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Abstract

Background: M-phase phosphoprotein 8 (MPP8) was initially identified to be a component of the RanBPM-containing large
protein complex, and has recently been shown to bind to methylated H3K9 both in vivo and in vitro. MPP8 binding to
methylated H3K9 is suggested to recruit the H3K9 methyltransferases GLP and ESET, and DNA methyltransferase 3A to the
promoter of the E-cadherin gene, mediating the E-cadherin gene silencing and promote tumor cell motility and invasion.
MPP8 contains a chromodomain in its N-terminus, which is used to bind the methylated H3K9.

Methodology/Principal Findings: Here, we reported the crystal structures of human MPP8 chromodomain alone and in
complex with the trimethylated histone H3K9 peptide (residue 1–15). The complex structure unveils that the human MPP8
chromodomain binds methylated H3K9 through a conserved recognition mechanism, which was also observed in
Drosophila HP1, a chromodomain containing protein that binds to methylated H3K9 as well. The structure also reveals that
the human MPP8 chromodomain forms homodimer, which is mediated via an unexpected domain swapping interaction
through two b strands from the two protomer subunits.

Conclusions/Significance: Our findings reveal the molecular mechanism of selective binding of human MPP8
chromodomain to methylated histone H3K9. The observation of human MPP8 chromodomain in both solution and crystal
lattice may provide clues to study MPP8-mediated gene regulation furthermore.
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Introduction

Histones are subject to a wide variety of posttranslational

modifications including acetylation, methylation, phosphorylation,

ubiquitination, sumoylation and so on [1]. These post-translational

modifications (PTM) constitute ‘histone code’, which will be read in

part by histone PTM-binding ‘effector’ modules and their associated

complexes [2,3,4]. Lysine methylation of histone tail has been known

for more than 30 years [3,5]. Currently, numerous studies have

revealed that a number of domains could bind methylated histone

tails, including WD40 repeats [6], PHD fingers, Ankyrin repeats,

MBT domain [7,8], Tudor domain, Chromodomain, PWWP

domain and chromo barrel domains [7,9,10,11,12,13,14,15,16,17,

18,19,20,21,22,23,24]. The common feature of the recognition is

that the methylated lysine residue is coordinated via a conserved

aromatic cage around the moiety. Chromodomain was first

identified as methyllysine binding motif in Drosophila melanogaster

heterochromatin protein-1 (HP1) and Polycomb as regulators of

chromatin structure that are involved in epigenetic repression

[25,26]. The structures of the HP1 chromodomain in complex with

a methyl-Lys 9 histone H3 peptide and the Polycomb chromodo-

main in complex with a methyl-Lys 27 histone H3 peptide reveal the

molecular mechanism of chromodomain binding to methylated

histone H3 [23,24,27]. Many other chromodomain-containing

proteins, such as CHD1, Eaf3, MSL3, MPP8 and so on, were also

reported to recognize methylated histone tails [28,29,30,31]. Most

chromodomain-containing proteins participate in the formation of

large multiprotein complexes to facilitate their recruitment to target

loci, resulting in chromatin remodeling and transcription repression

[32].

The M-phase phosphoprotein 8 (MPP8), which was firstly

identified to coimmunoprecipitate with the RanBPM-comprised
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large protein complex, was shown to associate with methylated

H3K9 both in vivo and in vitro [33,34,35]. The binding of MPP8 to

methylated H3K9 recruited the H3K9 methyltransferases GLP

and ESET, as well as DNA methyltransferase 3A (DNMT3A) to

the promoter of the E-cadherin gene, a key regulator of tumor cell

growth and epithelial-to-mesenchymal transition (EMT) [36,37].

The recruitment of those enzymes and enzyme complexes, which

regulated the H3K9 and DNA methylation at the promoter of E-

cadherin gene, respectively, repressed the tumor suppressor gene

expression and, in turn, played an important role in epithelial-to-

mesenchymal transition and metastasis [34].

