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Abstract

Single-cell genomics has transformed our ability to examine cell fate choice. Examining cells 

along a computationally ordered “pseudotime” offers the potential to unpick subtle changes in 

variability and covariation among key genes. We describe a novel approach, scHOT – single cell 

Higher Order Testing - which provides a flexible and statistically robust framework for identifying 

changes in higher order interactions among genes. scHOT can be applied for cells along a 

continuous trajectory or across space and accommodates any higher order measurement including 

variability or correlation. We demonstrate the utility of scHOT by studying coordinated changes in 

higher order interactions during embryonic development of the mouse liver. Additionally, scHOT 

identifies subtle changes in gene-gene correlations across space using spatially-resolved 
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transcriptomics data from the mouse olfactory bulb. scHOT meaningfully adds to first order 

differential expression testing and provides a framework for interrogating higher order interactions 

using single cell data.

Introduction

Understanding the mechanisms that underpin cell fate choice is a key challenge in 

developmental biology. It requires disentangling the complex interplay between cell 

autonomous factors, such as gene expression, and non-autonomous factors such as the 

signaling environment. In the former context, recent technological advances have enabled 

the rapid and high-throughput measurement of mRNA expression levels in individual cells. 

Such single-cell RNA-sequencing (scRNA-seq) datasets have facilitated the generation of 

atlases of cell types during development in human, mouse, zebrafish and the frog1–5. Using 

such data, cells can be computationally ordered along ‘pseudotime’ and changes in the 

expression profiles of individual genes can be subsequently determined. However, while cell 

fate decisions are typically associated with profound changes in expression, many such 

changes are downstream of the initial cell fate decision. Instead, subtle changes in patterns 

of variation and coexpression of genes across developmental time, sometimes not associated 

with substantial changes in mean expression, have been argued to play a more critical role in 

symmetry breaking6,7. Consistent with this, higher order interactions (i.e., looking beyond 

changes in mean expression) have proved highly informative for understanding genomics 

data, for example in supervised machine learning settings8 and for estimation of unknown 

spatial patterning9. Additionally, with recent developments in high-throughput and high-

resolution spatially resolved gene expression mapping (e.g., Spatial Transcriptomics10; 

seqFISH11; MERFISH12) it is now possible to explore the relationship between higher-order 

interactions and spatial location. For example, in the context of embryogenesis, do small 

numbers of spatially-localized cells display aberrantly higher variability in expression 

profiles prior to committing to a downstream fate?

From a computational perspective, methods for studying higher-order interactions are 

currently lacking. Although numerous methods have been developed for ordering cells along 

pseudotime, a computationally derived prediction of cell-type differentiation 

trajectories13–16, methods for identifying individual genes that significantly change their 

expression levels across the pseudotemporal trajectory17–19 typically focus on changes in 

mean expression of single genes and do not characterize subtle changes in patterns of 

covariation between subsets of genes across this trajectory. In those cases where higher-

order interactions have been studied, a typical analysis aiming to compare correlation 

patterns along pseudotime first defines strict nonoverlapping sets of cells before estimation 

of a covariance network, either through direct thresholding on the correlation matrix or using 

other methods20,21. However, estimation of such networks is noisy22, and ignores potentially 

subtle but consistent changes across a continuum, as well as requiring an often ad hoc 

dichotomization or classification of cells into discrete groups. Even in the situation where 

the data arises from two distinct samples with unknown labels, we have previously shown 

using simulations that two-sample differential correlation methods are not particularly robust 

under model mis-specification23. As we have also previously discussed23, treating the 
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sample ranking as a covariate and testing for an interaction effect in a linear model is 

restricted to identifying linear and thus monotonic interactions, which may not be present, 

especially in highly dynamic or complex trajectories going through multiple changes in the 

differentiation process. In the context of spatially resolved gene expression data, fewer 

methods exist, with the focus being on testing the existence of pre-defined patterns24 (e.g., a 

signaling gradient); however, these require a priori knowledge about the spatial structures of 

interest.

Results

Single cell Higher Order Testing (scHOT)

Here we introduce single cell Higher Order Testing (scHOT), a framework for examining 

changes in higher order structure, such as correlation among genes across differentiation 

pseudotime, among discrete groups, and across spatial landscapes. scHOT builds on our 

previous work, DCARS (Differential Correlation Across Ranked Samples), which used bulk 

RNA-sequencing data to test for changes in gene-gene correlation across ranked individual 

samples23. Our approach requires one of the following types of cell-specific information 

(Figure 1): A) a ranking of cells, which will typically be across pseudotime, or B) spatial 

coordinates in either two or three dimensions. In the case where spatial coordinates are 

inferred25, scHOT is also applicable using either the cell ranking along a gradient or in the 

inferred 2/3D space. Given this cell-specific information, as well as a scheme for 

determining local sample-specific weights, we calculate local higher order interaction 

vectors among single genes or pairs of genes, uncovering local changes in variability or 

covariation respectively (Figure 1). Sample-wise permutation testing is then used to assess 

statistical significance, while retaining the global variability or correlation structure of the 

original data. This framing of the significant genes and gene-pairs in terms of the set of local 

higher order interaction estimates allows patterns of changes across the trajectory, groups, or 

space to be characterized in terms of the higher order interaction, rather than simply by 

changes in the mean. Moreover, scHOT identifies groups of genes for which similar higher 

order patterns arise. For a more detailed discussion of how scHOT can be applied in 

practice, see the Supplementary Note.

scHOT identifies multiple higher order associations during liver development

We first analyzed four single-cell RNA-sequencing datasets designed to study the early 

development of the mouse liver26–29 (Methods, of which three contained hepatic cells). The 

integrated data encompassed 7 days of development (from embryonic (E) day 10.5 to 

E17.5), which covers the period where progenitor hepatoblasts transition towards more 

mature hepatocytes and cholangiocytes (Figure 2A). As expected, when using Monocle 219 

to order the cells in pseudotime, we observed a clear bifurcation where hepatoblasts 

differentiated into either cholangiocytes or hepatocytes (Figure 2B). This was supported by a 

higher proportion of differentiated cells in the later embryonic time points as well as cell-

type specific expression of known marker genes28,30,31 (Figure 2C).

