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Abstract

This paper describes a method for computing estimates for the location parameter μ > 0 and

scale parameter λ > 0 with fixed shape parameter α of the alpha power exponential distribu-

tion (APED) under type-II hybrid censored (T-IIHC) samples. We compute the maximum

likelihood estimations (MLEs) of (μ, λ) by applying the Newton-Raphson method (NRM) and

expectation maximization algorithm (EMA). In addition, the estimate hazard functions and

reliability are evaluated by applying the invariance property of MLEs. We calculate the

Fisher information matrix (FIM) by applying the missing information rule, which is important

in finding the asymptotic confidence interval. Finally, the different proposed estimation meth-

ods are compared in simulation studies. A simulation example and real data example are

analyzed to illustrate our estimation methods.

1 Introduction

In experiments involving life testing and reliability, complete failure time information may not

be achieved for all items. Therefore, the data obtained from this type of experiment are called

censored data, for which cost effectiveness and minimization of the total testing time are

important. Various censoring schemes that can be used in reliability analysis have been pub-

lished. The two most frequently considered censoring schemes in the reliability literature are

the type-I censoring scheme (T-ICS) and T-IICS. In T-ICS, a test stops at a prefixed time T,

whereas in T-IICS, the test stops after a prefixed r test units have failed. Thus, the number of

observed failures is random in T-ICS and the duration of the experiment is random in T-IICS.

T-ICS and T-IICS can be combined to form a hybrid censoring scheme (HCS), as first pre-

sented by Epstein [1], who studied the properties of the one-parameter exponential distribu-

tion. For more details about HCS, the reader is referred to Balakrishnan and Kundu [2]. HCSs

are categorized as type-I and type-II. To see this, a type-I hybrid censoring scheme (T-IHC) is

defines as follows. If the test is stopped at a random time, T� = min{Xr:n, T}, where r and T are
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prefixed numbers, n is the sample size, and Xr:n indicates the time of the rth failure. In many

papers, the T-IHC was examined, for example Kundu [3], and Kundu and Pradhan [4]. If the

test is stopped at time T� = max{Xr:n, T}, the HCS is called T-IIHC [5]. The advantage of this

approach is that it allows the complete lifetimes of at least r units to be recorded before the

experiment is stopped. Several authors, such as Banerjee and Kundu [6], Balakrishnan and

Shafay [7], Singh et al. [8], and Salah [9–11], considered statistical inference under T-IIHC.

Dey et al. [12] studied the estimation of the generalized inverted exponential distribution

under a HCS. The weighted exponential distribution was considered for the T-IIHC hybrid in

Kohansal et al. [13]. Singh et al. [14] presented an estimation procedure for the two-parameter

Lomax distribution under a T-IIHC. They considered applying MLEs and Bayes’ estimation

for parameter and reliability studies, see Dong et al. [15]. Sharma [16] discussed an estimation

procedure for sample prediction problems based on a T-IIHC sample for the flexible Weibull

distribution. Recently, Sen et al. [17] studied the T-IIHC for the generalized exponential

distribution.

In recent years, many distributions have been generalized by adding more shape parameters

because many applications in engineering, finance, biomedicine, and environmental science

indicated that such distributions are not powerful for explaining data sets. Hence, to make

effective progress in these applications, continuous extension of these distributions is required.

More recently, Mahdavi and Kundu [18] presented a novel method, called alpha power trans-

formation (APT), for adding an extra parameter to a continuous distribution. The proposed

method is useful for incorporating skewness in a family of distributions. They applied their

method to the one-parameter exponential distribution and produced the two-parameter

APED. Additionally, they introduced many properties of the APED, such as explicit expres-

sions for the order statistics, moment functions and quantiles. The probability density function

(PDF), and the cumulative distribution function (CDF) of the APED are, respectively,

f x; m; lð Þ ¼

lna
a � 1

le� lðx� mÞa1� e� lðx� mÞ ifa 6¼ 1;

le� lðx� mÞ ifa ¼ 1;

8
<

:
ð1Þ

F x; m; lð Þ ¼

a
1� e� lðx� mÞ

� 1

a � 1
ifa 6¼ 1;

1 � e� lðx� mÞ ifa ¼ 1;

8
><

>:
ð2Þ

The corresponding reliability and hazard rate functions are

RðtÞ ¼
a � a

1� e� lðx� mÞ

a � 1
ifa 6¼ 1;

e� lðx� mÞ ifa ¼ 1;

8
><

>:
ð3Þ

and

HðtÞ ¼

le� lðt� mÞa1� e� lðt� mÞ lna
a

1� e� lðt� mÞ
� 1

ifa 6¼ 1;

le� lðt� mÞ

1 � e� lðt� mÞ
ifa ¼ 1;

8
>>><

>>>:

ð4Þ

where X> 0, μ> 0 and λ> 0. Note that in the rest of this paper, it is assumed that α 6¼ 1. For

more details about APED see Salah [19].
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The primary purpose of the present paper is to propose an estimation method for the

parameters and the reliability characteristics for APED using incomplete sample observations

obtained by a T-IIHC. To the best of our knowledge, no attempt has been made to estimate

these characteristics for APED using a T-IIHC. This study aims to fill this gap using MLEs via

EMA to compute and compare the outcomes with those calculated using the NRM. Further-

more, the asymptotic confidence intervals (ACIs) for the APED parameters were computed.