Here, we reported the crystal structures of human MPP8

(hMPP8) chromodomain both in free form and in complex with

the trimethylated histone H3 lysine 9 (H3K9me3) peptide (residue

1–15). Consistent with the high sequence homology of MPP8 with

Polycomb and HP1 chromodomains, the complex structure of

hMPP8-H3K9me3 uncovers the detailed molecular mechanism of

recruitment of MPP8 chromodomain by HK9me3 as well as its

unexpected homodimerization. In this way, our study sheds lights

on the roles of MPP8 in regulating gene expression.

Results

Overall structure of hMPP8 chromodomain
To unveil the molecular architecture of the chromodomain of

hMPP8, hMPP8 chromodomain (55–116 residues) was recombi-

nantly expressed and crystallized. The crystals of the free-hMPP8

and hMPP8-H3K9me3 complex both diffracted to 2.05 Å

resolution and the structures were solved using molecular

replacement. The quality of the X-ray diffraction data and the

structure refinement parameters are shown in Table 1.

In the free form, the hMPP8 chromodomain consists of a

twisted anti-parallel b-sheet formed by three b-strands (named b2–

b4), and a helix (named aA) located at the C-terminal end packing

against one edge of the b-sheet next to b2 (Fig. 1B). In the

asymmetric unit of the crystal, two hMPP8 chromodomain

monomers form a dimer through the interaction between the b2

strand from each monomer. The b2 strand from one subunit runs

anti-parallel to the b2’ strand from the neighboring one, pulling the

three-stranded anti-parallel b-sheets of two hMPP8 chromodomain

proteins adjacent to constitute a six-stranded anti-parallel b-sheet

(Fig. 1B). Specifically, Asp66, Met67, Thr69, Gly71 and Gly72 of b2

strand form hydrogen bond with Gly72’, Gly71’, Thr69’, Met67’

and Asp66’ of b2’ strand from the opposite subunit, respectively. In

addition, Asp66, Met67, Lys68, Glu70, Lys109, Ile110 and Asn113

contact Thr69’, Glu70’, Met67’, Asn113’ and Ile110’ via van der

waals interactions (Fig. 1C). The dimer interface has a buried surface

area of about 1025 Å2, which is strong enough to form a stable

dimer. As reported, the dHP1 chromodomain existed as monomer

while dPlycomb chromodomain formed dimer both in solution and

in crystal lattice [19,20,23,30]. Sequence alignment result indicates

that hMPP8 chromodomain is more similar to HP1 choromodo-

main and lacks the residues in dPlycomb chromodomain for

dimerization (Fig. 1A). It was quite unexpectedly to find that hMPP8

chromodomain forms homodimer in our crystal structures.

To determine the oligomerization state of hMPP8 chromodo-

main in solution, size exclusion experiment was performed. As

shown in Fig. 1D, hMPP8 chromodomain eluted as a single peak

with apparent molecular weight of 13.6 kD. The molecular weight

of hMPP8 chromodomain monomer is about 8.0 kD. The size of

hMPP8 chromodomain in solution is corresponding to dimer,

consistent with the observation in crystal structure. Therefore, the

chromodomain exists as a homodimer in solution (Fig. 1D) and the

homodimer structure in crystal is not due to crystal packing.

Structural basis for the specific binding of the hMPP8
chromodomain to histone H3 methylated at lysine 9

Since hMPP8 chromodomain was reported to bind methylated

H3K9 [34,35,38], we used synthetic di- and tri-methylated H3K9

(residues 1 to 15) peptides to measure their binding affinities to the

hMPP8 chromodomain by surface plasmon resonance (SPR)

method. The hMPP8 chromodomain showed strong binding to

both di- and tri- methylated H3K9 with the dissociation constants

of 0.43 mM and 0.31 mM, respectively (Fig. 2A, 2B). In histone

H3, the amino acid sequence around lysine 27 site (KAARK27S) is

similar to that of the lysine 9 site (QTARK9S). A synthetic

H3K27me3 (residues 19 to 33) peptide was also used to determine

the binding affinity to hMPP8 chromodomain. However, the

hMPP8 chromodomain does not exhibit detectable binding to the

both H3K27me3 peptide (Fig. S1F). In addition, the binding of

hMPP8 chromodomain to H3K4me3 peptide was unable to be

Table 1. Data collection, phasing and refinement statistics for
MPP8 and MPP8-H3K9me3 complex.