Building on this, we first examined higher order patterns as cells transitioned from naïve 

hepatoblasts towards the bifurcation point where they commit to one of the two downstream 
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lineages (Figure 2D). In total 68 genes showed a change in variability (false discovery rate 

(FDR) adjusted P-value < 0.1, all shown in Extended Data Figure 1A and 1B and 

Supplementary Table 1A) along the trajectory in the absence of changes in gene expression. 

Of these, 58 (85%) displayed significantly increased variability along the branch (Figure 

2D). These genes were enriched for involvement in processes associated with cell division, 

chromosomal organization and DNA replication (Figure 2E; Methods), consistent with the 

notion that increased plasticity can precede cell fate commitment6,7.

We next focused on the full trajectory from naïve hepatoblast through to hepatocytes. 

Specifically, we investigated whether scHOT could identify changes in correlation, in the 

absence of differential expression, thus providing insight into the potentially complementary 

set of gene regulatory modules that are activated during the process of commitment from 

hepatoblast to the hepatocyte lineage. Correlation patterns identified as cells transition from 

naive hepatoblast to cholangiocytes can be found in Extended Data Figure 2A and 2B.

When focusing on the hepatoblast to hepatocyte lineage, we identified numerous changes in 

correlation between pairs of genes that did not change their individual mean expression 

(Methods). An example of such a gene-pair is Cdt1 and Top2a (Figure 3A, FDR adjusted P-

value < 0.03), which are protein-protein interacting partners32 that have been implicated in 

regulation of the cell cycle in human and mouse stem cells33. This pair of genes changes 

from being strongly negatively correlated in the progenitor population to displaying no 

correlation in the more differentiated hepatocytes. Interestingly, when considering each gene 

separately, neither Cdt1 nor Top2a are significantly differentially expressed along the 

trajectory, or significantly differentially variable (FDR adjusted P-value = 0.70 and 0.12 

respectively), indicating that the association between these two genes would not be 

identified without using scHOT. Top2a encodes a DNA topoisomerase, which controls and 

alters the topologic states of DNA during transcription34, while Cdt1 is a chromatin 

licensing and DNA replication factor that is required for DNA replication and mitosis35. Our 

observation that these genes move from being negatively correlated to displaying no 

correlation suggests a trade-off between chromatin remodeling and transcription at the 

earlier stages of differentiation, potentially facilitating both proliferation and the global 

changes in gene regulatory architecture that arise when cells commit towards the hepatoblast 

lineage.

Across all 22,155 gene-pairs tested, 224 displayed different patterns of correlation (FDR 

adjusted P-value < 0.2), encompassing 136 unique genes (Supplementary Table 1B). Gene-

pairs that were differentially correlated were not found to be associated with genes that were 

also differentially variable along the trajectory (Fisher’s Exact Test P-value > 0.4) for either 

hepatocyte or cholangiocyte branch, suggesting an independent relationship between 

changes in correlation of gene-pairs and variability of the genes. The majority of local 

correlation patterns of these gene-pairs exhibited either a ‘gain’ or a ‘loss’ of correlation, 

across developmental time reflecting the prior understanding of a continuous differentiation 

towards the end fate (Figure 3B). Using the local correlation patterns as input, we performed 

hierarchical clustering to group these gene-pairs into 9 clusters. Functionally annotating the 

genes belonging to these clusters revealed that, in general, clusters associated with a loss of 

correlation (e.g., Cluster 8) contained genes linked with DNA replication and cell division. 
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By contrast, clusters that ‘gained’ correlation (e.g., Cluster 7) along the trajectory were 

associated with hepatocyte-linked functions such as lipoprotein particle remodeling, 

lipoprotein metabolism, as well as mitotic cell cycle and cell division (Figure 3C, all clusters 

shown in Extended Data Figure 2C). A small number of gene-pairs displayed more 

unexpected correlation patterns, with a transient peak of co-expression at an intermediate 

point along the trajectory (e.g., Clusters 5 and 9) near the bifurcation point, suggesting a 

transient role in cell fate commitment.