The rest of this article is organized as follows. In the following section, the MLEs of the

unknown parameters and the failure functions and reliability are discussed. The ACIs and the

FIM are presented in Sections 3 and 4, respectively. A real data set is examined for illustrative

purposes in Section 5, while conclusions are discussed in Section 6.

2 Maximum likelihood estimation

MLE is an important and widely used method for fitting statistical models because of its attrac-

tive properties, such as asymptotic efficiency, consistency, and asymptotic unbiasedness. Here,

we describe the attainment of MLEs of the model parameters based on T-IIHC samples via the

NRM and EMA.

2.1 Newton–Raphson algorithm

Consider a sample of n units and let T be a preselected experimental time and r a predetermined

number of units out of a total of n units. The experiment ends at time T� = max{xk:n, T}. Fur-

thermore, let J be the number of failures that occurred before time T, i.e, J ¼
Pn

i¼1

IfXi < Tg:

Then, under the T-IIHC, we have the following observations:

Case 1: x1:n< x2:n< . . .< xr:n if xr:n> T, or

Case 2: x1:n< . . .< xr:n< xr+ 1:n< xJ:n< T< xJ+ 1:n if r� J< n, and xJ:n< T< xJ+ 1:n, or

Case 3: x1:n< x2:n< . . .< xn:n< T, if xn:n< T.

The likelihood functions of these three different cases are:

L m; ljxð Þ ¼

n!

ðn � rÞ!

Yr

i¼1

f ðxiÞ½1 � FðxrÞ�
ðn� rÞ if xr:n > T

n!

ðn � JÞ!

YJ

i¼1

f ðxiÞ½1 � FðTÞ�ðn� JÞ if r < J < n; and xJ:n < T < xJþ1:n

n!
Yn

i¼1

f ðxiÞ if xn:n < T:

8
>>>>>>>>>>><

>>>>>>>>>>>:

Hence,

L m;ljxð Þ ¼

n!

ðn � rÞ!

Yr

i¼1

l lna
a � 1

e� lðxi � mÞa1� e� lðxi � mÞ a � a
1� e� lðxr � mÞ

a � 1

" #ðn� rÞ

if xr:n > T;

n!

ðn � JÞ!

YJ

i¼1

l lna
a � 1

e� lðxi � mÞa1� e� lðxi � mÞ a � a
1� e� lðT� mÞ

a � 1

" #ðn� JÞ

if r < J < n;

n!
Yn

i¼1

l ln a
a � 1

e� lðxi � mÞa1� e� lðxi � mÞ :

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð5Þ
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By combining the three likelihood functions, one obtains

L m; ljxð Þ ¼
n!

ðn � kÞ!

Yk

i¼1

l lna
a � 1

e� lðxi � mÞa1� e� lðxi � mÞ a � a
1� e� lðc� mÞ

a � 1

" #ðn� kÞ

;

where k and c are given by

ðk; cÞ ¼

ðr; xrÞ if xr:n > T;

ðJ;TÞ if xn:n < T; J > r;

ðn;TÞ if xn:n < T:

8
><

>:

The log-likelihood function ℓ = ln L(μ, λ) without the constant term can be written as

‘ ¼ k ln l½ � � l
Xk

i¼1

xi � mð Þ � lna
Xk

i¼1

e� lðxi � mÞ þ n � kð Þ ln
a � a1� e� lðc� mÞ

a � 1

" #

: ð6Þ

The MLEs of μ and λ are obtained by differentiating Eq (6) with respect to μ and λ. The simul-

taneous equations are expressed as

@‘

@m
¼ kl � l ln a

Xk

i¼1

e� lðxi � mÞ þ n � kð Þ
le� lðc� mÞ ln a
ae� lðc� mÞ � 1

¼ 0; ð7Þ

and

@‘

@l
¼

k
l
�
Xk

i¼1

xi � mð Þ þ lna
Xk

i¼1

ðxi � mÞe
� lðxi � mÞ �

ðn � kÞðc � mÞe� lðc� mÞ ln a
ae� lðc� mÞ � 1

¼ 0: ð8Þ

It is difficult to obtain an analytical solution to these nonlinear equations. Therefore, we can

estimate the parameters μ and λ using statistical software or by solving the two simultaneous

Eqs (7) and (8) numerically by, for example, NRM with a good initial guess of μ(0) and λ(0).

Utilizing the property of invariance (replacing μ and λ by their ML estimators m̂ML and

l̂ML), we can obtain the MLE of the reliability and hazard function from Eqs (3) and (4) by

R̂MLðtÞ ¼
a � a

1� e� l̂MLðt� m̂MLÞ

a � 1
ð9Þ

and

ĤMLðtÞ ¼
l̂MLe� l̂MLðt� m̂MLÞa

1� e� l̂MLðt� m̂MLÞ ln a

a
1� e� l̂MLðt� m̂MLÞ

� 1
: ð10Þ

2.2 Expectation maximization algorithm

The EMA is a very powerful method for finding MLEs for parametric models when the data

are censored; see Dempster et al. [20]. It consists of two iterative steps: (i) the expectation step

(E-step) and (ii) the maximization step (M-step). The E-step of each iteration computes only

the conditional expectation of the log-likelihood with respect to the incomplete data given the

observed data. In the M-step, the parameter value is calculated by maximizing the expected

log-likelihood function obtained in the E-step. For more details about the EMA, see McLa-

chlan and Krishnan [21].
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Let X = (X1:n, X2:n, . . ., Xk:n) denote the observed data and Z = (Z1, Z2, . . ., Zn−k) denote the

censored data. Here, for a given k, Z1, Z2, . . ., Zn−k are not observable. The complete data are

given by the combination of W = (X, Z).

