMX, BID, PKNOX1, FGF5, PLAGL1, KDR, BCL10, 
TOMM40, FGFR3, FGFR4, FH, FXYD3, EIF2AK3, HSPA5, VEGFC, MEN1, ALOX5, SDHA, SDHB, 
SDHC, SDHD, ALOX15B, MPG, VEGFB, CA9, IL24, VHL, SEMA4D, SFRP5, ANG, ANGPT1, 
ANGPT2, BCL2L10, DIABLO, ANXA2, PRDX4, L1CAM, BAG3, CASP3, ID2, BIRC2, BIRC3, XIAP, 
SIVA1, RELA, LYVE1, POT1, IDH1, CAV3, FIGF, TYMP, SLC2A1, CDC37, PDPN, INTS6, BNIP3, 
MTAP, LOX, PYCARD, NEK8, ASPH, RBM6, ALOX15, CA1, TMSB10, HSP90AA1, CTTN, ENDOG, 
ENG, OLIG2, BBC3, EPAS1, BIRC7

Breast cancer 57 CRYAB, SLC6A3, PTN, ADM, TUBA1B, PARP1, KLF8, SEMA3C, TXNIP, VWF, PTPRB, CUEDC2, 
APLN, KLF10, IGFBP7, FCGR2A, SLC16A1, CLU, WFS1, SQSTM1, RBM3, CSNK2A1, RBMX, 
JAG1, MIF, TRPS1, BAK1, CASP2, MAZ, XBP1, FADS2, FGF4, CASP9, IRF1, KLF4, REL, GNA11, 
HES1, SMPD1, NFATC1, BCL2A1, CCL16, SLC25A5, TNFRSF10B, APOE, RRAS, IKBKB, HSF1, 
IL1R1, FASLG, OSGIN1, RSPO1, PLXNA1, PRDX6, LSM1, CACNA1H, BIK

Colon cancer 41 HSPD1, AIFM1, ACSL4, TRAF1, HIP1, NOD1, CLCA1, EFNB3, SAT1, NFATC1, HTRA2, CLU, FGF20, 
CALR, MYOD1, HPRT1, ANXA5, MIF, PRDX1, FES, CASP6, FGF7, AATF, TMEM97, ATF3, FGF18, 
GLRX3, TNKS2, LCP1, HSF1, FASLG, HSPA1A, SLC16A7, FGF19, HSPA8, DDIT3, MAF, PMAIP1, 
KIF2C, MPG, TXN

Diabetes 
mellitus

40 TXNIP, ADM, PCSK2, PARP1, HIF1A, VWF, CEBPB, ANGPT1, ANGPT2, APLN, IMPDH2, ANG, 
KCNJ11, SLC16A1, WFS1, CAPN1, PRDX6, KLF10, XBP1, FADS2, CASP10, SI, PLAGL1, RELA, 
LTBR, TNFRSF10B, APOE, PBX1, PCBD1, TNMD, ENG, HSPA1A, EIF2AK3, HSPA5, ALOX5, 
SLC2A1, HSPB2, CA1, KLF2, TXN

Prostate 
cancer

38 HSPD1, RND3, PTN, ADM, AMD1, MAPK8IP1, TPT1, CDC37, IGFBP7, XBP1, GAPDH, SPINK1, 
CLU, AIFM1, SQSTM1, JAG1, CAPN1, MIF, PBX1, FGF1, LAMA5, LAMC1, FGF8, FGF9, CAC-
NA1H, ATF3, BCL2A1, APOE, IKBKB, CHUK, PCBP2, HSPA1A, HNRNPA1, RELB, LSM1, FABP5, 
TXN, RPL19

4 Diabetes 
mellitus

601 31 GSTM1, SLC6A2, GSTP1, CYP1A1, GSTT1, MT1A, TSC22D1, ARNT, LIPC, IAPP, CETP, SLC22A4, 
SLC22A5, AGTR1, AGTR2, PON1, AHSG, UCP2, PYGL, CAT, REN, KEAP1, IL1RAP, ATP2A2, F5, 
GFPT1, EDN1, EDNRA, SOD1, SOD3, KL

Cancer 26 GSTM1, EPHX2, GSTP1, CYP1A1, CYP1A2, CYP1B1, SLC22A18, PDCD2, TSC22D1, IAPP, PHF19, 
RB1, CETP, GSTT1, GLRX, FECH, AOX1, TSPO, APOBEC1, SIM2, AGPAT2, COPS2, MAP4K4, 
MVP,