Finally, we explored whether the differential patterns of higher order interactions could 

reveal genes that were related specifically to differentiation into the hepatocyte or 

cholangiocyte lineages, or if they reflected a common pattern of exit out of the hepatoblast 

state into mature cells. To do this, we used network strength as a test statistic to characterize 

genes most related to a specific branch (hepatocyte or cholangiocyte), or common to both 

branches. Permuting gene labels over the topology of the gene network allowed assessment 

of statistical significance (Methods), revealing five genes that were shared among both 

branches, and ten and four genes significantly specific to the hepatocyte and cholangiocyte 

branches respectively (Figure 3D). In particular, the gene Cdt1 appears associated to 

differentiation in general, i.e. from the hepatoblast state to either differentiated state, rather 

than any of the two terminal states. By contrast, Apom and Apoa2, encoding apolipoprotein, 

were more associated with hepatocyte function. More surprisingly, we identified the histone 

gene H2afz as more specific to the hepatocyte lineage, indicating a potential association with 

changes in global chromatin organization as cells commit towards a hepatocyte fate.

scHOT identifies local patterns of correlation in the mouse olfactory bulb

Finally, we considered whether scHOT could also be used to identify cryptic local 

correlation when gene expression information is available in a spatial context. Specifically, 

to date, most studies of spatially resolved gene expression data have focused on clustering 

cells into groups or testing known patterns of correlation – we reasoned that scHOT would 

provide an unbiased approach for identifying local patterns of correlation that might be 

missed by such approaches, which rely on changes in mean expression only. To this end we 

considered the mouse olfactory bulb (MOB), which displays a highly stereotypical structure, 

with clear patterns of concentric layers corresponding to granule, internal plexiform, mitral, 

external plexiform, glomerular and olfactory nerve layers moving from the inside out 

(Figure 4A), along with distinct patterns of gene expression along this space36. Recently, 

spatial transcriptomics10 was used to measure gene expression levels in small spatially-

distinct regions of the MOB, thereby facilitating the unbiased identification of patterns of 

gene expression in space.

Using scHOT, we identified a set of 167 gene-pairs as significantly differentially correlated 

across space (FDR adjusted P-value < 0.2), with 42 non-differentially expressed highly 

variable genes appearing at least once among this set (Methods). Interestingly, we found that 

numerous pairs of genes displayed diffuse patterns of local correlation that were not 

apparent when visually comparing their individual expression profiles. For example, Arrb1 
(beta-arrestin-1) is widely expressed in the brain37, consistent with its diffuse expression 

across the MOB in the spatial transcriptomic data. Similarly, mTOR (mammalian target of 
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rapamycin), Uchl1 (Ubiquitin carboxyl-terminal esterase L1), and Dnm3 (Dynamin-3) are 

all broadly expressed38–40. Nevertheless, we identified all three genes as positively spatially 

correlated with Arrb1 (Figure 4B and Extended Data Figure 3A). Consistent with this 

correlation, Arrb1 can regulate mTor activation41 and interact with the ubiquitination 

pathway to down regulate receptor signaling42. Further, both Arrb1 and Dnm3 function in 

endocytosis43.

To explore more general patterns, we clustered all significant gene-pairs using their local 

spatial correlation patterns into 8 distinct groups (Figure 4C). Despite the relatively low-

resolution of the data (spatial transcriptomic data is limited to a resolution of ~10 cells 

(approximately 100 μm)10), a variety of local correlation patterns were observed, often 

associated with distinct biologically meaningful regions of the bulb. Giving confidence in 

our analysis approach, clustering the cells based on their local correlation pattern largely 

recapitulated the symmetry of the MOB, with multiple cell groups corresponding to 

symmetric sets of cells, e.g. Cell groups 1, 4, and to some extent Cell groups 5 and 6 (Figure 

4C). Additionally, Cluster 1 contained genes that were positively correlated within the 

Olfactory Nerve Layer and Clusters 4 and 5 were associated with the Mitral and External 

plexiform layers (Figure 4D). Functional annotation of the genes belonging to these clusters 

revealed associations with distinct neuronal terms including signaling events such as 

endocytosis (all clusters shown in Extended Data Figure 3B). Interestingly, “myelin sheath” 

was highly ranked in multiple clusters (Clusters 2, 4-7). In these clusters, the strongest 

patterns of correlated spatial expression occurred within more internal layers of the bulb, 

overlapping with the mitral and granule layers. This is consistent with the myelination of the 

lateral olfactory tract as it exits the bulb44. Clusters 1, 3, and to some extent 8 and 9, in 

contrast, possess spatial correlation patterns that encompass more external layers such as the 

olfactory nerve layer, and genes within these clusters are not highly associated with the term 

‘myelin sheath.’ This is consistent with the fact that olfactory sensory neurons entering the 

bulb in the more external olfactory nerve layer are not myelinated. In sum, we have shown 

here that exploiting higher-order structure can reveal unexpected and spatially-coherent 

regions of structured heterogeneity that persist in the absence of mean expression changes, 

and that approaches that focus only on the latter will fail to fully exploit the wealth of 

information contained within such data.

Discussion

In this paper we have demonstrated the utility of higher order testing for single cell data. We 

examined scHOT in the context of two biological systems with distinct data characteristics – 

liver development and the mouse olfactory bulb. scHOT is robust due to the choice of 

underlying higher order metrics such as rank-based Spearman correlation; powerful as it 

uses a permutation framework retaining the global variability and covariance structure for 

inference; and extremely flexible as it can be tuned by 1) Varying the local weighting 

scheme in terms of shape (triangular, block, any other user defined weight) and span, 2) 

Choice of underlying higher order effect function (weighted Pearson correlation, weighted 

Spearman correlation, weighted zero-inflated Spearman or Kendall correlation, or any 

choice of higher order estimate when using the block weighting scheme), and 3) Choice of 

summarization estimate for the local higher order vector (by default the standard deviation). 
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In general, this contrasts with other methods that estimate changes in expression across 

either a pseudotime trajectory or across space, which require a set of candidate hypotheses to 

test explicitly. In the spatial context, scHOT differs substantially to other methods such as 

SpatialDE24, in that we can test either a single gene (identifying spatially variable) or two 

genes (identify spatially differentially correlated), and no prior suite of potential spatial 

structures need be provided to identify genes that are of interest.