PDB code 3LWE 3R93

Data collection

Crystal MPP8 MPP8-H3K9me3

Space group P65 P21212

Cell dimensions

a, b, c (Å)
a,b,c(u)

50.66, 50.66, 123.54
90, 90, 120

71.15, 74.00, 72.61
90, 90, 90

Wavelength (Å) 0.9794 0.9792

Resolution range (Å) 50.00-2.05 (2.09-2.05)a 50.00-2.05 (2.12-2.05)

Unique reflections 11,280 (551) 24,361 (2,340)

Mutiplicity 11.3 (11.2) 6.8 (5.0)

Data completeness (%) 99.7 (99.6) 99.7 (97.6)

Rmerge (%)b 7.6 (85.3) 7.2 (73.5)

I/s (I) 38.5 (3.9) 34.8 (2.1)

Refinement statistics

Resolution (Å) 43.88-2.05 30.00-2.06

No. of reflections Rwork/Rfree 11,249/537 23,004/1,237

No. atoms 1,062 2,269

Protein 995 1,838

Peptide 0 340

Water 67 91

Rwork (%) 21.7 22.0

Rfree (%) 28.3 27.3

R.m.s.d. bond length (Å) 0.018 0.014

R.m.s.d. bond angle (u) 1.6 1.4

Mean B-value (Å2) 36.8 51.2

Protein 36.6 50.5

Peptide n/a 56.6

Water 40.4 46.8

Ramachandran plot (%)
(favored/additional/
disallowed)C

92.6/7.4/0.0 93.0/7.0/0.0

aValues in parentheses are for highest-resolution shell.
bRmerge =ShklSi IIi(hkl)2,I(hkl).I/ShklSiIi(hkl), where Ii(hkl) is the ith observation

of reflection hkl and ,I(hkl). is the weighted average intensity of all
observations i of reflection hkl.

cStatistics for the Ramachandran plot from an analysis using Procheck.
doi:10.1371/journal.pone.0025104.t001
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detected (Fig. S1F), which was consistent with previous reports

[31,35]. To explore how the hMPP8 chromodomain selectively

binds the methyl-K9-containing histone H3 tail, we determined

the crystal structure of the hMPP8 chromodomain in complex

with the H3K9me3 peptide. The overall structure of the hMPP8

chromodomain in complex with the H3K9me3 peptide is shown

in Fig. 2C. Two histone H3K9me3 peptides bind to the opposite

faces of the hMPP8 chromodomain homodimer, respectively

(Fig. 2C). Structural comparison of the hMPP8 chromodomain-

H3K9me3 peptide complex and the free hMPP8 chromodomain

identified a newly formed b strand (named b1) by the N-terminal

residues, which exited as a loop in the free hMPP8 chromodomain

structure (Fig. 2D). This b strand is induced by the contact with the

H3 tail peptide, which was observed in the structures of Drosophila

HP1 and Polycomb chromodomain in complex with methyllysine

histone peptides before [23,24,27]. From the complex structure we

can see that the H3K9me3 peptide binds to hMPP8 chromodomain

in a cleft between the N-terminal newly formed b1 strand and the

loop connecting b4 and aA. Similar to the structure of the Drosophila

HP1 and Polycomb chromodomain in complex with methyllysine

histone peptides, the interactions between hMPP8 chromodomain

and H3K9me3 largely involve the main chains of both the protein

and the peptide, including the residues Gln5, Thr6, Ala7, and Arg8

of the H3 tail and the residues Val58, Phe59, Glu60, and Val61

located at the b1 strand in hMPP8 chromodomain. In addition, the

residues of Gln5 and Arg8 form van der waals contacts with the

residues of 98–100 located in the loop connecting b4 and aA,

whereas Gln5 and Ser10 form hydrogen-bonds with residues of

Glu101, Val102 and Glu91, respectively (Fig. 2E). As demonstrated

in most complex structures of methyllysine peptides and their

recognition modules, the trimethylated K9 lies in a hydrophobic

pocket formed by three aromatic residues, Phe59, Trp80, and

Tyr83 (Fig. 2F). And the trimethyl-K9 is anchored by cation-p and

van der Waals interactions within this aromatic cage.

