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Invariance in visual object recognition 
requires training: a computational argument

Robbe L. T. Goris1 and Hans P. Op de Beeck2*
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Visual object recognition is remarkably accurate and robust, yet its neurophysiological 
underpinnings are poorly understood. Single cells in brain regions thought to underlie object 
recognition code for many stimulus aspects, which poses a limit on their invariance. Combining 
the responses of multiple non-invariant neurons via weighted linear summation offers an optimal 
decoding strategy, which may be able to achieve invariant object recognition. However, because 
object identification is essentially parameter optimization in this model, the characteristics of 
the identification task trained to perform are critically important. If this task does not require 
invariance, a neural population-code is inherently more selective but less tolerant than the 
single-neurons constituting the population. Nevertheless, tolerance can be learned – provided 
that it is trained for – at the cost of selectivity. We argue that this model is an interesting 
null-hypothesis to compare behavioral results with and conclude that it may explain several 
experimental findings.
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neUrAl representAtions UnDerlying 
visUAl obJect recognition
Any visual system, biological or artificial, challenged 
to recognize real-world objects, must satisfy two 
fundamental and seemingly opposing goals. First, 
due to the overwhelming number of objects, and 
the even larger number of geometrically possible 
object shapes, correct identification requires a high 
degree of selectivity. Second, due to the equally over-
whelming number of different retinal images any 
given object can produce – reflecting variations in 
object and/or viewer position, light configuration 
and scene context – object identification requires a 
high degree of tolerance for such changes. In every-
day life, the human visual system achieves remark-
ably accurate and robust object recognition. As 
illustrated in Figure 1, this cannot be understood 
from the information present in the retinal image 
alone, but implies that the brain makes use of 
knowledge about image formation and geometri-
cal transformations in determining object identity.

At present, it is not known which brain com-
putations underlie invariant object recognition. 
Moreover, the inability to fully reproduce such 
invariance in artificial vision systems is illustra-
tive of the computational difficulty and complex-
ity associated with object identification (Pinto 
et al., 2008); thus, it is not surprising that much 
of the research into the neural representations 
underlying object recognition is dedicated to 
understanding its computational underpinnings. 
Over the last decades, evidence suggesting that the 
response characteristics of neurons in the higher 
areas of the primate ventral visual stream – more 
specifically, inferior temporal cortex (IT) – play 
a crucial role has cumulated (Peissig and Tarr, 
2007). The traditional view on neurons in these 
regions emphasizes their selectivity for relatively 
complex stimulus dimensions and tolerance for 
various image transformations, which contrasts 
with neurons in more upstream regions, such as 
primary visual cortex (V1). The prime example 
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Figure 1 | Examples of invariant and non-invariant object recognition. (A) Single exemplars of two categories 
(‘1’ and ‘2’; stimuli taken from Zoccolan et al., 2009) are shown in the upper row. When asked to classify 
unknown instances of these new visual objects (bottom row), human observers solve this problem effortlessly  
and “see” that the right answer is ‘1, 2, 2, 1’. This is remarkable, given that an ideal observer having access  
to all available image information, but lacking knowledge of image formation and geometrical transformations, cannot 
perform this task correctly. Such an ideal observer bases classification on a pixel-by-pixel comparison (Green and 
Swets, 1966) and judges the test stimuli depicted in the bottom row to belong to category ‘2, 2, 1, 1’, respectively. 
(b) The tolerance for irrelevant variations in object appearance that is achieved by the human visual system 
is limited to “natural” irrelevant dimensions such as position, light and context. Although the task portrayed  
here is much simpler from a computational perspective and trivially easy for the ideal observer, most readers  
will find it very hard to ignore the irrelevant variations, i.e., weak random perturbations of the exact luminance  
levels of the category exemplars, and see that the patterns in the lower row belong to category ‘1, 1, 2, 1, 2’, 
respectively.
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invariance at single-cell level, have made use of 
linear classification methods to read-out the 
population activity of IT-neurons. Hung et al. 
(2005) recorded responses of single IT-neurons 
while monkeys viewed a set of object images 
at multiple retinal positions and sizes. During 
training, the read-out network was exposed to 
exactly one position and size. Intriguingly, when 
tested, network classification performance was 
only mildly affected by variations in position and 
size, seemingly suggesting that pooling responses 
of non-invariant IT-neurons results in invariant 
behavior. While tempting to interpret these find-
ings as showing that a neural population-code is 
inherently more robust than the single-neurons 
constituting the population, this conclusion is 
likely to be wrong. The reason is the following: 
although a fairly small population of IT-neurons 
may convey sufficient information to allow invari-
ant object recognition in a low-dimensional stim-
ulus space, it is not clear how invariant behavior 
can emerge without being trained for, as was the 
case in the aforementioned study.