From a biological perspective, the concept of characterizing coordinated changes over time 

could enable better characterization of the molecular processes underpinning cell fate 

choice. In particular, it will help us to better understand whether increased plasticity, as 

manifested by increased cell-to-cell variability, is a general feature that precedes all 

instances of cell fate commitment, or whether this is restricted to a specific set of early 

biological differentiation events in systems such as embryonic hepatoblast differentiation as 

found here, and other systems7,45–50. Such heterogeneity could also be a driver of 

differential cell fate or cell function in a spatial context: specific patterns of local correlation 

could indicate that a specific region of a tissue or organ is primed towards a specific fate. 

Intriguingly, our reanalysis of data from the mouse olfactory bulb identified patterns that 

were observed in the absence of changes in mean expression but associated with known 

spatial structure of the bulb.

In summary, scHOT is a method for inference of changes in higher order interactions, not 

just changes associated with the mean, and as such offers a new lens to interrogate single 

cell data and describe patterns of variation and covariation, offering additional and 

complementary insight to that obtained by examining changes in mean expression. It is 

enabled by a statistical framework that captures nonlinear changes in variability and 

correlation structure by using sample ranking approaches to avoid having to discretize 

responses and risk obscuring biologically meaningful results. This is especially important 

for continuous single cell trajectories and for studying spatial structure within ostensibly 

homogeneous cell types. By facilitating such analysis, scHOT will enable investigations into 

how highly localized patterns of variation and co-variation influence cell fate and cell 

function.

Online Methods

Datasets

The following datasets were used to examine scHOT, and demonstrate its utility in 

extracting insights from diverse sources of single cell and/or spatially resolved data.

Developmental Liver Data—The ‘Developmental Liver Data’ is a full-transcript scRNA-

Seq dataset generated using plate-based protocols from four distinct sources26–29, across 

multiple mouse embryonic time points from Embryonic Day (E)10.5 to E17.5. The data 

were originally processed as size-factor standardized logCPM values per dataset, and 

integrated using scMerge51, taking advantage of genes that are found to be stably expressed 

in single cells52. These data comprise several cell types including hepatic cells such as 

hepatoblasts, cholangiocytes, and hepatocytes, among other cell types such as immune cells 

(Figure 2A). Monocle 2 was used to infer a differentiation trajectory exclusively for the 
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hepatic cells. We applied scHOT to these data, considering the following testing scenarios: 

changes in variability across the first branch from hepatoblasts to the cell fate decision point; 

and changes in correlation between pairs of highly variable genes along the entire branch 

from hepatoblasts to hepatocytes and the full branch from hepatoblasts to cholangiocytes.

To select genes for downstream analysis, we considered genes that were highly variable 

(HVGs)53 (Extended Data Figure 4A) but that had consistent mean expression along the 

trajectory. To do this, we performed liberal differential gene expression testing along 

pseudotime by fitting, for each gene, two linear models (slope and intercept, and polynomial 

of degree two) and identifying a gene as differentially expressed if it was significant (F-test; 

unadjusted P-value < 0.05) in at least one of the tests when compared to an intercept only 

model. This differential expression testing was performed for the hepatoblast to hepatocyte 

trajectory and for the hepatoblast to cholangiocyte trajectory. The resulting sets of genes 

(i.e., highly variable and non-differentially expressed) were combined to form all pairwise 

combinations as the scaffold for higher order gene-pair testing.

Spatial data from the mouse olfactory bulb (MOB)—The ‘Mouse Olfactory Bulb’ 

data is a Spatial Transcriptomics dataset, where an array spotted with probes that have 

barcodes corresponding to defined locations was used to measure spatially-resolved gene 

expression levels10. We consider data where this technology was used to measure expression 

levels across a section of the mouse olfactory bulb (MOB), where each spatially resolved 

region contains a measure of gene expression averages across approximately 10 cells10. This 

cross section of the MOB comprises concentric layers visible with H&E staining (Figure 

4A), associated with the granule, internal plexiform, mitral, external plexiform, glomerular 

and olfactory nerve layers moving from the inside out. The resulting expression data is 

derived from high throughput RNA sequencing using barcodes corresponding to the spatial 

locations, as well as unique molecular identifier (UMI) barcodes. We preprocessed these 

data to obtain size-factor standardized log-transformed counts for each gene and spatial 

sample. We identified genes as spatially differentially expressed by performing scHOT using 

a first-order metric of local weighted mean expression (2,542 differentially expressed genes; 

unadjusted P-value < 0.05). After identifying the intersection between genes that were 

highly variable53 (Extended Data Figure 4B) but not differentially expressed we used scHOT 

to test all pairwise combinations for this set of genes.

Choice of local weighting scheme

For the trajectory-based analyses we selected a triangular weight matrix with a span of 0.25. 