EDN2, SOD2

Breast cancer 24 SLC22A18, PPARGC1A, CYP2B6, ARNT, CYP4Z1, PIN1, CYP21A2, INSL4, AGTR2, SLC19A3, AHR, 
SLCO1B3, ZFHX3, AGTR1, CAT, HSD17B1, HSD17B2, ACE, GSTO1, ATP2B2, SLC26A1, EDN1, 
EDNRA, SOD1

Hypertension 21 TSPO, PPARGC1A, ACE, EPHX2, ATP2A2, GCLC, UCP2, ENPEP, SLC6A2, CAT, GSTT1, EDN1, 
HSD3B1, REN, CYP21A2, SLC22A2, SOD3, CFTR, AGTR1, IAPP, DBH

Atheroscle-
rosis

21 GSTM1, VKORC1, SOD3, PON1, AHSG, GSTO1, CYP1A1, GSTT1, GCLM, SOD1, LDLR, NR1H3, 
ABCC6, EDN1, KL, EDNRA, ABCD1, APOC2, AGTR1, UCP2, EPHX2
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Table 8  continued

Community 
ID

Disease 
names

# of total 
genes in  
community

# of genes 
sharing 
disease

Gene names

5 Cancer 988 78 EPHB2, SLC5A5, RABEP2, RHOA, RHOB, RHOC, MST1R, HRAS, RALA, RALB, WNK2, ARHGDIB, 
RPS6KB1, PEBP1, NEK3, PTPN6, VRK1, KRAS, JUN, MAPK14, KCNA2, PTPRA, ILK, KCNA5, 
AKT3, JAK2, PXN, BRAF, P2RX5, AKAP12, PTPRK, MAP2, EGR1, SDCBP, KCNH2, PIK3CG, 
PIK3R1, EZR, RPS6KA2, CXCL17, EIF4A2, EIF4E, DLGAP5, DAB2, IQSEC1, MAP3K1, KHDRBS1, 
TSC1, GPR56, TNK2, TIAM1, AKT1, AKT2, PLCB2, VAV3, PRMT3, CAV1, HBP1, GPRC5A, ARH-
GEF2, SNCG, MAP2K4, MELK, KISS1, GDF15, KIAA1524, SPHK1, TRIB3, RAF1, PTK2, DLC1, 
PKN3, CRK, RAC1, BCAR1, RAC3, LGALS7, ARF6

Breast cancer 50 MST1, IL11RA, ADORA2B, LIMK1, EEF2, BMX, SLC9A3R1, DNAJA3, CSK, PHLDA1, IKBKE, 
SLC9A1, PTPRZ1, CSNK1A1, MAPKAPK2, KCNJ3, DUSP1, PDCD4, DUSP6, MBL2, EIF4EBP1, 
SH2D3C, EIF4G1, PAK1, ETV5, ATAD2, MLLT4, ROCK1, ACTN4, NR3C2, PLCD1, RHEB, PLD1, 
RB1CC1, NFATC2, EEF1D, FHL2, CHN2, RACGAP1, TSC2, TUBB, LPAR2, SH2D3A, RAB27A, 
RPL7A, DIRAS3, GAB2, PTK6, NEK3, WASL

Prostate 
cancer

36 TYK2, FOXO1, IL11RA, PTK2B, HSPG2, SPRY2, JUND, LIMK1, SET, BMX, MAK, RAP2A, JAK1, 
NOX1, CSK, EGR1, F2RL3, MAPKAPK2, FDFT1, TLE3, RPS6KA3, EIF4EBP1, CPNE3, LRP2, ETV5, 
WFDC1, TRPM8, ELK1, PLCG1, UBIAD1, PAK6, REPS2, FHL2, LPAR1, RHEB, ITPR1

Diabetes 
mellitus

31 DUSP12, EZR, GIP, ADORA2B, JUN, MAPK14, NOX1, SLC12A3, PTPRN, PIK3CG, LPA, INPPL1, 
EIF4A2, MBL2, LRP2, PLA2G2A, RDX, AKT1, AKT2, RORC, LRRC7, EIF4E, ARHGEF11, CHRM3, 
ELMO1, ITPR3, MAP3K1, CRTC2, EXOC4, MSN, TRPC1