Figure 1. Overall structure of hMPP8 chromodomain. (A) Sequence alignment of chromodomains of human MPP8, Drosophila HP1 and
Drosophila Polycomb. Secondary structural elements (arrows for b strands and rectangles for a helices) are indicated, g represent 310 helix.
Methylated H3K9 binding residues are marked by stars. Residues involved in dimerization of human Mpp8 and Drosophila Polycomb are marked by
diamonds and triangles, respectively. The alignment was created with Espript (http://espript.ibcp.fr/Espript/Espript). (B) Cartoon representation of the
crystal structure of hMPP8 chromodomain. The two subunits of the homodimer are colored in cyan and green, respectively, and the secondary
structure regions in both proteins are marked. (C) Interactions between the two subunits of the hMPP8 chromodomain homodimer. The dimer
interface is formed by strand b2 through an antiparallel arrangement. (D) Gel filtration of hMPP8 chromodomain (left panel). The column buffer was
20 mM Tris (pH 8.0), 400 mM NaCl. The molecular weight of hMPP8 chromodomain monomer was measured using tricine-SDS-PAGE (right panel).
doi:10.1371/journal.pone.0025104.g001
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It is noteworthy that the sequence motif of H3K27 is similar to

H3K9 tail (KAARK27S versus QTARK9S). However, methylated

histone H3K27 cannot interact with hMPP8 chromodomain. To

explain why hMPP8 specifically recognizes methylated H3K9, we

built a mutant model that hMPP8 binds to methylated H3K27.

We mutated residues Gln5 and Thr6 of the QTARK9S motif to

KA to generate a motif of KAARK9S, which shared the same

amino sequence around the K27 site in histone H3. In this mutant

model, we found that the side chain of Lys5 prevented the

insertion of histone peptide into the binding groove of hMpp8

chromodomain (Fig. S1A). To further validate the hypothesis,

hMpp8 chromodomain mutants were designed to rescue the

Figure 2. hMPP8 chromodomain specifically recognizes di- and tri- methylated H3K9 peptides. (A) and (B) Binding affinity of hMPP8
chromodomain to di- and tri-methylated H3K9 peptides was measured by SPR method (C) Overall structures of hMPP8 chromodomain in complex
with histone H3K9me3 peptide. Cyan and green: hMPP8 chromodomain, yellow and magenta: methylated histone H3K9 peptide. (D) Monomer
structure of hMPP8 chromodomain in complex with histone H3K9me3 peptides. Cyan: hMPP8 chromodomain, yellow: histone H3K9me3 peptide. (E)
Interactions between hMPP8 chromodomain and H3K9me3 peptide. The chromodomain is shown in cartoon representation and colored in cyan. The
H3K9me3 peptide is shown in a stick mode. (F) The aromatic cage accommodating trimethylated lysine 9.
doi:10.1371/journal.pone.0025104.g002
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binding ability to H3K27me3. Based on our structures, residues

Lys100, Glu101 and Val102 were mutated to proline, respectively,

to generate enough space where the side chain of Lys5 can insert.

As expected, when Lys100 or Glu101 were mutated to proline

respectively, the mutant proteins were found to be able to bind

H3K27me3 peptide weakly (Fig. S1B).

Furthermore, a structure model of peptide KAARK(me3)S

(referred to as H3K27me3 peptide), which shared the same amino

sequence around the K27 site in histone H3 was generated and

docked into hMPP8 chromodomain structure using the program

HADDOCK [39] (Fig. S1C). In this model, the H3K27me3

peptide can still form a b sheet and interact with hMPP8 via

hydrogen-bond and van der Waals interactions. However, the side

chain of trimethyllysin was pushed about 24u away from the

original binding site in the hydrophobic pocket, which is essential

for the interaction between methylated peptide and its association

domain (Fig. S1D). Thus we believe that altering the motif of QT

to KA abolishes the binding ability of H3K27me3 peptide to

hMPP8 chromodomain.