For the spatial-based analysis we selected a two-dimensional triangular weight matrix (i.e. a 

cone) also with a Euclidean distance span of 0.05 (here corresponding roughly to 9 

surrounding sampled points).

scHOT test statistic and inference

For single gene testing we use a local weighted variance estimate
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Sj2 = ∑wij∗ ∑wij∗ xi2 − ∑wij∗ xi
2,

wij∗ =
wij

Σiwij
,

where wij is the cell-specific weight for cell i and position j, and xi is the gene expression 

measure for gene x and cell i, and all summation is performed over index i. For testing pairs 

of genes we use a weighted Spearman correlation

cj =
ΣwijΣwijrxijryij − ΣwijrxijΣwijryij

ΣwijΣwijrxij
2 − Σwijrxij

2 ΣwijΣwijryij
2 − Σwijryij

2

where

rxij = Rank xi × I wij > 0 ,

and

ryij = Rank xi × I wij > 0 ,

where additionally yi is the gene expression measure for gene y and cell i, and all summation 

is performed over index i.

The scHOT test statistic is a measure of variability associated with this vector of local 

variances or correlations. To compute this, we first calculate the sample standard deviation 

to estimate the variability associated with the set of local variance estimates sj2, j = 1, 2, 3, ...
or local correlation estimates {cj,j=1,2,3,…}.

Statistical testing is then performed by randomly permuting cell labels, while keeping the 

overall gene expression structure constant. Thus, within each permutation round, the global 

correlation or global variance remains the same, while the vectors of local variability or local 

correlation vary. In all cases, we used sample or cell permutation and defined significance by 

controlling for a 0.2 Benjamini-Hochberg54 FDR in all differential correlation tests, and at 

0.1 FDR for variability tests. For correlation-based tests, we used the fact that the null 

distribution is based only on the two matched gene expression vectors to interpolate null 

distributions given the global correlation value and the number of samples (see 

Computational efficiency section) in order to speed up computation. In the case of discrete 

groupings, we use a normal approximation to the null distribution to estimate high resolution 

P-values.

Downstream analysis

After identifying significant gene-pairs, we took their local correlation profiles and 

hierarchically clustered them to identify patterns of differential correlation across either 
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pseudotime or space, using maximum distance and complete linkage hierarchical clustering. 

Maximum distance was used in this case since we wish to capture similarity of profile shape 

as well as absolute distance. For the Liver Developmental Dataset correlation analysis, we 

smoothed local correlation vectors before hierarchical clustering using loess. For both 

datasets we extracted discrete clusters from the hierarchical clustering using the R function 

cutree with number of clusters estimated using dynamicTreeCut55. To functionally annotate 

these clusters, we performed gene set enrichment analysis using mouse Gene Ontology 

terms with between 10 and 500 genes appearing in each dataset, and at least one gene 

appearing from the testing scaffold56,57, using Fisher’s Exact Test to test for 

overrepresentation of genes, using all scHOT tested genes as the gene universe. An FDR 

adjusted P-value < 0.05 was considered to be statistically significant.

Comparing between trajectory branches

We implemented a statistical test for comparing the change in correlation between the two 

branches, by examining the normalized network strength across the tested networks per 

branch. We defined network strength for a given gene (node) as the sum of edge weights for 

significant gene-pairs associated with the gene, divided by the total edge weights across the 

entire network. The edge weight we selected was the -log(FDR adjusted P-value) for each 

gene-pair. For each gene, we calculated the network strength of all genes per branch. We 

then compared these network strength values between branches using an MA-plot, i.e. 

comparing the sum of network strengths with the difference of network strengths. To assess 

significance associated with a single gene – i.e. a gene that tends to have a higher network 

strength than expected by chance, we repeatedly permuted the gene-pair edge weights across 

the network and calculated the permuted MA-plot. Individual genes were identified with a 

significantly nonzero network strength using the Euclidean distance from the origin as the 

test statistic. To identify genes with a branch-specific network strength, we considered the 

ratio of significance towards each branch as the test statistic.

Computational efficiency

We previously observed a relationship between the total number of samples and the null 

distribution of the DCARS test statistics23. Here we uncovered further association between 

the null distribution of the scHOT test statistics and the global correlation across all samples. 

This represents an opportunity to significantly decrease computational time as one can 

‘borrow’ permutations from similarly distributed genes and gene-pairs to estimate the P-

value. Our approach is to first calculate global correlations for all gene-pairs to be tested, 

and then take a uniform sample among the gene-pairs according to the global correlations. 

For this subset of gene-pairs we permute sample labels and calculate scHOT test statistics. 

Then for any given gene-pair of interest, we extract the desired number of permutations from 

this set of permuted scHOT test statistics, according to how similar their global correlation 

is. These are shown in Extended Data Figures 4C and 4D for the liver and MOB data 

respectively. To examine the accuracy of estimated P-values, we performed the full 10,000 

permutation testing for all gene-pairs for the liver hepatocyte branch, artificially setting the 

zero P-values to 1/10,001, and observed a very high concordance between calculated and 

estimated P-values, with a Spearman correlation of 0.995 (Extended Data Figure 4E). We 
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observed a slight uptick in the loess local smoothed curve fit, reflecting the fact that we were 

able to use more than 10,000 permutations for estimation due to the borrowing procedure.

scHOT extensions and considerations

scHOT is a flexible framework within which multiple aspects can be modified to facilitate 

bespoke analysis. For example, higher order patterns can be studied along trajectories, 

across space, or among discrete groups (Extended Data Figure 5A). Moreover, distinct sets 

of genes or gene-pairs can be interrogated depending on the biological question of interest 

(Extended Data Figure 5B). Of particular interest, the local weighting scheme and 

concordance function can also be adapted, depending upon the biological context (some 

examples are given in Extended Data Figure 5C). For example, if one were interested in 

identifying changes in higher order interactions along a circular trajectory, e.g. the cell cycle, 

one could define a local weighting scheme that was also circular – by ensuring that the two 

ends match given any starting point. Another example is for discrete groups that are either 

completely distinct, or ordered in some way – e.g. over discrete time points along a time 

course experiment, one may define the weight matrix to incorporate the discrete grouping, 

while also accounting for the flanking groups. More generally, one may wish to place a 

higher local weight over a particular local region and a smaller weight over a different 

region. We note, however, that these changes to the weighting scheme may affect the 

generalizability of the null distributions across multiple genes or gene-pairs, so the user 

should take care in ensuring that the null distributions appear similar when employing 

computational speed-up steps.