Rheumatoid 
arthritis

24 SLC5A5, RHOA, JAK2, JUN, MAP2K4, MRAS, NEDD9, BMX, PIK3CG, MAPK14, CENPJ, CSK, 
EGR1, IKBKE, GDF15, TRPC1, MBL2, EIF4G1, LRP2, C5, LPAR1, GAB2, RAC1, MAP3K2

6 Cancer 1397 122 MYC, CDKN1A, CDKN1B, CDKN1C, CDKN2A, CDKN2B, CDKN2C, SP1, SP4, PTTG1, ERCC1, 
ERCC2, CEBPA, ERH, ATR, STAG1, XRCC1, TRIO, HDAC8, PPP1R13L, BARD1, DCK, NBN, 
MCM3, EZH2, MCM7, CCND1, CAGE1, CHEK1, ALDH1L1, DCC, RRM1, RRM2, MDM4, ID4, 
ECT2, GADD45A, MOAP1, TUBG1, RYR1, DDX5, MAP3K4, NIT2, ADH1B, ADH1C, AQP1, 
HDAC3, CKS1B, FAP, RPRM, MGMT, BRCA1, BRCA2, KCNH1, TMPRSS2, SUPT7L, BUB1, 
MLH1, CDC73, FHIT, MBD4, PLK1, COPS5, SMYD3, BRMS1, RAD51, FOXM1, PMS2, BCL2L15, 
HDAC5, RBBP4, NEIL1, RBL2, UBE2C, APC, SHMT1, APEX1, RECQL, E2F2, E2F3, MSH2, LASP1, 
RNF139, NEK2, XRCC3, SKP2, IGF2BP1, ASH2L, PDLIM5, CCNA2, CCNB1, CCND2, CCND3, 
CCNE1, CCNG1, MSH6, TRAF4, IGF2BP3, MTA1, RNF2, RFWD2, MTHFR, EPHA2, WIF1, FBXO4, 
CST6, EXO1, SMARCA4, SMARCB1, DAPK1, RPL11, E2F1, ATM, FSCN1, PUM1, SH2D1A, 
MUTYH, MAD2L1, PCNA, XPC, AURKB, MYBL2

Breast cancer 64 CDK9, RAD52, TOPBP1, FANCD2, MRE11A, HSPB8, MYBBP1A, RPS6KA6, BCAS2, ERCC4 RNA-
SEL, CEBPD, HDAC6, HDAC4, XRCC2, DERL1, NOL3, MUS81, CENPF, CTCF, INHBB, RBBP7, 
RBBP8, RBL1, CCNE2, POLB, KLF5, C1QA, WWP1, XRCC4, CAPN2, PRC1, PEMT, MED14, 
PAK2, BCCIP, MTRR, XDH, SMARCE1, FOXP1, SH3GL2, E2F4, NCL, PBOV1, ANXA8, RRAD, 
SIPA1, CHKA, ATP1B2, MBD2, NOD2, PRDM14, DDB2, DUSP22, RGS2, PALB2, EP300, CLSPN, 
HIST2H3A, MLLT11, RAD50, RAD17, KPNA2, RAD23B

Prostate 
cancer

41 GLIPR1, SUMO1, ERCC1, MT2A, IRX5, RNASEL, RCHY1, CEBPD, ERG, PALB2, BRCA2, PI16, BTRC, 
LZTS1, RBL1, KLF5, SGTA, TSGA10, SMARCA2, CCNA1, PAK2, SMARCC1, MTRR, FOXP1, 
TSG101, MSH3, PBOV1, RPS27A, TOPORS, SENP1, NUPR1, AQP3, CREBBP, MECP2, MSMB, 
ELAC2, EP300, CDK5R1, RAD9A, PCNT, RAD21

Colon cancer 39 BLM, CITED2, SLC6A4, MRE11A, SND1, CDX1, MLH3, DDX17, HTR3A, LMNA, POLD1, CENPA, 
NOL3, UCHL1, NEIL2, KLF5, MATK, BRD7, TSGA10, RPS6KA6, HLTF, BCAT1, BCHE, CTBP1, 
E2F4, XPA, MSH3, LTC4S, CDC16, CHKA, CD3EAP, AIM2, METAP2, EP300, PPM1H, DDX5, 
RAD18, NOD2, CA8