Structural comparison of hMPP8 with HP1 and Polycomb
chromodomains

Consistent with the high sequence homology of the hMPP8

chromodomain to the Drosophila HP1 and Polycomb chromodo-

mains (Fig. 1A), the overall structure of hMPP8, Polycomb and

HP1 chromodomains are very similar [23,24,27]. Unsurprisingly,

the binding mode of hMPP8 to the methylated-H3K9 peptide is

also similar to that observed in the structures of HP1 and

Polycomb chromodomain in complex with the methylated histone

peptides. The structure of hMPP8 chromodomain is well

conserved with an RMSD of 0.8 Å and 1.1 Å for all aligned Ca

atoms with those of the HP1 and Polycomb chromodomain,

respectively. In addition, the histone peptide conformation in the

hMPP8 chromodomain complex structure is also very similar to its

counterparts in the complex structures of the HP1 and Polycomb

chromodomains, with an RMSD of 0.4 Å and 0.5 Å, respectively

(Fig. 3A). Though the architectural features of the hMPP8, HP1

and Polycomb chromodomains are highly similar, there are still

many noticeable differences among them.

The most striking difference is that the hMPP8 chromodomain

was found to form homodimer in both solution and crystal lattice,

which was not observed in Drosophila HP1. Although self-

association of the chromodomain of Drosophila Polycomb has been

pointed out explicitly before [27], the interaction mode of the two

subunits in hMPP8 chromodomain homodimer is different from

that of Polycomb. In Polycomb chromodomain homodimer, the

key residues that involved in dimerization are located in the loop

at C-terminus connecting the last b strand and the last a helix

(Fig. 1A, 3B). However, dimerizaiton of hMPP8 chromodomain is

formed via extensive intermolecular interactions between the two

b2 stands from two individual subunits, including van der waals

contacts and hydrogen-bonds. (Fig. 1C).

A total of 12 out of 15 residues in H3K9me3 were observed to

be ordered in hMPP8 chromodomain complex corresponding to

the sequence stretch from Lys 4 to Ala 15, whereas there were only

6 and 9 residues observed in the structures of Drosophila HP1 and

Polycomb, respectively [23,24,27]. hMPP8 chromodomain pos-

sesses a more extended peptide binding groove than that of HP1,

comparing the 1250 Å2 of the interaction area of hMPP8 to

1063 Å2 of HP1. Nevertheless, it is not convincing to deduce that

the longer H3 tail observed in the structure of hMPP8

chromodomain complex is just because of the extended protein-

peptide interaction, since Polycomb chromodomain has the most

extended peptide binding groove among the three, 1482 Å2

(Fig. 3D). In the crystal lattice, another pattern of the homodimer

of hMPP8 chromodomain was found. The two chromodomain

juxtaposed the two H3- binding clefts in an antiparallel fashion

and resulted in not only histone-histone interactions involving

Ser10, Gly12 and Cly13 of H3, but also the interactions between

histone peptide and the neighboring chromodomain involving

residues 11–15 of H3 with residues leu75 and 88–90 of the

adjacent chromodomain. Those additional interactions can further

stabilize H3 peptide, especially residues 11–15 (Fig. 3C).

To verify whether the H3K9me3 peptide could bring the two

chromodomain homodimers together in solution, size-exclusion

chromatography were performed to determine the oligomerization

state of hMPP8 chromodomain either in the presence or in the

absence of H3K9me3 peptide. The elution volumes of hMPP8

chromodomain in free form and in complex with H3K9me3

peptide were approximately 12.62 ml and 12.60 ml, respectively,

which were both corresponding to the homodimer of hMPP8

chromodomain (Fig. S1E). The results indicated that the pattern

that two chromodomain juxtaposed the two H3-binding clefts in

neighboring hMPP8 chromodomain dimers is only a crystal-

packing artifact.

Discussion

Recently, more and more evidences have suggested that many

histone-mark ‘‘readers’’ and ‘‘writers’’ can also bind non-histone

sequences [40,41,42]. Chromodomain is conserved among both

plants and animals, which functions individually or in tandem to

recognize specific methylated histone tails [43,44]. CBX3

chromodomain have been reported to bind H3K9me3 peptide

[45]. However, a recent structure of CBX3 chromodomain in

complex with G9a peptide (PDB: 3DM1) demonstrates that CBX3

is also a reader of methylated G9a. Here, we resolve the structure

of hMPP8 chromodomain in complex with H3K9me3 peptide

and shed lights on the molecular mechanism of selective binding of

hMPP8 to methylated histone H3K9. Based on our structure, we

tried to mutate some residues of H3K9me3 peptide and generate

structure models by docking the mutant peptides into the hMpp8

chromodomain using the program HADDOCK [39], we finally

hypothesized a consensus sequence of (Q/N)(T/V/L/I/S)A(R/

K/H)Kme(S/T) (‘‘/’’ separates tolerated amino acids at each site).