In the E-step, the conditional expected value of the log-likelihood for the given complete,

observed sample must be calculated. Hence, the log-likelihood function for the complete data

is

Lcðm; l;WÞ ¼ n lnl � l
Xk

i¼1

ðxi � mÞ � l
Xn� k

i¼1

ðzi � mÞ � lna
Xk

i¼1

e� lðxi � mÞ � lna
Xn� k

i¼1

e� lðzi� mÞ; ð11Þ

and

Lsðm; lÞ ¼ n lnl � l
Xk

i¼1

ðxi � mÞ þ
Xn� k

i¼1

E½ðzi � mÞjzi > c�

( )

� lna
Xk

i¼1

e� lðxi � mÞ þ
Xn� k

i¼1

E½e� lðzi� mÞjzi > c�

( )

:

ð12Þ

Now, for j = 1, . . ., n − k, the PDF of Zj given X1:n = x1:n, X2:n = x2:n, . . ., Xk:n = xk:n is given by

(see Ng et al. [22])

fZjX zjjX
� �

¼
f ðzj; m;lÞ

1 � Fðc; m; lÞ
¼

ln ðaÞle� lðzj � mÞa1� e
� lðzj � mÞ

ða � 1Þð1 � Fðc; m;lÞÞ
; zj > c: ð13Þ

According to Eq (13), we can write

A c; m;lð Þ ¼ E zi � mð ÞjZi > cÞ½ � ¼
lna

� lða � 1Þð1 � Fðc;m; lÞÞ

Ze� lðc� mÞ

0

ln uð Þa1� udu; ð14Þ

and

B c;m; lð Þ ¼ E½e� lðzi � mÞjZi > c� ¼
a � a1� e� lðc� mÞ ð1þ e� lðc� mÞ lnaÞ
ða � 1Þð1 � Fðc; m; lÞÞ lna

: ð15Þ

Next, the M-step involves the maximization of Eq (12); if at the h-th stage, the estimate of (μ,

λ) is (μ(h), λ(h)), then (μ(h+1), λ(h+1)) can be estimated by maximizing

Fðm; ljmðhÞ; l
ðhÞ
Þ ¼ n lnl � l

Xk

i¼1

ðxi � mÞ þ ðn � kÞAðc; mðhÞ; lðhÞÞ

( )

� ln a
Xk

i¼1

e� lðxi� mÞ þ ðn � kÞBðc; mðhÞ; lðhÞÞ

( )

:

ð16Þ

By taking the derivative of Eq (16) w.r.t μ and λ and setting them equal to 0, we first find λ(h+1)

by solving

gðlÞ ¼ l

and g(λ) is given as follows

g lð Þ ¼
1

n

Xk

i¼1

xi � m̂ lð Þð Þ �
1

n

Xk

i¼1

xi � m̂ lð Þð Þe� lðxi � m̂ðlÞÞ ln aþ
1

n
ðn � kÞAðc; mðhÞ; lðhÞÞ

" #� 1

ð17Þ
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where

m̂EMA lð Þ ¼
1

l
ln kð ln a

Xk

i¼1

e� lxiÞ� 1

" #

: ð18Þ

Then, μ(h+1) is obtained as mðhþ1Þ ¼ m̂EMAðl
ðhþ1Þ
Þ:

Remark: The iterative scheme for obtaining the MLEs of (μ, λ) using the EMA is terminated

when |μ(h+1) − μ(h)| + |λ(h+1) − λ(h)|< �, where � > 0 is a preassigned small number. When con-

vergence occurs, the present μ(h+1) and λ(h+1) are the MLEs of μ and λ obtained via the EMA;

we refer to these values as (m̂EMA; l̂EMA).

According to the invariant property of MLEs, the MLEs of the reliability and hazard func-

tions of APED via the EMA, denoted by R̂EMAðtÞ and ĤEMAðtÞ, respectively, can be obtained by

replacing μ and λ in Eqs (3) and (4) with their MLE estimates

R̂EMAðtÞ ¼
a � a

1� e� l̂EMAðt� m̂EMAÞ

a � 1
ð19Þ

and

ĤEMAðtÞ ¼
l̂EMAe� l̂EMAðt� m̂EMAÞa

1� e� l̂EMAðt� m̂EMAÞ ln a

a
1� e� l̂EMAðt� m̂EMAÞ

� 1
: ð20Þ

In the following section, we consider interval estimation and the reliability and hazard func-

tions of APED(μ, λ) under type-II hybrid censored data.