Any concordance metric can be ‘plugged in’ if using a binary weighting scheme, 

representing a ‘block’ type of weight matrix. That is, one is able to use the fast 

implementation of distance correlation between two distributions58, mutual information, 

partial correlation, or any concordance metric suited especially to other data types such as 

ordinal or binarized single cell data59, without needing to explicitly derive weighted 

formulations of these concordance metrics. Additionally, any concordance metric that 

doesn’t necessarily have a ‘weighted’ formulation and/or implementation can be utilized 

using the block weighting scheme. This makes scHOT versatile, by enabling user-defined 

metrics. For summarizing the vector of local higher order statistics, users may wish to 

substitute the sample standard deviation with any other choice of variability or change 

estimate – e.g. if the goal is to examine how monotonic a change in higher order interaction 

is, a measure of monotonicity such as mutual information or Spearman correlation with the 

weighting scheme index could be used.

Single cell RNA-Seq data can have vastly different statistical structure and properties 

depending on the technology used, for example using plate-based or droplet-based 

technologies. Here, a particular issue to consider is the sparsity of gene expression 

measurements, since this can impact on reliable estimation of higher order statistics like 

variability or correlation. In general, robust statistical measures, such as Spearman 

correlation or median absolute deviation (MAD) are worth considering in the presence of 

outliers (or inliers). Other bespoke metrics such as the zero-inflated Kendall’s tau60 may be 

worthwhile, but many observations would be needed to accurately estimate these higher 
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order statistics. Span may be chosen with a larger or smaller value depending on the sparsity 

of the data, with span increasing as sparsity (and often sample size in terms of number of 

cells) increases.

To understand how the choice of span influenced the results, we performed differential 

correlation testing using a range of spans for both the liver hepatocyte trajectory and for the 

spatial MOB data. We found that scHOT results were robust over small variations in span 

choice, with high concordance in P-values for both datasets (Extended Data Figure 6A-B 

and 5C-D). For the trajectory data, we noticed there was a slight difference in the gene-pairs 

identified as significant for small span (0.35 and below) and large span (0.40 and above). 

Closer inspection revealed that gene-pairs that were identified only with a small span tended 

to correspond to high degree of change in local correlation pattern, whereas those identified 

only with a large span tended to correspond to more subtle changes in local correlation 

patterns (Extended Data Figure 6E). This agrees with our intuition that a small span has 

enough resolution to capture local changes in higher order structure, while larger spans, 

which use more data points and thus yield better estimates of higher order statistics, may be 

more powerful in detecting subtle changes in higher order structure. Consequently, if 

changes in local higher order structure are likely to be monotonic, it is better to select a 

larger span value, but if capturing multiple changes in higher order structure along a long 

trajectory with multiple transient states is of interest, we suggest using a smaller span. 

Interestingly, in the spatial setting, we did not observe any increase in significant gene-pairs 

with increase in span. This may highlight the difference in data structure between cells 

ordered along a trajectory and cells in their spatial context, where a span corresponding to 

the immediate surroundings (here the span of 0.05 corresponds to around 13 neighboring 

points) is more informative. However, in a spatial context where there is likely to be a long-

range gradient of higher order structure, using a larger span may detect more genes and sets 

of genes of interest. For typical use we suggest selecting a span of 0.25, if there are 400 or 

more cells; with smaller span values useful with higher number of cells; else use a 

proportion such that at least 30 cells are sampled at any given stage. In the spatial context we 

set a default of 0.05, and we suggest, for equally spaced transcriptomic readout, to select a 

span so that approximately 10-15 neighboring points are included.

To understand the effect of the choice of underlying metric for higher order testing, we 

examined how the sets of significant gene-pairs differed when alternative metrics were used. 

Specifically, we compared weighted Pearson correlation, weighted Spearman correlation, 

block-weighted Pearson correlation, block-weighted Spearman correlation, Brownian 

distance correlation (BDC), and maximal information criterion (MIC) as underlying metrics 

to use for scHOT. Note that since there is no obvious way to derive a weighted version of 

MIC and BDC we implemented them in a block-weighted manner, and thus also performed 

Pearson and Spearman in a block-weighted manner to link any differences to the metric 

itself and not the weighting scheme. We found that overall there was good concordance of 

results for all metrics with the exception of the MIC (Extended Data Figure 6F), which 

appeared to lack statistical power (Extended Data Figure 6G). More generally, we identified 

the highest number of significant gene-pairs using the Spearman correlation metric 