To see this, it may be helpful to think of identi-
fication as probability density estimation (Green 
and Swets, 1966) and to realize that training in the 
context of linear classification methods refers to 
parameter estimation or, more specifically, opti-
mizing the weights of a linear function (Jäkel et al., 
2009) known as the decision template. Formally, 
the challenge to recognize previously unseen 
instances of a visual object category, using the 
IT-population response, is identical to the typical 
problem faced in machine-learning, i.e., to build 
a model from a finite training set that generalizes 
the properties characterizing the training stimuli 
to new stimuli. It is well-known that the training 
data must be representative of the distribution of 
the test data for a classifier to generalize well (Duda 
et al., 2001). For non-invariant IT-neurons, this 
condition is not met in the experiment of Hung 
et al. (2005).

This is illustrated in more detail in Figure 2 for 
a linear classifier operating on neural responses 
in a 2-D stimulus space. The decision templates 
shown in the bottom row of Figure 2 clarify why 
a linear classifier, not optimized for variation on 
irrelevant dimensions such as retinal position or 
size, will not be able to correctly categorize stim-
uli that are severely different from the training 
stimuli in their task-irrelevant aspects: responses 
to such stimuli are simply ignored by the classifier 
(Figure 2C). So, why then did Hung et al. (2005) 
find invariant performance with a classifier that 
was not trained, i.e., not optimized for variation on 
any irrelevant dimension? This finding was most 
likely due to the fact that the variations on the 

is sensitivity for stimulus position. Due to their 
small receptive field size, V1-neurons tend to be 
very sensitive to manipulations of stimulus posi-
tion, while the larger receptive fields encountered 
in IT-neurons allow these to be less sensitive for 
variations in stimulus position. Computationally, 
position-invariant neurons with complex stimu-
lus preferences could result from applying a max-
operator to afferent subunits tuned to generic 
features at different locations (Riesenhuber and 
Poggio, 1999); thus, behavioral invariance for 
certain image transformations may reflect invari-
ance at single cell level (Serre et al., 2007).

However, this view on IT-neurons is too sim-
plified and somewhat misleading. For instance, 
IT-neurons are characterized by a wide variety 
of receptive field sizes (Op de Beeck and Vogels, 
2000). Consequently, there is also a wide variety 
in the degree of tolerance for stimulus translations 
achieved by these neurons. The same argument 
applies to transformations affecting object size 
and viewpoint (Ito et al., 1995) – although the 
degree of tolerance differs across these dimen-
sions. Furthermore, it has recently been shown 
that selectivity and tolerance for several types 
of transformations trade-off in IT-neurons 
(Zoccolan et al., 2007); thus, the ideal of high 
selectivity and high tolerance is not a prototypi-
cal characteristic of single cell responses in IT. 
Hence, invariant object recognition as illustrated 
in Figure 1 does not seem to reflect invariant neu-
ral object representations in the top level of the 
ventral object vision or “what” pathway.

neUrAl popUlAtion-coDes MAy 
UnDerlie beHAviorAl invAriAnce
Traditional views on the relation between behav-
ioral performance and single cell characteristics 
emphasize the importance of each neuron in 
signaling the presence or absence of a particular 
feature in the visual stimulus (Barlow, 1972). In 
contrast, more recent approaches have explored 
how the combined responses of multiple neu-
rons may underlie psychophysical sensitivity 
(Pouget et al., 2000; Jazayeri and Movshon, 2006). 
Population-coding models have been applied 
successfully to explain a variety of behavioral 
results in simple perceptual tasks as contrast dis-
crimination (Goris et al., 2009), motion discrimi-
nation (Britten et al., 1992) and the tilt after-effect 
in orientation perception (Jin et al., 2005). For 
object recognition, the information conveyed in 
the population-response of a pool of IT-neurons 
may be crucial to represent objects (Logothetis 
and Pauls, 1995; Perrett et al., 1998).