3 Confidence intervals

3.1 Asymptotic confidence intervals

In this subsection, we derive the ACIs of μ, λ, R(t), and H(t). To achieve this aim, we use the

bivariate central limit theorem to obtain the asymptotic distribution of the unknown parame-

ters, i.e., μ and λ, and apply the delta method to determine the asymptotic distributions of R(t)
and H(t).

One of the characteristics that distinguishes the MLE is its asymptotic variance of the

inverse of the Fisher information matrix. Because the MLEs of the parameters are not

obtained in a closed form, it is not possible to obtain the Fisher information matrix and con-

struct ACIs. Therefore, the Fisher information is approximated using the observed Fisher

information evaluated at the MLE. The ACIs based on the asymptotic normal distribution of

the MLEs are approximated as the inverse of the observed Fisher information matrix evalu-

ated at the MLE.
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The two unknown parameters μ and λ are approximately bivariate normal with mean

(m̂ML; l̂ML) and variance–covariance matrix Iðm̂; l̂Þ, (see Greene [23] and Agresti [24]), where

Iðm̂ML; l̂MLÞ ¼ �

@
2
‘

@m2

@
2
‘

@m@l

@
2
‘

@m@l

@
2
‘

@l
2

2

6
6
6
6
4

3

7
7
7
7
5

ðm;lÞ¼ðm̂ML;l̂MLÞ

; ð21Þ

@
2
‘

@m2
¼ � l

2 ln a
Xk

i¼1

e� lðxi � mÞ �
ðn � kÞl2e� lðc� mÞ lna½1 � ae� lðc� mÞ ð1 � e� lðc� mÞ lnaÞ�

ðae� lðc� mÞ � 1Þ
2

;

@
2
‘

@m@l
¼

@
2
‘

@l@m
¼ kþ lna

Xk

i¼1

e� lðxi � mÞ½lðxi � mÞ � 1�þ

ðn � kÞe� lðc� mÞ lna½ðae� lðc� mÞ � 1Þðlðc � mÞ � 1Þ � l lnaðc � mÞe� lðc� mÞae� lðc� mÞ �

ðae� lðc� mÞ � 1Þ
2

;

@
2
‘

@l
2
¼ �

1

l
2
� lna

Xk

i¼1

ðxi � mÞ
2e� lðxi � mÞ�

ðn � kÞðc � mÞ2e� lðc� mÞ lna½1 � ae� lðc� mÞ ð1 � e� lðc� mÞ lnaÞ�
ðae� lðc� mÞ � 1Þ

2
;

is the inverse of the matrix in Eq (21). The variance–covariance matrix is then

I� 1ðm̂ML; l̂MLÞ ¼

dVarðm̂MLÞ Covðm̂ML; l̂MLÞ

Covðm̂ML; l̂MLÞ
dVarðl̂MLÞ

2

4

3

5: ð22Þ

Therefore, the large sample theorem can be used to compute the two-sided 100(1 − γ)% esti-

mated confidence intervals for μ and λ, respectively, as

m̂ML � Zg
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðm̂MLÞ

q

and l̂ML � Zg
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðl̂MLÞ

q

; ð23Þ

where Zg
2

is the percentile of the standard normal distribution with right-tail probability γ/2.

Moreover, to construct the ACIs for the reliability and hazard functions, we apply the delta

method to estimate their variances. Let

GT
1
¼

@RðtÞ
@m

@RðtÞ
@l

� �

;GT
2
¼

@HðtÞ
@m

@HðtÞ
@l

� �

: ð24Þ

Then, the asymptotic estimators of VarðR̂Þ and VarðĤÞ are defined as

dVarðR̂Þ ¼ ½GT
1
I� 1G1�ðm;lÞ¼ðm̂ML;l̂MLÞ

;dVarðĤÞ ¼ ½GT
2
I� 1G2�ðm;lÞ¼ðm̂ML ;l̂MLÞ

; ð25Þ

where I−1 is the variance–covariance matrix defined in Eq (22). Therefore, we have the rela-

tionships

R̂MLðtÞ � RðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðR̂Þ

q � N 0; 1ð Þ;
ĤMLðtÞ � HðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðĤÞ

q � N 0; 1ð Þ
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Furthermore, we can derive the 100(1 − γ)% ACIs of R(t) and H(t) by

R̂MLðtÞ � Zg
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðR̂Þ

q

and ĤMLðtÞ � Zg
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðĤÞ

q

: ð26Þ

3.2 Fisher information matrix

This section presents the observed FIM using the missing value rule of Louis [25]. To construct

the ACIs, as

Observed information ¼ Complete information � Missing information:

IXðyÞ ¼ IWðyÞ � IWjXðyÞ; ð27Þ

where θ = (μ, λ), X = observed data, W = complete set, IX(θ) = observed information, IW(θ) =

complete information, and IW|X(θ) = the information missing. For α 6¼ 1, the likelihood func-

tion Lc of the APED for the complete data is

Lc ¼
Yn

i¼1

f ðxiÞ ¼ l
ne
� l

Xn

i¼1

ðxi � mÞ

a

Xn

i¼1

ð1 � e� lðxi � mÞÞ
:

ð28Þ

The log-likelihood function ln Lc of the APED for the complete data is

lnLc ¼ n ln ðlÞ � l
Xn

i¼1

ðxi � mÞ þ ln ðaÞ
Xn

i¼1

ð1 � e� lðxi � mÞÞ: ð29Þ

The second partial derivatives of ln Lc are

@
2 lnLc
@m2

¼ � l
2 ln að Þ

Xn

i¼1

e� lðxi� mÞ

@
2 lnLc
@m@l

¼ n � ln að Þ
Xn

i¼1

e� lðxi � mÞ þ l ln að Þ
Xn

i¼1

ðxi � mÞe
� lðxi � mÞ

@
2 lnLc
@l

2
¼ �

n
l

2
� ln að Þ

Xn

i¼1

ðxi � mÞ
2e� lðxi � mÞ

The expected values of the second derivatives are

E
@

2 lnLc

@m2

� �

¼ � l
2 ln að Þ

Xn

i¼1

E e� lðxi � mÞ
� �

;

E
@

2 lnLc

@m@l

� �

¼ n � ln að Þ
Xn

i¼1

E e� lðxi � mÞ
� �

þ l ln að Þ
Xn

i¼1

E ðxi � mÞe
� lðxi � mÞ

� �
;

E
@

2 lnLc

@l
2

� �

¼ �
n
l

2
� ln að Þ

Xn

i¼1

E ðxi � mÞ
2e� lðxi � mÞ

� �
;
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Then, the complete information becomes

IWðyÞ ¼ � E
@

2 lnLc

@y
2

� �

¼ � 1ð Þ

E
@

2 lnLc

@m2

� �

E
@

2 lnLc

@m@l

� �

E
@

2 lnLc

@m@l

� �

E
@

2 lnLc

@l
2

� �

2

6
6
6
6
4

3

7
7
7
7
5
; ð30Þ

where

E½e� lðxi � mÞ� ¼
l ln a
a � 1

Z1

0

e� 2lðxi � mÞað1� e
� lðx� mÞÞdx

¼
ln a
a � 1

Zelm

0

u� að1� uÞdu ¼
a1� elm ½aelm � 1 � elm lna�

ða � 1Þð lnaÞ
;

ð31Þ

E½ðxi � mÞe� lðxi � mÞ� ¼
l lna
a � 1

Z1

0

ðxi � mÞe
� 2lðxi � mÞað1� e

� lðx� mÞÞdx

¼
� lna
lða � 1Þ

Zelm

0

u ln ðuÞað1� uÞdu;

ð32Þ

and

E½ðxi � mÞ
2e� lðxi � mÞ� ¼

l lna
a � 1

Z1

0

ðxi � mÞ
2e� 2lðxi � mÞað1� e� lðx� mÞÞdx

¼
lna

l
2
ða � 1Þ

Zelm

0

u ln 2ðuÞað1� uÞdu:

ð33Þ

The FIM of the censored data can be given as

IWjXðyÞ ¼ ðn � kÞE �
@

2 ln fZjXðZjX; yÞ
@y

2

" #

¼ ðn � kÞ
b11 b12

b21 b22

" #

; ð34Þ

where

b11 ¼ l
2lnðaÞE e� lðz� mÞ½ � þ

l
2lnðaÞe� lðc� mÞ

ð� 1þ ae� lðc� mÞ Þ
�
l

2ln2
ðaÞe� 2lðc� mÞae� lðc� mÞ

ð� 1þ ae� lðc� mÞ Þ
2

;

b12 ¼ b21 ¼
lðc � mÞe� 2lðc� mÞae� lðc� mÞ ln2

ðaÞ

ð� 1þ ae� lðc� mÞ Þ
2

þ
ð1 � lcþ lmÞe� lðc� mÞlnðaÞ

ð� 1þ ae� lðc� mÞ Þ

� 1þ lnðaÞfð1þ lmÞE½e� lðz� mÞ� � lE½ze� lðz� mÞ�g;

b22 ¼
1

l
2
�
ðc � mÞ2e� 2lðc� mÞae� lðc� mÞ ln2

ðaÞ

ð� 1þ ae� lðc� mÞ Þ
2

þ lnðaÞE ðz � mÞ2e� lðz� mÞ
� �

�
ðc � mÞ2e� lðc� mÞlnðaÞ
ð� 1þ ae� lðc� mÞ Þ

;

8
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E e� lðz� mÞ½ � ¼

ln ðaÞ
Ze� lðc� mÞ

0

ua1� udu

ða � 1Þð1 � Fðc; m; lÞÞ
¼
a1� e� lðc� mÞ fae� lðc� mÞ � 1 � ln ðaÞe� lðc� mÞg
ð1 � Fðc;m; lÞÞða � 1Þ ln ðaÞ