Embryoma 34 BLM, PCSK1, AVEN, HDAC11, HOXC9, RNASEL, RPRM, RNF2, HTR3A, FBXO4, STAG1, RCHY1, 
BCAS2, KLF5, UCHL1, WWP1, GAS1, ASS1, MTR, UHRF1, RECQL, NCL, XPO1, CCL23, CBS, 
MECP2, HDAC8, PALB2, RPL11, MAP3K4, HMG20B, DNMT3L, PCNT, KPNA2

7 Leukemia 967 77 MPO, IFNG, CXCR5, IL11, SELE, RAG1, RAG2, SELL, ITGAX, ORM1, IL10, KLRC1, CD2, CD52, 
IL18, CD5, CSF1, CD7, CD8A, CSF3, CSF3R, CD19, P2RX7, CIITA, CALCA, ASAH1, CD86, TN- 
FRSF8, CD33, IGHM, CCL21, B2M, PVR, IL21, TNF, LAIR1, CCL2, CD160, HLA-A, ULBP2, CCL3, 
ICAM1, LAMP1, HLA-B, CCL4, CCL5, CCR4, GNLY, KIR3DL1, CCL11, CTLA4, CCL18, GCNT1, 
CCL19, ITGA4, CHIT1, CCL22, IL1A, IL1B, ITGAL, ITGAM, LYZ, IL2, IL2RA, IL2RB, IL3RA, TTR, 
IL4, IFNA1, CD83, IL6, IL7, SPANXB1, BGN, PML, PDCD1LG2, FAIM3

Rheumatoid 
arthritis

70 SELE, OSM, DEFA1, TPSAB1, ADORA3, IL15, IL16, TNFRSF9, IL17A, MAL, MGAT5, CD5, CSF1, 
KIR2DL1, TIA1, CD14, HPSE, HLA-C, FCGR3A, SELP, ITGA4, HRH4, CD80, CD86, TNFRSF8, 
ACP5, ICAM1, ICAM3, IL21, MITF, CCL18, IL1A, LAMP3, CXCL13, CD274, MDK, CCRL2, ICOS, 
CCL3, IRF3, CCR2, CCL5, LTA, CCL3L1, P2RX7, CCL11, CCL13, TLR2, C5AR1, HAMP, GCNT1, 
CXCL16, CHI3L1, LTB4R2, TNFRSF17, IL1B, IL2, XCL1, CX3CL1, ITGB2, CCL20, IL4, CD276, 
CD83, CXCL12, IL7, TNF, PML, PDCD1LG2, LGALS9
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Table 8  continued

Community 
ID

Disease 
names

# of total 
genes in  
community

# of genes 
sharing 
disease

Gene names

Prostate 
cancer

59 ARG2, IFNB1, A2M, IL10RA, MAGEA1, MAL, MAGEA4, S100A9, CXCL10, IFNG, IL15, IL16, IL18, 
TES, MGAT5, CSF1, CALCA, CALCR, HLA-A, ASAH1, MPO, SEC62, AGER, IL10, AZGP1, ITGA5, 
ICAM1, TLR1, TLR3, MCAM, CCL2, CD55, STEAP2, B2M, CCR1, CCR2, CCL5, CCR9, TNF, 
CTLA4, CRP, ITGA2, GCNT1, CXCL16, CHI3L1, TLR6, CHIT1, S100A8, OSM, LCT, IL1RN, IL2, 
CSMD1, IL4, IL6, ACPP, PML, PTMA, RING1

Diabetes 
mellitus

57 MPO, IFNG, DEFA1, SELE, EPO, IL13, SELL, IL15, SELP, CD4, ITGA2B, CSF3, HLA-A, LCAT, HP, 
CD86, AGER, GLP1R, ICAM1, TLR3, IL21, P2RX7, CMA1, MDK, MCAM, CD55, HRH4, CCL2, 
CASQ1, CCR2, CCL5, LTA, ALAD, GNAI2, TNF, CTLA4, GGT2, ITGA2, GCNT1, KIR2DL2, IL1A, 
ITGAM, HPSE, ITGB2, TTR, IL4, IFNA1, MEF2C, PCK1, CXCL12, CD163, LGALS3, BGLAP, CRP, 
MC3R, TNFRSF4, APOC1