Recent attempts to explain how invariant 
object recognition arises, despite the lack of 

Invariance requires training

Invariant object recognition

The ability to correctly classify visual 
objects in their previously learned 
object-name category, despite 
variations in object appearance due  
to object-identity preserving 
transformations, such as changes  
in object and viewer position, 
illumination conditions, and occlusion 
by other objects. 

Population-coding
A neural information coding strategy, 
whereby information is presented  
in populations of cells rather than  
in single cells.

Linear classification
Classifying stimuli into different 
response categories based on the 
thresholded weighted sum of extracted 
stimulus features. In the applications 
discussed in this paper (simulated) 
IT-neurons operate as feature detectors.

Probability density estimation
Estimating the probability density or 
likelihood that an observed event, such 
as a multi-dimensional population 
response, is a sample from a specific 
distribution, e.g., the distribution  
of multi-dimensional responses to the 
target stimulus.
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depend on several single-cell and population char-
acteristics. Simulations have the benefit over real 
data that they allow much more systematic and 
controlled manipulations of the neural code in a 
fully-understood environment. To approximate 
realistic circumstances, simulated neurons were 
characterized by several biologically inspired con-
straints, i.e., response variability, dependent or cor-
related tuning, inter-unit variability and  correlated 
noise. All these characteristics are adopted in the 
simulations discussed in this paper and illustrated 
in more detail in Figure 3.

The simulations essentially showed that the 
classifier averages out effects of inter-unit vari-
ability. Consequently, the hypothetical “average” 
neuron determines network behavior to a large 
degree. Given that IT-neurons code for many 
stimulus aspects and are only moderately invari-
ant, it is most interesting to consider networks 
that have, on average, similar tuning widths for 
the relevant and irrelevant stimulus dimension. 
One example of such tuning function is shown in 
Figure 3C (this particular tuning function is the 
average tuning function of the networks used in 
the simulations in this paper).

Not surprisingly, for these “circularly tuned” 
networks, selectivity decreases with increasing 
tuning width, while tolerance increases. This 
observation mimics the trade-off between selec-
tivity and tolerance at single-cell level (Zoccolan 
et al., 2007) and can be understood from the deci-
sion templates shown in Figure 2. Smaller circular 
tuning functions allow better identification per-
formance at the trained location on the irrelevant 
dimension, but also lead to a weighting profile 
that is sharper, and thus deviates more from the 
flat profile needed to achieve invariant behavior. 
As is well-known in machine learning, the same 
fundamental trade-off implies that selectivity 
grows with pool size, but tolerance decreases (the 
more complex the  classifier – complexity refers 
here to the number of units –, the more data are 
needed to avoid over-fitting and obtain good 
generalization). Thus, on the most challenging 
identification tests, larger pools are outperformed 
by smaller pools. This is illustrated in Figure 4. 
Average performance in the identification task is 
shown for three pool sizes at two locations on 
the irrelevant dimension. When the test stimuli’s 
location on the irrelevant dimension is identical 
to the training situation, larger pools perform bet-
ter in discriminating the target from distracter 
stimuli. Changing the test stimuli’s location on the 
irrelevant dimension leads to a drop in perform-
ance for all networks. However, performance is 
most impaired for the larger pools, both in abso-
lute and relative terms.

irrelevant dimensions tested by Hung et al. (2005) 
were relatively small – 4° position displacement 
and size scale doubling – and most likely within 
the limited range where single IT-neurons display 
approximately invariant behavior. Furthermore, 
this variation led to a small, but significant, drop 
in classification performance; thus, it is prema-
ture to conclude that this study demonstrates that 
invariant object recognition emerges spontane-
ously at the population level when single neurons 
only show limited invariance.