E½ze� lðz� mÞ� ¼
ln ðaÞ

ða � 1Þð1 � Fðc; m;lÞÞ

Ze� lðc� mÞ

0

fm �
1

l
ln ðuÞgua1� udu

¼
ma1� e� lðc� mÞfae� lðc� mÞ � 1 � ln ðaÞe� lðc� mÞg

ða � 1Þ ln ðaÞð1 � Fðc; m;lÞÞ
�

ln ðaÞ
Ze� lðc� mÞ

0

u ln ðuÞa1� udu

lða � 1Þð1 � Fðc;m; lÞÞ

E ðz � mÞ2e� lðz� mÞ
� �

¼
ln ðaÞ

l
2
ða � 1Þð1 � Fðc; m;lÞÞ

Ze� lðc� mÞ

0

u ln 2ðuÞa1� udu

To obtain the variance–covariance matrix of m̂ and l̂, one can invert the observed information

matrix as

Varðm̂EMAÞ Covðm̂EMA; l̂EMAÞ

Covðm̂EMA; l̂EMAÞ Varðl̂EMAÞ

2

4

3

5 ¼ I� 1
X ðyÞ ¼ ½IWðyÞ � IWjXðyÞ�

� 1
: ð35Þ

The approximate 100(1 − γ)% confidence intervals for m̂ and l̂ are

m̂EMA � Zg
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðm̂EMAÞ

q

and l̂EMA � Zg
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðl̂EMAÞ

q

; ð36Þ

where Zg
2

is a standard normal variate. In addition, the 100(1 − γ)% ACIs of R(t) and H(t) are

estimated using the delta method as

R̂EMAðtÞ � Zg
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðR̂EMAÞ

q

and ĤEMAðtÞ � Zg
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðĤEMAÞ

q

; ð37Þ

where

dVarðR̂EMAÞ ¼ ½GT
1
I� 1
X ðyÞG1�ðm;lÞ¼ðm̂EMA;l̂EMAÞ

;dVarðĤEMAÞ ¼ ½GT
2
I� 1
X ðyÞG2�ðm;lÞ¼ðm̂EMA;l̂EMAÞ

; ð38Þ

where GT
1

and GT
1

are given by Eq (24).

4 Simulation study

This section presents Monte Carlo simulation study to estimate the performance of the MLEs

of μ, λ, R(t), and H(t) achieved by applying the NRM and EMA. The parameter values of μ, λ,

and α and sample size n are required for this simulation. In this study, we used parameters val-

ues α = 10, μ = 2, and λ = 1, the sample size n was set to 20, 30, and 40, and k was chosen such

that the observed data were 70% and 90% censored. A mission time of t = 3.0 was taken for the

survival and failure rate functions. Hence, R(t) = 0.6348 and H(t) = 1.1048. For the point esti-

mation methods, we compared the expected values (EVs) and mean squared errors (MSEs) of

the estimators for μ, λ, and the reliability and hazard functions, see Zeg et al. [26, 27]. For the

interval estimation methods, the 95% confidence intervals were compared according to the

average length (AL) and coverage probability (CP). For the selected options of (n, k, T), the
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MLEs of μ, λ, R(t) and H(t) were obtained using the NRM and EMA in 1000 replications. The

results are reported in Tables 1 and 2.

From these results the following conclusions can be drawn.

(i). When the number of failures k is fixed and sample size n increases, the MSEs and width

of the 95% confidence intervals of the MLEs computed using both the EMA and NRM

decrease. Therefore, the MLE process performs well in terms of estimating the parame-

ters of APED. Moreover, the expected values are close to the true values.

Table 1. Expected Value (EV), Mean Squared Error (MSE), Average Length (AL), and Coverage Probability (CP) of μ and λ when μ = 2, λ = 1, α = 10 and t = 3 for

varying (n, k, T).