Cancer 55 MAGEA3, CCNT1, EPOR, IL13RA2, AMPH, SERPINB4, CEACAM5, KITLG, GALNT3, FCER2, 
ANPEP, MS4A1, SPN, PDZK1IP1, NCR2, CD99, AFP, EPO, CD34, THY1, CAPG, CYP27A1, 
VTCN1, TIA1, C1QBP, CEACAM6, CXCL14, ST3GAL6, EBAG9, HPSE2, CCR3, ST3GAL4, PAX5, 
ATOH1, STIL, BCL6, CASC5, MDK, PBX2, CTSE, MUC2, SLAMF1, ST18, IL3, HPSE, MUC6, 
HNRNPF, CXCL12, LGALS1, LGALS3, SLC3A2, CD200, CEACAM1, TPD52, FGFBP1

Table 9  Gene-disease associations from gene-year and gene-country analysis

Gene Disease associations for gene Genes that share more diseases 
with this gene

Country associations for gene

Disease name Score Gene name # of shared diseases Country name # of abstracts

ERBB2 Breast neoplasms 0.414 EGFR 15 United States 4271

Mammary neoplasms, experimental 0.4 PTGS2 13 Italy 808

Neoplasm metastasis 0.396 SOD2 12 Japan 806

Adenocarcinoma 0.363 TP53 11 China 799

Ovarian neoplasms 0.331 STAT3 10 United Kingdom 674

Prostatic neoplasms 0.329 CCND1 10 Germany 620

Lung neoplasms 0.329 ESR1 10 France 486

Stomach neoplasms 0.321 KRAS 9 Canada 433

Cholangiocarcinoma 0.308 TNF 9 South Korea 347

Glioma 0.306 TNFSF10 9 Spain 329

ESR1 Breast neoplasms 0.423 SOD2 14 United States 5429

Alzheimer disease 0.358 EGFR 13 United Kingdom 1249

Neoplasm metastasis 0.345 PTGS2 12 Japan 918

Carcinoma 0.344 TNF 11 China 764

Coronary artery disease 0.342 CDH1 10 Italy 727

Migraine disorders 0.333 ACE 10 France 569

Obesity 0.327 ERBB2 10 Germany 517

Leiomyoma 0.327 PTEN 9 Canada 515

Myocardial infarction 0.323 STAT3 9 South Korea 338

Infertility, male 0.321 TP53 9 Sweden 299

PGR Breast neoplasms 0.38 EGFR 7 United States 1887

Endometriosis 0.346 ESR1 6 Japan 456

Carcinoma 0.32 ESR2 6 Italy 404

Meningioma 0.307 STAT3 5 China 385

Adenocarcinoma 0.304 EFEMP1 5 United Kingdom 311

Mammary neoplasms, animal 0.3 CDH1 5 France 294
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Table 9  continued

Gene Disease associations for gene Genes that share more diseases 
with this gene

Country associations for gene

Disease name Score Gene name # of shared diseases Country name # of abstracts

Mammary neoplasms, experimental 0.3 PHB 5 Germany 245

Mesothelioma 0.3 PDGFA 5 Canada 188

Recurrence 0.3 STAT5A 5 South Korea 169

Malignant neoplasm breast 0.126 ENO1 5 Sweden 131

EGF Hypomagnesemia 4, renal 0.6 SOD2 11 United States 2199

Wounds and injuries 0.4 IL6 9 United Kingdom 408

Breast neoplasms 0.325 MMP9 9 Japan 394

Prostatic neoplasms 0.322 PTGS2 9 China 378

Carcinoma, hepatocellular 0.317 TNF 9 Italy 298

Neoplasm metastasis 0.315 PTEN 8 Germany 239

Glioblastoma 0.311 EGFR 8 South Korea 211

Adenocarcinoma 0.307 IGF1 8 Canada 205

Kidney diseases 0.301 IL8 8 France 173

Stomach ulcer 0.3 TGFB1 7 Spain 112

BRCA1 Breast-ovarian cancer, familial, Susceptibility To, 1 0.7 CDH1 7 United States 1845