lessons leArneD froM siMUlAtions
The simulations performed by Goris and Op 
de Beeck (2009) are a case-study of the typical 
machine-learning problem and investigated in 
more detail how selectivity and tolerance of a linear 
classifier trained to identify a 2-D target stimulus 
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Figure 2 | Identification is weight optimization. To classify each stimulus in an identification task 
(explained in detail in Figure 3A), an optimal linear classifier bases its decision on the (thresholded) 
weighted sum of responses (Green and Swets, 1966). Neurons tuned to the target location are 
weighted positively while neurons tuned to the non-target locations are weighted negatively (the red 
line in the lower legend indicates the grey level matching zero). Non-informative neurons are ignored 
(i.e., they receive a weight equal to zero). (A) Responses of a pool of simulated IT-neurons to a 2-D 
stimulus. Each neuron’s response is plotted at the neuron’s preferred stimulus location. Only one  
of the stimulus dimensions is relevant for the identification task. The target location on the relevant 
dimension is indicated by the black arrow. The stimulus shown to the neural network is at the target 
location. (b) Same as (A) for a stimulus at a non-target location. The stimulus location on the irrelevant 
dimension has not changed. (C) The normalized decision template of a classifier optimized for 
identification at one specific location on the irrelevant dimension. Neurons tuned to stimulus locations 
remote from the target and distracter stimuli are not informative, and thus do not contribute to the 
decision. (D) The normalized decision template of a classifier optimized for identification at all possible 
locations on the irrelevant dimension.

Correlated tuning
A multidimensional tuning-function, 
wherein the preferences along one of 
the dimensions change with the value 
on the other dimension(s).
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Figure 3 | Task and network characteristics studied in the simulations. (A) Design of the identification experiment. 
A linear classifier was trained to discriminate a 2-D target stimulus (black symbol) from a 2-D distracter – randomly selected 
from a set of eight distracters (white symbols) on each trial – using the responses of a simulated pool of IT-neurons as input. 
After training, classification performance of the network was tested in five identification tasks, each characterized by the 
test stimuli’s location on the irrelevant dimension (indicated by the arrows; lighter arrow colors correspond to a larger 
test-training difference on the irrelevant dimension). (b) Preferred stimulus location was sampled randomly from a bivariate 
uniform distribution – red square in (C) – for each unit in the network. The distribution of preferred stimulus locations is 
shown for one particular network. (C) Each network unit is characterized by a 2-D Gaussian-shaped tuning function. This unit 
is broadly tuned to both stimulus dimensions. Tuning width and dependence was manipulated in the simulations. (D) Some 
example unit tuning functions. (E) To mimic neural noise, unit responses varied across stimulus presentations. Responses 
of one unit to 100 stimulus presentations are plotted as a function of the responses of another unit to the same stimuli. 
These units share no noise. In the nervous system, responses of cortical neurons are typically weakly correlated  
(Zohary et al., 1994), as shown in (F). This characteristic was shown to impair tolerance by Goris and Op de Beeck (2009). 
For further details on the methods, the reader is referred to this paper.
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of non-invariant neurons are pooled; thus, a 
neural population-code is not inherently more 
robust than the single neurons constituting the 
population. Quite the contrary, the average single-
neuron selectivity provides an upper bound for 
the degree of network tolerance.

However, results like these should not be taken 
to imply that invariant object recognition can-
not be achieved by a linear classifier. Invariant 
classification is possible, provided that the clas-
sifier is trained for variation on the irrelevant 
dimension(s). This is illustrated in Figure 5. 

The performance curves in Figure 4A have no 
obvious peaks at the exact location of the train-
ing stimuli (Figure 3A), but are very smooth in 
shape. This shows that the classifier can interpo-
late between the distracters encountered during 
training. Nevertheless, the drop in performance 
seen in Figure 4B clearly illustrates that the classi-
fier fails to extrapolate from the training stimuli. 
All these results support the hypothesis that for 
the “circularly tuned” networks considered in 
our simulations, invariant object recognition 
does not appear spontaneously when responses 
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Figure 4 | The effect of pool size on classification performance. The average networks’ tuning function is shown in 
Figure 3C. Networks were further characterized by noisy neurons, inter-neuron variability in the 2-D tuning functions, 
and correlated noise. (A) Average classification performance is plotted as a function of distracter value for three different 
pool sizes, consisting of 4, 16 and 196 units, respectively. The test stimuli’s location on the irrelevant dimension was 
identical to the training situation. Thus, these data express the selectivity of the considered networks. The smooth shape 
of the curves shows that the classifier can interpolate between stimuli encountered during training. (b) Same as (A) 
for the maximal test-training difference illustrated in Figure 3A; thus, these data express the tolerance of the considered 
networks. The large difference with the data shown in (A) shows that the classifier cannot extrapolate from stimuli 
encountered during training. Similar results were shown in Goris and Op de Beeck (2009).