n k Parameter NRM EMA

T EV MSE AL CP EV MSE AL CP

20 14 μ 1.2 2.1740 0.0522 1.0691 0.916 2.0542 0.0375 0.8977 0.942

1.6 2.1602 0.0433 1.0568 0.938 2.0450 0.0326 0.8882 0.954

2.0 2.1508 0.0405 1.0350 0.950 2.0213 0.0323 0.8875 0.966

λ 1.2 1.1737 0.1021 1.0456 0.974 1.0290 0.0605 0.7487 0.916

1.6 1.1554 0.0889 1.0305 0.970 1.0153 0.0523 0.7387 0.898

2.0 1.1532 0.0859 1.0278 0.976 1.0123 0.0514 0.7365 0.914

18 μ 1.2 2.1516 0.0391 1.1436 0.968 2.1450 0.0369 0.8011 0.926

1.6 2.1462 0.0370 1.1542 0.962 2.1389 0.0350 0.8043 0.934

2.0 2.1467 0.0366 1.1465 0.966 2.1388 0.0303 0.7968 0.932

λ 1.2 1.1298 0.0707 0.9842 0.962 1.1131 0.0650 0.7533 0.942

1.6 1.1238 0.0666 0.9791 0.941 1.1066 0.0609 0.7490 0.938

2.0 1.1211 0.0596 0.9633 0.968 1.1016 0.0504 0.7423 0.954

30 21 μ 1.2 2.1245 0.0277 0.9685 0.972 2.1090 0.0237 0.6879 0.940

1.6 2.1036 0.0212 0.9573 0.958 2.0869 0.0191 0.6868 0.942

2.0 2.1010 0.0206 0.9512 0.962 2.0885 0.0174 0.6785 0.954

λ 1.2 1.0843 0.0395 0.7921 0.943 1.0453 0.0322 0.5942 0.934

1.6 1.0835 0.0354 0.7901 0.932 1.0442 0.0286 0.5936 0.952

2.0 1.0786 0.0316 0.7808 0.944 1.0393 0.0251 0.5908 0.956

27 μ 1.2 2.1076 0.0214 0.9625 0.964 2.1057 0.0213 0.6746 0.956

1.6 2.1031 0.0195 0.9564 0.959 2.1006 0.0190 0.6719 0.960

2.0 2.0631 0.0164 0.9532 0.956 2.0983 0.0149 0.6648 0.953

λ 1.2 1.0753 0.0347 0.7808 0.978 1.0323 0.0308 0.5869 0.936

1.6 1.0712 0.0316 0.7802 0.965 1.0316 0.0267 0.5821 0.948

2.0 1.0712 0.0316 0.7802 0.952 1.0243 0.0246 0.5769 0.951

40 28 μ 1.2 2.0958 0.0158 0.8067 0.942 2.0195 0.0128 0.6358 0.947

1.6 2.0885 0.0141 0.8049 0.968 2.0124 0.0126 0.6305 0.953

2.0 2.0854 0.0135 0.8078 0.964 1.9995 0.0121 0.6267 0.955

λ 1.2 1.0868 0.0333 0.7010 0.962 0.9769 0.0232 0.5021 0.942

1.6 1.0950 0.0329 0.7091 0.958 0.9844 0.0218 0.5016 0.949

2.0 1.0737 0.0313 0.6874 0.966 0.9592 0.0228 0.4930 0.961

36 μ 1.2 2.0866 0.0132 0.8974 0.944 2.0855 0.0127 0.5894 0.954

1.6 2.0830 0.0124 0.8847 0.958 2.0813 0.0120 0.5892 0.960

2.0 2.0812 0.0121 0.8806 0.942 2.0805 0.0119 0.5860 0.954

λ 1.2 1.0592 0.0244 0.6747 0.962 1.0468 0.0225 0.5008 0.934

1.6 1.0584 0.0220 0.6699 0.966 1.0458 0.0203 0.5003 0.949

2.0 1.0640 0.0201 0.6659 0.960 1.0516 0.0200 0.4931 0.948

https://doi.org/10.1371/journal.pone.0244316.t001
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(ii). The parameters estimation values under the EMA algorithm and their respective MSEs

are smaller than those computed via the NRM.

(iii). As the sample size n increases, the average length of all intervals decreases. On average,

the ACIs obtained via the EMA have a shorter length, and the coverages of the confi-

dence intervals in all cases are close to 95%.

Table 2. Expected Value (EV), Mean Squared Error (MSE), Average Length (AL), and Coverage Probability (CP) of R(t) and H(t) when μ = 2, λ = 1, α = 10 and t = 3

for varying (n, k, T).