Malignant neoplasm breast 0.54 CCND1 7 United Kingdom 395

Malignant neoplasm of ovary 0.44 SOD2 7 Canada 304

Breast neoplasms 0.419 BRCA2 6 France 222

Mammary neoplasms, experimental 0.4 HRAS 6 The Netherlands 218

Ovarian neoplasms 0.381 STAT3 6 Italy 197

Neoplasms 0.375 EGFR 6 China 182

Carcinoma 0.366 ERBB2 6 Spain 143

Hereditary breast and ovarian cancer Syndrome 0.359 ESR1 6 Germany 140

Prostatic neoplasms 0.318 AKT1 5 Japan 124

BRCA2 Fanconi anemia, complementation Group D1 0.7 BRCA1 6 United States 885

Malignant neoplasm breast 0.54 CTNNB1 6 United kingdom 256

Ovarian neoplasms 0.464 ERBB2 6 Canada 203

Prostatic neoplasms 0.409 PTEN 5 Italy 119

Medulloblastoma 0.401 SOD2 5 The Netherlands 115

Breast neoplasms 0.392 TNF 5 Germany 102

Hereditary breast and ovarian cancer Syndrome 0.334 TNFSF10 5 France 100

Fanconi ANEMIA 0.326 AKT1 4 Spain 93

Pancreatic neoplasms 0.309 BRIP1 4 Australia 73

Wilms tumor 0.3 CDH1 4 Israel 70

CDKN2A Melanoma-pancreatic cancer syndrome 0.6 TP53 15 United States 1809

Melanoma, cutaneous malignant, susceptibility To, 2 0.6 SOD2 12 China 431

Lung neoplasms 0.442 KRAS 9 Japan 340

Stomach neoplasms 0.411 PTGS2 9 United Kingdom 325

Esophageal neoplasms 0.41 ABCB1 7 Italy 297

Neoplasms 0.391 CSF3 7 France 224

Adenocarcinoma 0.358 EGFR 7 Germany 218

Glioma 0.341 ESR1 6 South Korea 202

Precursor cell lymphoblastic leukemia-Lymphoma 0.338 MET 6 Canada 186

Carcinoma, non-small-cell lung 0.332 ERBB2 6 Spain 136

ALPPL2 Abortion, spontaneous 0.3 CEACAM1 1 United States 104

Parkinson disease 0.003 HSD17B1 1 Germany 32

Stroke 0.003 IFI35 1 United Kingdom 30

Carcinoma in situ 0.001 IFI44 1 Italy 28
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Table 9  continued

Gene Disease associations for gene Genes that share more diseases 
with this gene