(Extended Data Figure 6G), with minimal difference between the triangular or block 

weighting schemes.
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To explore the level of robustness and stability of scHOT testing under random subsampling, 

we took 90%, 80%, 70%, 60% and 50% random subsets - repeated 10 times - of the cells of 

the hepatoblast to hepatocyte branch and performed differential correlation testing with 

scHOT. We found that the P-values are highly correlated with the full dataset result, 

especially at the 90% threshold, with only a relatively small number of genes being excluded 

(Extended Data Figure 7A-B). We also note that as we decrease the sample size 

substantially, the P-value distribution trends towards more conservative than the full dataset, 

which is to be expected (Extended Data Figure 7C). We note that while performing these 

analyses we ensured the span was consistent between the full data and the subsampled data, 

by setting the span value as the product of the subset fraction and the default span choice of 

0.25.
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Extended Data

Extended Data Fig. 1. Variability testing along hepatoblast branch using scHOT.
A. Scatter and ribbon plot of all significant genes showing loss of variability along 

hepatoblast branch (n = 408), ribbon width corresponding to adding and subtracting the 

weighted standard deviation from the weighted mean. B. Scatter and ribbon plot of all 

significant genes showing gain of variability along hepatoblast branch, with ribbon width as 

in Panel A.
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Extended Data Fig. 2. Correlation testing of cholangiocyte branch using scHOT.
A. Line plots of clustered significant scHOT gene-pairs with FDR adjusted P-value < 0.2 for 

full cholangiocyte branch (n = 308). Vertical dashed line indicates trajectory branchpoint. B. 

Gene ontology functional enrichment using one-sided Fisher’s Exact Test barplots for all 

scHOT cholangiocyte clusters, grey bar color corresponds to FDR adjusted P-value < 0.05. 

Gene sample sizes indicated in each plot title. C. Gene ontology functional enrichment using 

one-sided Fisher’s Exact Test barplots for all scHOT hepatocyte clusters, with color as in 

panel B. Gene sample sizes indicated in each plot title.
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Extended Data Fig. 3. Correlation testing of spatial data using scHOT.
A. Spatial expression plots (n = 262 spatially resolved positions) of two gene-pairs Arrb1 
and Uchl1 as well as Arrb1 and Dnm3 which are not significantly differentially expressed 

across space using scHOT, but are significantly differentially correlated across space using 

scHOT with FDR adjusted P-value < 0.2. The third plot shows the local spatial correlation 

estimated for these two genes, recapitulating the layered pattern of the olfactory bulb. B. 

Spatial maps of mean local correlation and Gene Ontology functional enrichment using one-
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sided Fisher’s Exact Test barplots for all MOB scHOT clusters, grey bar color corresponds 

to FDR adjusted P-value < 0.05. Gene sample sizes indicated in each plot title.

Extended Data Fig. 4. Highly variable gene selection and permutation testing for scHOT.
A. HVG selection for Developmental Liver Data. B. HVG selection for Spatial 

Transcriptomics analysis. C. Global correlation and null scHOT correlation test statistics for 

sampled gene pairs in both hepatocyte and cholangiocyte branches (n = 268 and n = 265 

respectively). D. Global correlation and null scHOT correlation test statistics for sampled 
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gene pairs (n = 172) for spatial MOB data. E. Scatterplot of -log10(P-values) for differential 

correlation testing (n = 22,155 gene pairs) of the liver hepatocyte branch, calculated using 

10,000 permutations for each gene-pair (x-axis), and estimated using borrowed permutations 

over a subset of gene-pairs (y-axis). Black solid line corresponds to y = x, grey dashed lines 

correspond to unadjusted P-values of 0.05, and the solid red curve corresponds to the fitted 

loess curve.

Extended Data Fig. 5. Further scHOT method description.
A. Illustrative example showing testing for correlation differences in three distinct groups. A 

set of local higher order statistics are calculated, and significance is compared by repeatedly 

permuting samples (grey boxplots). Illustrative example shows the set of local estimates of 

higher order statistics are combined using the sample standard deviation to assess how 

variable they are between groups. B. Possible schemes for the testing scaffold using gene 

networks, including: i) a gene-gene network; ii) a gene set scaffold where all pairwise 

combinations within a gene set are included; and iii) selected genes of interest versus all 

others. C. Examples of weighted higher order functions including weighted Pearson 

correlation, weighted Spearman correlation, weighted variance. Note that any user defined 

function can be used.
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Extended Data Fig. 6. scHOT stability under parameter choices.
A. Spearman correlation map of -log10(P-values) of scHOT differential correlation testing 

(n = 22,155 gene pairs) in hepatocyte branch with different choices of triangular span, from 

0.05 to 0.70 in steps of 0.05. B. UpSet plot of 509 significant gene-pairs (FDR adjusted P-

value < 0.2) from each scHOT testing scheme as in panel A. C. Spearman correlation map of 

-log10(P-values) of scHOT differential correlation testing (n = 903 gene pairs) in MOB with 

different choice of spatial span. D. UpSet plot of 181 significant gene-pairs from each 

testing scheme as in panel C. E. Density plot of slopes of local correlation patterns of gene-
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pairs selected with low span (0.35 and below, colored blue) and high span (0.35 and above, 

colored red), dotted line shows the density over all slopes. F. Spearman correlation map of -

log10(P-values) of scHOT differential correlation testing (n = 22,155 gene pairs) in 

hepatocyte branch with different choices of higher order statistic, MIC – maximal 

information criterion, BDC – Brownian distance correlation, Pearson_block and 

Spearman_block refer to Pearson and Spearman correlation respectively, applied in a block-

weighted context. G. UpSet plot of 367 significant gene-pairs from each testing scheme as in 

panel F.