Such consensus sequence may be helpful to predict the candidate

Mpp8-interacting proteins which could potentially be methylated.

In addition, our crystal structures reveal that hMpp8 forms

homodimer via b-sheet interactions between the neighboring

subunits, which are never observed in the structure of either HP1

or Polycomb chromodomain before. The distanance between the

two aromatic cages binding methylated H3K9 in hMpp8

chromodomain homodimer is measured to be 40 Å, so it would

be reasonable to speculate that hMPP8 chromodomain dimer may

bind two methylated H3K9 from the same nucleosome or spatially

adjacent nucleosomes. Here we build the models that the

simultaneous binding of two histone tails to hMpp8 homodimer

either from the same nucleosome or from two separated

nucleosomes (Fig. S2A and S2B). We believe that the interactions

of hMPP8 homodimer with two histone H3 tails methylated at K9

are able to recruit the H3K9 methyltransferases GLP and ESET,

as well as DNA methyltransferase 3A more efficiently, hereby

contribute to gene repression.

Note
During preparation of this manuscript, another group reported

the MPP8-K9me3 complex [46]. Cheng and colleagues also

observed that hMPP8 chromodomain formed homodimer both in
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solution and in crystal structures. The recognition mode between

hMPP8 chromodomain and methylated histone H3K9 peptide in

their complex structure is almost the same as that observed by us.

We both found that hMPP8 cannot recognize methylated H3K27

and the binding affinity of hMPP8 chromodomain to H3K9me3 is

similar.

Materials and Methods

Protein expression and purification
The chromodomain of human MPP8 (residue 56–116) was

inserted into a pET28a-MHL vector via ligase-independent

cloning. The recombinant protein was expressed in BL21 (DE3)

Figure 3. Structural comparison of hMPP8, HP1 and Polycomb chromodomains. (A) Superimposition of hMPP8 (cyan) with Drosophila HP1
(green), and hMPP8 (cyan) and Drosophila polycomb (green) chromodomain in complex with methylated histone H3K9 peptide (yellow and magenta,
respectively). (B) The Drosophila polycomb chromodomain dimer. Two Drosophila polycomb chromodomain monomers are shown in a cartoon
representation, colored yellow and green, respectively. Key residues involved in dimerization are shown in a stick mode. (C) Histone-histone and
histone-chromodomain interactions of hMPP8 chromodomain in complex with H3K9me3 peptide in crystal lattice. Chromodomains are shown in a
cartoon representation, colored yellow and green, respectively. Key residues involved in interactions are shown in a stick mode. (D) Peptide binding
grooves of hMPP8, dHP1 and dPolycomb chromodomains. Chromodomain is shown in surface representation, and histone peptide is shown in a stick
mode.
doi:10.1371/journal.pone.0025104.g003
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Codon plus RIL (Stratagene). Cells were grown at 37uC to OD600

of approximately 6 and protein expression was induced by

0.1 mM IPTG for another 16 hours 15uC. Cells were collected by

centrifugation and resuspended in lysis buffer (20 mM Tris-HCl,

pH 8.0, 500 mM NaCl, 0.4% NP40, 0.5 mM TCEP, 5 mM

immedazole, 20 ul Benzonase, and protease inhibitors). The

resuspended cells were lysed by sonication and centrifugated at

16000 rpm for 60 minutes at 4uC. After centrifugation, the

supernatant was passed through a Ni-NTA nickel-chelating

column (Qiagen) equilibrated with lysis buffer and the column

was extensively washed with washing buffer (20 mM Tris-HCl,

pH 8.0, 500 mM NaCl, 25 mM immidazole, and 0.5 mM

TCEP). Target protein was eluted with buffer (500 mM NaCl,

50 mM Tris, pH 8.0, 250 mM imidazole) for 3 column volumes.