Figure 5 | learned invariance. Average classification performance is plotted as a function of distracter value for three 
different network sizes, consisting of 4, 16 and 196 units, respectively. These networks were trained to perform 
identification at all five locations on the irrelevant dimension. (A) The test stimuli’s location on the irrelevant dimension is 
indicated by the black arrow in Figure 3A. (b) The test stimuli’s location on the irrelevant dimension is indicated by the 
lightest arrow in Figure 3A. These results were not part of the simulations in Goris and Op de Beeck (2009).

Interpolate
Here, interpolation refers to 
generalizing what is learned about two 
different exemplars of a given category 
to other exemplars that are weighted 
combinations of both exemplars, with 
all weights having values between zero 
and one.

Extrapolate
Here, extrapolation refers to 
generalizing what is learned about 
different exemplars of a given category 
to other, more extreme, exemplars that 
were not encountered during training.
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systems (Geisler, 2003). Third, this kind of read-out 
model is neurophysiologically plausible, and thus a 
sensible model for a biological system (Jazayeri and 
Movshon, 2006). Finally, identifying and quantify-
ing when and how behavioral data deviate from 
ideal  stimulus-limited performance may provide 
insight in the ways the brain uses knowledge about 
object constancy in the world when determining 
object identity.

Data-sets suitable for testing this null-hypoth-
esis directly require estimates of both the response 
characteristics of neurons underlying an object 
recognition task that requires generalization, as 
well as behavioral performance measurements in 
that task. One readily available example in the lit-
erature is the work performed by Logothetis et al. 
(1994, 1995) on view-dependent object recogni-
tion in monkeys. In other cases, without explicit 
knowledge of the response characteristics of neu-
rons underlying particular behavioral tasks, we are 
limited to a qualitative assessment in comparing 
psychophysical data and model performance.

Nevertheless, several observations are in line 
with the proposed null-hypothesis. First, there 
are some illustrative behavioral analogues to the 
effects described here. We are experts in recogniz-
ing faces and letters. Despite the fact that these 
stimuli are “overlearned”, we are not tolerant for 
rotations (McKone, 2009) – try reading upside 
down! Given that a non-invariant system in the 
limit may achieve a higher degree of selectivity 
than an invariant system (Figures 4 and 5) it may 
be advantageous to sacrifice tolerance for some 
specific dimensions (such as orientation) for 
some special classes of stimuli.

Second, in a recent review paper, Kravitz et al. 
(2008) concluded that even translations as small as 
0.5° affect object recognition to a certain degree; 
thus, object recognition is not completely posi-
tion-independent – contrary to popular wisdom. 
Moreover, all behavioral paradigms discussed in 
their review, i.e., priming, training, matching and 
adaptation, show a largely monotonic decrease 
in the amount of transfer with translation size. 
This finding is in line with the proposed null-
hypothesis, as model classification performance 
decreases monotonically with test-training differ-
ence (Goris and Op de Beeck, 2009).

Third, it is worth mentioning that two recent 
studies have investigated to what degree rats form 
an appropriate animal model for invariant object 
recognition (Minini and Jeffery, 2006; Zoccolan 
et al., 2009). Intriguingly, the studies reach oppo-
site conclusions. Minini and Jeffery (2006) found 
rats to be poor shape-perceivers that do not rely 
on invariant shape processing at all, but instead use 
low-level image cues to solve shape discrimination 

Networks having exactly the same characteristics 
as those shown in Figure 4 were trained to per-
form target identification at all five locations on 
the irrelevant dimension shown in Figure 3. All 
other aspects of the training and test procedure 
were held constant.