Extended Data Fig. 7. Robustness of scHOT results.
A. Scatterplots of -log10(P-values) for hepatoblast to hepatocyte correlation scHOT testing 

(n = 22,155 gene pairs) against the inclusion frequency of gene-pairs with FDR adjusted P-

values < 0.2 for repeated subsampling without replacement of 90%, 80%, 70%, 60%, and 

50% of the cells from the trajectory. Red points correspond to those selected as FDR 

adjusted P-value < 0.2 criteria for the full dataset. B. Spearman correlation map of -log10(P-

values) of each subsampling strategy. C. Quantile-quantile line plots of -log10(P-values) for 

the full data (x-axis) and -log10(P-values) for each subsampling scenario (y-axis), split by 

subsampling percentage. Red lines correspond to y = x.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Methods workflow.
A. Example showing a differentiation trajectory where genes are tested for changes in higher 

order interactions such as variability and correlation along the trajectory. A set of local 

higher order statistics are calculated, and significance is compared by repeatedly permuting 

samples (grey curves). The vector of local estimates of higher order statistics are combined 

using the sample standard deviation to assess how variable it is across time. B. Example 

showing that in a spatial context, scHOT calculates a field of local estimates of correlation 
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across space, and compares the variability associated with these with permuted sample 

points across space.
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Figure 2. Variability analysis of Developmental Liver Data.
A. Relative proportion of hepatic and non-hepatic cells in the Developmental Liver Data, 

across original dataset and embryonic stage. B. Monocle 2 trajectory of hepatic cells (n = 

540) showing a bifurcating trajectory of hepatoblasts into either hepatocytes or 

cholangiocytes. C. Panel of embryonic stage for each cell along the differentiation trajectory, 

and gene expression of markers of each cell type. D. A selection of genes significantly 

associated with a change in variability along the first branch of the differentiation trajectory 

(n = 408) using scHOT with FDR adjusted P-value < 0.1, scatterplots showing the 

expression of genes against the pseudotime estimates with shaded ribbons corresponding to 

adding and subtracting the weighted standard deviation from the weighted mean. Line plots 

below are of the local estimate of variance for the first branch (thick lines) and further for 

the two branches (thin lines). Examples are shown of genes that increase in variability via 

‘fanning’ of gene expression along the trajectory (Birc5), by a skewed distribution arising 

(H2afz), and by changes in the modality of the expression (Tacc3 from unimodal to 

bimodal). Hmgcs2 is an example of a gene that decreases in variability. E. Gene ontology 

functional enrichment analysis using one-sided Fisher’s Exact Test of 58 genes that 

significantly increase in variability along the first branch, grey bar color corresponds to FDR 

adjusted P-value < 0.05.
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Figure 3. Correlation analysis of Hepatocyte branch of Developmental Liver Data.
A. Sequence of scatterplots showing expression of Cdt1 and Top2a at equally spaced points 

along the entire trajectory from hepatoblast to hepatocyte (n = 408). Points are colored by 

their position along the trajectory, and point size corresponds to the weight given to that 

region of the trajectory. Neither gene is significantly differentially expressed or differentially 

variable along the trajectory using scHOT, but the gene-pair is significantly differentially 

correlated using scHOT. B. Clustering of local weighted correlation using scHOT of all FDR 

adjusted P-value < 0.2 significant gene-pairs for the hepatocyte branch (n = 408), showing 
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groups of gene-pairs that appear to gain or lose correlation across the trajectory. Vertical 

dashed line indicates trajectory branchpoint. C. Gene ontology functional enrichment 

analysis using one-sided Fisher’s Exact Test of genes belonging to the set of gene-pairs 

among Clusters 8 and 7 respectively (n = 47 genes and n = 15 genes respectively) for the 

hepatocyte branch, grey bar color corresponds to FDR adjusted P-value < 0.05. D. 

Comparison of hepatocyte and cholangiocyte branches using network strength (n = 136 

nodes and n = 71 nodes respectively) across all significant gene-pairs for either branch. 

Black labelled genes are significantly branch specific using permutation testing, while red 

labelled genes are significantly common across both branches (FDR adjusted P-value < 

0.05) using permutation testing.
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Figure 4. Correlation analysis of Mouse Olfactory Bulb data.
A. An H&E image of mouse olfactory tissue section with labeling of known anatomical 

layers from Stahl et al10. Scale bar, 500μm. B. Spatial expression plots (n = 262 spatially 

resolved positions) of two genes, Arrb1 and Mtor, which are not significantly differentially 

expressed across space using scHOT, but are significantly differentially correlated across 

space using scHOT with FDR-adjusted P-value < 0.2. The third plot shows the local spatial 

correlation estimated for these two genes, recapitulating the layered pattern of the olfactory 

bulb. C. Heatmap showing all sampled points (rows) and clusters of significantly spatially 
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differentially correlated gene-pairs (columns) using scHOT, with spatial maps of mean local 

correlation (bottom row) for each group, and highlighted positions (column on right) for the 

sampled points grouped into clusters. D. Spatial maps of mean local correlation for clusters 

1 and 5 (n = 20 and n = 19 genes respectively) of gene-pairs and barplots showing Gene 

Ontology functional enrichment analysis using one-sided Fisher’s Exact Test, grey bar color 

corresponds to FDR adjusted P-value < 0.05.
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