His-tag was removed by TEV protease. After digestion, protein

sample was further purified by a HiLoad 16/60 Superdex 200 size

exclusion column (GE healthcare).

Protein Crystallization, X-ray diffraction data collection
and structure determination

Before crystallization, the protein was concentrated to 26 mg/

ml as stock in 280uC. Crystals of hMPP8 chromodomain were

obtained by the hanging drop vapour diffusion method at 18uC in

a buffer containing 25%PEG400, 0.2 M MgCl2, 0.1 M Hepes

7.5. For crystallization of complex, H3K9me3 peptide was mixed

with hMPP8 chromodomain in an 8:1 molecular ratio, then the

mixture was crystallized using the hanging drop vapour diffusion

method at 18uC. hMPP8-H3K9me3 complex was crystallized in a

buffer containing 35% PEG2000-MME. Before flash-freezing

crystals in liquid nitrogen, crystals were soaked in a cryoprotectant

consisting of 100% reservoir solution and 15% glycerol.

Diffraction data were collected at beamline 19ID of the

Advanced Photon Source (Argonne, Illinois). Data were reduced

using the HKL suite [47]. Structures were solved by molecular

replacement using the structure of human chromobox homolog 3

chromodomain (PDB ID: 3DM1) as template and refined with

REFMAC [48]. The peptide ligands were automatically traced

with BUCCANEER [49]. Interactive model rebuilding and

validation were performed with COOT [50] and the MOL-

PROBITY server [51], respectively. The quality of the structure

models was analyzed with the PROCHECK program [52]. The

coordinates and structure factors have been deposited to the

RCSB Protein Data Bank with accession numbers of 3LWE and

3R93. Details can be found in table 1.

Surface Plasmon resonance (SPR) assay
The binding affinity of hMPP8 chromodomain and histone

peptides were determined at 14uC using BIAcore3000 instru-

ments. The biotinylated peptides were immobilized on a

streptavidin-coated biosensor chip (SA-Chip). All experiments

were carried out in the continuous-follow buffer (150 mM NaCl,

20 mM Tris, pH 8.0, 1 mM DTT). The injected protein sample

was flowed for 3 min over the peptide coated SA-Chips at a follow

rate of 30 ml/min and the change of response unit (RU) was

recorded. Protein dissociation was monitored for 3 min by

following the continuous-follow buffer at a follow rate of 30 ml/

min over the SA-Chips. The KD was determined by global

nonlinear regression fitting of the association and dissociation

curves according to the Langmuir binding isotherm model.

Supporting Information

Figure S1 hMPP8 specifically recognizes methylated
H3K9 rather than H3K27. (A) A mutant structure model for

hMPP8 binds to KAARK(me3)S histone motif. Gln5 and Thr6 of

the QTARK9S motif were mutated to KA in this model. (B)

Histone H3K27 peptide pulldowns with proteins of wild type

hMpp8 chromodomain and indicated mutants, respectively. (C)

Overall structure of the model for hMPP8 chromodomain in

complex with histone motif KAARK(me3)S generated by the

program HADDOCK. Motif KAARK(me3)S was comparable to

methylated H3K9 peptide with an RMSD at 0.4 Å. (D)

Superposition of the Trimethyllysine binding cage of the Docking

model (green: chromodomian, cyan: KAARK(me3)S motif) with

that of hMPP8 chromodomain in complex with methylated

histone H3K9 peptide (yellow: chromodomain, pink: peptide). (E)

Determination of the aggregation state of the hMpp8 chromodo-

main either in the presence or absence of histone H3K9me3

peptides. Molecular mass was measured by size exclusion. (F)

Binding affinity of hMPP8 chromodomain to H3K4me3 (left

panel, measured by ITC method) and H3K27me3 peptide (right

panel, measured by SPR method).

(TIF)

Figure S2 Two potential models of Mpp8 binding
nucleosomes in vivo. (A) hMPP8 homodimer binds to two

H3K9me3 tails on the same nucleosome. (B) hMPP8 homodimer

binds to two H3K9me3 tails on two spatially adjacent nucleo-

somes.

(TIF)
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