Country associations for gene

Disease name Score Gene name # of shared diseases Country name # of abstracts

Seminoma 0.001 IFI6 1 France 18

Retinal diseases <0.001 IFNA10 1 Japan 16

Embryonal neoplasm <0.001 IGFBP1 1 Canada 13

Carcinoma, embryonal <0.001 IGFBP6 1 Greece 11

– – IL11 1 The Netherlands 9

– – IL12B 1 China 9

CD99 Chondrosarcoma, mesenchymal 0.3 PDGFRA 1 United States 342

Neuroectodermal tumors, primitive, Peripheral 0.012 BCL2 1 Japan 77

Sarcoma, ewing 0.01 IL1A 1 Germany 74

Breast neoplasms 0.005 MKI67 1 Italy 63

Carcinoma 0.005 – – China 56

Neuroectodermal tumors, primitive 0.004 – – United Kingdom 52

Osteosarcoma 0.003 – – Canada 37

Neoplasms 0.003 – – France 26

Lymphoma 0.003 – – Australia 24

Adenocarcinoma 0.003 – – The Netherlands 22

CHI3L1 Schizophrenia 0.319 TNF 3 United States 90

Glioblastoma 0.311 MET 3 Japan 17

Glioma 0.31 MGMT 2 United Kingdom 17

Neoplasm invasiveness 0.303 TGM2 2 Italy 15

Osteoarthritis 0.301 ACO1 2 France 12

Asthma-related traits, susceptibility To, 7 0.3 MMP9 2 Denmark 10

Hypertension 0.103 GDNF 2 Germany 6

Asthma 0.017 FTL 2 Australia 6

Arthritis, rheumatoid 0.009 ENO1 2 Finland 5

Neoplasm malignant 0.005 EGF 2 India 5

SOD1 Amyotrophic lateral sclerosis 1 0.66 TNF 19 United States 265

Amyotrophic lateral sclerosis 0.551 SOD2 17 Italy 42

Hypertension 0.402 IL6 15 Japan 40

Deficiency diseases 0.4 PTGS2 14 India 39

Motor neuron disease 0.341 NOS2 13 China 31

Down syndrome 0.323 CAT 13 United Kingdom 28

Atherosclerosis 0.31 AGT 11 Germany 26

Diabetes mellitus, type 2 0.31 IL1B 10 The Netherlands 25

Ischemia 0.309 IFNG 10 Turkey 20

Parkinson disease 0.309 ALB 10 Canada 18

AMN Imerslund-grasbeck syndrome 0.601 TNF 3 United States 138

Acute kidney injury 0.3 KNG1 3 United Kingdom 32

Neurogenic inflammation 0.3 TAC1 3 Germany 22

Edema 0.3 IL6 2 Japan 18

Extravasation of diagnostic and Therapeutic Materials 0.3 POMC 2 China 16

anemia, megaloblastic 0.003 CALCA 2 Canada 12

adrenoleukodystrophy 0.003 PTGS2 2 France 10

Nervous system malformations 0.003 INS 2 Italy 9

Malabsorption syndromes 0.001 KLK1 1 The Netherlands 9

Adrenomyeloneuropathy <0.001 LCN2 1 Australia 7

CD40LG Hyper-igm immunodeficiency syndrome, Type 1 0.629 CCL2 4 United States 66

Coronary artery disease 0.306 IL1B 3 Germany 15
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Table 9  continued

Gene Disease associations for gene Genes that share more diseases 
with this gene

Country associations for gene

Disease name Score Gene name # of shared diseases Country name # of abstracts

Pneumonia 0.3 IL6 3 United Kingdom 12

Amyotrophic lateral sclerosis 0.3 TNF 3 Japan 11

Hypersensitivity 0.3 IL8 3 Italy 10

Necrosis 0.3 IFNG 3 Argentina 9

Hypertension, pulmonary 0.3 IL5RA 2 China 9

Diabetes mellitus, type 1 0.101 HMOX1 2 Australia 7

Enterocolitis, necrotizing 0.1 IL13 2 Denmark 6

Periodontal diseases 0.1 IL17A 2 The Netherlands 6

CD79A Agammaglobulinemia 0.3 BTK 1 United States 22

Leukemia, lymphocytic, chronic, B Cell 0.003 CD19 1 France 8

Lymphoma, non-hodgkin 0.003 IGLL1 1 China 7

Lymphoma, B-cell 0.003 LRRC8A 1 Japan 6

Leukemia, myeloid, acute 0.003 – – India 4

Leukemia 0.003 – – Spain 4

Multiple myeloma 0.003 – – Sweden 3

Lymphoma <0.001 – – Belgium 3

Takayasu arteritis <0.001 – – Finland 3

Lymphoma, large B-Cell, diffuse <0.001 – – United Kingdom 3

PRL Prolactinoma 0.415 DRD2 9 United States 294

Hyperprolactinemia 0.412 POMC 8 United Kingdom 59

Adenoma 0.33 IL6 6 Italy 55

Lupus erythematosus, systemic 0.325 CYP19A1 6 Canada 40

Pituitary neoplasms 0.311 TNF 6 France 31

Autistic disorder 0.304 ESR2 5 Australia 29

Growth hormone-secreting pituitary Adenoma 0.302 AGT 5 Japan 28

Endometriosis 0.301 CNR1 5 China 23

Hypopituitarism 0.301 CRH 5 Spain 20

Amenorrhea 0.301 CYP17A1 5 India 19

AFP Carcinoma, hepatocellular 0.398 MMP9 5 United States 46

Liver diseases 0.303 HMOX1 4 Japan 12

Liver cirrhosis, experimental 0.3 ENO1 3 China 11

Breast neoplasms 0.3 MMP2 3 Germany 8

Mammary neoplasms, experimental 0.3 ESR1 3 Italy 7

Liver neoplasms 0.019 HRAS 3 France 6

Recurrent malignant neoplasm 0.015 NOS2 3 Canada 5

Hepatitis B 0.014 IGF1 3 Ireland 4

Neoplasm malignant 0.012 PTGS2 3 Turkey 3

Down syndrome 0.011 TNFSF10 3 Singapore 3

POMC Obesity 0.454 TNF 22 United States 27

Proopiomelanocortin deficiency 0.4 IL6 17 Italy 10

Cushing syndrome 0.331 AGT 15 Japan 9

Pituitary acth hypersecretion 0.315 IL1B 15 France 7

Adrenal cortex diseases 0.309 PTGS2 15 United kingdom 6

Acth syndrome, ectopic 0.306 SOD2 14 Spain 5

Heart failure 0.304 ALB 12 The netherlands 5

Spasms, infantile 0.303 INS 12 Germany 4

Hypertension 0.303 BDNF 11 Austria 4

Osteoporosis 0.303 CRH 11 Poland 4
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Table 11  Top 10 genes are mentioned by each country