As can be seen in Figure 5, average classifica-
tion performance is now approximately identical 
for both identification tests; thus, invariance can 
be learned by a linear read-out mechanism, but 
requires experience with variation on the irrel-
evant task aspects. Note that the networks’ neu-
rons’ rank-order stimulus preference is often not 
preserved due to the effects of correlated tuning 
– see examples in Figure 3D. It has been suggested 
that this property is crucial to support invariant 
object-recognition (Vogels and Orban, 1996; Li 
et al., 2009). On average, however, tuning for both 
stimulus dimensions is not correlated and the aver-
age level of correlated tuning in the pool of neu-
rons underlying a perceptual decision may be more 
important than idiosyncratic tuning properties 
of single neurons (Goris and Op de Beeck, 2009).

Finally, note that for the two smaller net-
work sizes, performance is somewhat impaired 
relative to the non-invariant classifier shown in 
Figure 4A. This difference shows that, for dif-
ficult tasks, tolerance can be learned at the cost 
of selectivity.

A vAlUAble nUll-HypotHesis  
for beHAviorAl tests?
The linear classifier used in our simulations 
describes only one of many possible ways to read-
out neural activity; thus, it is by no means guaran-
teed that decoding in the real nervous system is fully 
captured by this simple model. Indeed, the brain 
is no tabula rasa in which a new task is learned 
without reference to prior experience. Shortcuts 
based on previously established learning and wir-
ing may increase the efficiency and speed of reading 
out object representations in an invariant manner. 
Moreover, receptive field properties of IT-neurons 
are only crudely captured by our circularly tuned 
networks; and in real neurons, these properties may 
even change due to recent visual experience (Li 
and DiCarlo, 2008). Nevertheless, we argue here 
that the model considered in our simulations is an 
interesting null-hypothesis to compare behavioral 
data with. First, the formal problem faced by the 
visual system and the linear classifier is the same: 
both need to learn from data (Jäkel et al., 2009). 
Second, despite its simplicity, the linear classifier 
optimally combines the available information to 
perform the task it is trained for. There is a wealth 
of literature demonstrating the usefulness of the 
ideal observer framework in studying perceptual 
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Rank-order stimulus preference
A neuron’s stimulus preference derived 
from the order of the magnitude of the 
stimulus responses – rather than from 
the absolute magnitude. Changing the 
stimulus value along one dimension 
might rescale the entire tuning function 
on another dimension, and thus the 
absolute stimulus responses, without 
affecting the rank-order.
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decreases with test-training difference (Goris and 
Op de Beeck, 2009).

These three examples provide interesting tests for 
our null-hypothesis, but they do not yet allow a test 
of quantitative predictions because there are no data 
on the response characteristics of the neurons that 
are relevant in these tasks. Further experiments will 
be necessary to find out whether or not invariance in 
behavior can be predicted quantitatively from two 
factors: required invariance during training, and 
the average degree of invariance of single neurons. 
Such tests might further support our conclusion that 
optimal read-out of a population of non-invariant 
IT-neurons may explain several aspects of (the lack 
of) invariance in visual object recognition.

AcKnoWleDgMents
We wish to thank G. Kreiman, D. Zoccolan and J. 
Wagemans for valuable comments. This research 
was supported by a post-doctoral fellowship from 
the Fund for Scientific Research (FWO) of Flanders 
(Robbe L. T. Goris), and the Human Frontier 
Science Program (CDA 0040/2008).

tasks. Zoccolan et al. (2009), on the other hand, 
demonstrated that rats do possess some form of 
invariant visual object recognition as they can suc-
cessfully discriminate between previously unseen 
transformations of learned objects (some exam-
ples are shown in Figure 1) and even extrapolate 
to unseen variation dimensions (i.e., novel light-
ing conditions). Consistent with the model pre-
sented here, the crucial difference between both 
studies is to be found in the training protocol. 
Indeed, rats trained to discriminate between two 
stimuli that do not vary on task-irrelevant aspects 
do not generalize to unseen stimulus instances 
(Minini and Jeffery, 2006). However, when rats are 
trained to discriminate target objects despite vari-
ation in object size and viewpoint, they are able 
to generalize to new combinations of previously 
encountered variations on the irrelevant dimen-
sions (Zoccolan et al., 2009). Generalization is 
not perfect though, but decreases with distance 
to the closest stimulus seen during training. As 
mentioned earlier, such finding is also in line 
with the null-hypothesis, as model performance 
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