Country name # of abstracts Gene name Country name # of abstracts Gene name

United States 33,373 ESR1 5429 [16.27 %] Germany 4148 ERBB2 620 [14.95 %]

ERBB2 4271 [12.8 %] ESR1 517 [12.46 %]

EGF 2199 [6.59 %] PGR 245 [5.91 %]

PGR 1887 [5.65 %] EGF 239 [5.76 %]

BRCA1 1845 [5.53 %] CDKN2A 218 [5.26 %]

CDKN2A 1809 [5.42 %] SLC20A2 191 [4.6 %]

SLC20A2 1418 [4.25 %] BRCA1 140 [3.38 %]

TKT 1297 [3.89 %] CYP19A1 120 [2.89 %]

ACAD9 1143 [3.42 %] KRT75 120 [2.89 %]

CYP19A1 1073 [3.22 %] TKT 116 [2.8 %]

United Kingdom 6041 ESR1 1249 [20.68 %] France 3642 ESR1 569 [15.62 %]

ERBB2 674 [11.16 %] ERBB2 486 [13.34 %]

CYP19A1 425 [7.04 %] PGR 294 [8.07 %]

EGF 408 [6.75 %] CDKN2A 224 [6.15 %]

BRCA1 395 [6.54 %] BRCA1 222 [6.1 %]

CDKN2A 325 [5.38 %] EGF 173 [4.75 %]

PGR 311 [5.15 %] SLC20A2 165 [4.53 %]

BRCA2 256 [4.24 %] TKT 131 [3.6 %]

SLC20A2 227 [3.76 %] CYP19A1 120 [3.29 %]

INS 188 [3.11 %] CTSD 114 [3.13 %]

China 6553 ERBB2 799 [12.19 %] Canada 3573 ESR1 515 [14.41 %]

ESR1 764 [11.66 %] ERBB2 433 [12.12 %]

CDKN2A 431 [6.58 %] BRCA1 304 [8.51 %]

PGR 385 [5.88 %] EGF 205 [5.74 %]

EGF 378 [5.77 %] BRCA2 203 [5.68 %]

ACAD9 336 [5.13 %] PGR 188 [5.26 %]

MYLIP 327 [4.99 %] CDKN2A 186 [5.21 %]

BCL2 312 [4.76 %] INS 146 [4.09 %]

ABCB1 209 [3.19 %] TKT 137 [3.83 %]

CASP3 203 [3.1 %] SLC20A2 136 [3.81 %]

Japan 5299 ESR1 918 [17.32 %] The Netherlands 1844 ESR1 267 [14.48 %]

ERBB2 806 [15.21 %] BRCA1 218 [11.82 %]

PGR 456 [8.61 %] ERBB2 181 [9.82 %]

EGF 394 [7.44 %] BRCA2 115 [6.24 %]

CDKN2A 340 [6.42 %] PGR 115 [6.24 %]

CYP19A1 210 [3.96 %] EGF 97 [5.26 %]

SLC20A2 159 [3 %] CDKN2A 90 [4.88 %]

CEACAM3 151 [2.85 %] SLC20A2 82 [4.45 %]

BCL2L14 129 [2.43 %] ABCB1 81 [4.39 %]

ABCB1 129 [2.43 %] BCL2L14 69 [3.74 %]

Italy 4621 ERBB2 808 [17.49 %] Australia 1715 ESR1 260 [15.16 %]

ESR1 727 [15.73 %] ERBB2 166 [9.68 %]

PGR 404 [8.74 %] PGR 123 [7.17 %]

EGF 298 [6.45 %] BRCA1 120 [7 %]

CDKN2A 297 [6.43 %] EGF 94 [5.48 %]

SLC20A2 238 [5.15 %] SLC20A2 85 [4.96 %]

BRCA1 197 [4.26 %] BRCA2 73 [4.26 %]
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Table 11  continued

Country name # of abstracts Gene name Country name # of abstracts Gene name

INS 171 [3.7 %] INS 72 [4.2 %]

TKT 159 [3.44 %] ARL11 71 [4.14 %]

CYP19A1 156 [3.38 %] CDKN2A 68 [3.97 %]
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