n k Parameter NRM EMA

T EV MSE AL CP EV MSE AL CP

20 15 R(t) 1.2 0.6529 0.0096 0.4261 0.962 0.6549 0.0079 0.3864 0.964

1.6 0.6521 0.0084 0.4258 0.954 0.6558 0.0071 0.3858 0.947

2.0 0.6461 0.0082 0.4251 0.962 0.6476 0.0066 0.3816 0.954

H(t) 1.2 1.4068 0.2773 2.1713 0.968 1.2318 0.1404 1.4284 0.968

1.6 1.3673 0.1985 2.0733 0.964 1.2153 0.1286 1.3969 0.950

2.0 1.3452 0.1697 1.9745 0.934 1.1766 0.0899 1.3217 0.967

18 R(t) 1.2 0.6556 0.0080 0.4059 0.974 0.6583 0.0079 0.3757 0.950

1.6 0.6558 0.0071 0.4031 0.970 0.6584 0.0070 0.3723 0.964

2.0 0.6526 0.0069 0.4017 0.971 0.6550 0.0067 0.3707 0.962

H(t) 1.2 1.3503 0.1656 2.1350 0.968 1.3406 0.1554 1.5394 0.957

1.6 1.3426 0.1608 2.1110 0.998 1.3323 0.1511 1.5200 0.996

2.0 1.3416 0.1530 2.1065 0.991 1.3305 0.1502 1.5144 0.983

30 21 R(t) 1.2 0.6579 0.0055 0.3392 0.974 0.6652 0.0054 0.3095 0.968

1.6 0.6485 0.0049 0.3383 0.982 0.6559 0.0049 0.3013 0.97

2.0 0.6503 0.0047 0.3376 0.978 0.6576 0.0047 0.2991 0.967

H(t) 1.2 1.3014 0.1049 1.6675 0.969 1.2815 0.0865 1.1873 0.936

1.6 1.2593 0.0747 1.5705 0.949 1.2423 0.0660 1.1335 0.958

2.0 1.2608 0.0708 1.5617 0.960 1.2415 0.0564 1.1329 0.973

27 R(t) 1.2 0.6534 0.0046 0.3343 0.974 0.6574 0.0045 0.3086 0.966

1.6 0.6501 0.0042 0.3317 0.978 0.6538 0.0042 0.3005 0.968

2.0 0.6543 0.0040 0.3312 0.960 0.6545 0.0038 0.2985 0.956

H(t) 1.2 1.2714 0.0682 1.6398 0.961 1.2697 0.0672 1.1545 0.967

1.6 1.2564 0.0629 1.5496 0.965 1.2555 0.0621 1.1287 0.952

2.0 1.2593 0.0585 1.5321 0.970 1.2531 0.0537 1.1216 0.972

R(t) 1.2 0.6437 0.0037 0.3019 0.958 0.6552 0.0035 0.2744 0.959

1.6 0.6372 0.0036 0.3025 0.966 0.6494 0.0033 0.2754 0.960

2.0 0.6456 0.0030 0.3018 0.959 0.6569 0.0029 0.2744 0.956

H(t) 1.2 1.2360 0.0412 1.2837 0.971 1.1527 0.0262 0.9970 0.950

1.6 1.2204 0.0368 1.2614 0.958 1.1403 0.0241 0.9801 0.954

2.0 1.2214 0.0365 1.2568 0.969 1.128 0.0226 0.9767 0.961

2.0

R(t) 1.2 0.6495 0.0033 0.2914 0.966 0.6535 0.0033 0.2689 0.953

1.6 0.6480 0.0032 0.2900 0.955 0.6519 0.0032 0.2686 0.946

2.0 0.6451 0.0031 0.2898 0.966 0.6494 0.0032 0.2689 0.950

H(t) 1.2 1.2264 0.0341 1.3803 0.957 1.2274 0.0336 0.9513 0.956

1.6 1.2205 0.0327 1.3529 0.961 1.2208 0.0323 0.9437 0.965

2.0 1.2160 0.0317 1.3481 0.957 1.2180 0.0316 0.9389 0.958

https://doi.org/10.1371/journal.pone.0244316.t002
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(iv). The MSEs and the widths of the confidence intervals of the MLEs estimated by the EMA

and NRM decrease as the number of failures (k) increases for a fixed n sample size.

(v). The MSEs and the length of the ACIs for the parameters, as well as for the reliability and

hazard functions, decrease for fixed n and k as T increases.

5 Numerical examples

5.1 Simulated data analysis

Here, T-IIHC data with n = 20, k = 15, T = 1.5 were generated from APED with μ = 1.5, λ = 1,

and α = 3. The generated data were

1:6308; 0:65771; 1:7338; 1:7740; 1:8706;

1:9477; 2:0421; 2:2302; 2:3375; 2:4247;

2:4512; 2:5617; 2:5857; 2:7644; 2:8357:

For reliability characteristics, we used mission time t = 3. Based on the T-IIHC sample, the

MLEs using the NRM for μ, λ, R(t = 3) and H(t = 3) were computed as follows

m̂ML ¼ 1:6308; l̂ML ¼ 1:4015; R̂MLðtÞ ¼ 0:2234; ĤMLðtÞ ¼ 0:3715;

and the variance–covariance matrix is given by

0:242874 0:279324

0:279324 0:426236

" #

:

Then, the 95% confidence intervals for μ, λ, R(t) and H(t) when the NRM was used are

(0.6649, 2.5967), (0.1218, 2.6810), (0.0411, 0.4057) and (0.0774, 0.6654), respectively.

Conversely, we used the EMA, as described in Sections 2 and 3, and stopped the iterative

process when the difference between two consecutive iterations was less than 10−6. The MLEs

for μ and λ obtained via the EMA require 0.06 s and seven iterations to converge to m̂EMA ¼

1:6308 and l̂
EMA
¼ 1:3238, and the MLEs R(t = 3) and H(t = 3) are R̂EMAðtÞ ¼ 0:3949 and

Ĥ
EMA
ðtÞ ¼ 0:3949. Further, the variance–covariance matrix is given by

0:0303485 � 0:0295087

� 0:0295087 0:0770642

" #

:

Moreover, the 95% confidence intervals for μ, λ, R(t = 3) and H(t = 3) are (1.2894, 1.9723),

(0.7797, 1.8678), (0.0031, 0.4895) and (0.0656, 0.7241), respectively.

This example shows that the MLEs obtained by EMA converge to the true values of the

unknown parameters μ and λ better than those obtained by the NRM.

5.2 Real data example

In the experiment described in this subsection, one set of real data was used to demonstrate

the applicability of the suggested method to real-life applications. The data, which represent

the strength of a single carbon fiber and impregnated 1000-carbon fiber tows, measured in

GPa, were taken from Bader and Priest [28]. Mahdavi and Kundu [18] reported the data of sin-

gle carbon fibers tested at a gauge length of 1 mm as
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2.247, 2.64, 2.908, 3.099, 3.126, 3.245, 3.328, 3.355, 3.383, 3.572, 3.581, 3.681, 3.726 3.727,

3.728, 3.783, 3.785, 3.786, 3.896, 3.912, 3.964, 4.05, 4.063, 4.082, 4.111, 4.118, 4.141, 4.246,

4.251, 4.262, 4.326, 4.402, 4.457, 4.466, 4.519, 4.542, 4.555, 4.614, 4.632, 4.634, 4.636, 4.678,

4.698, 4.738, 4.832, 4.924, 5.043, 5.099, 5.134, 5.359, 5.473, 5.571, 5.684, 5.721, 5.998, 6.06.

For the previous complete data, Mahdavi and Kundu [18] obtained the MLEs of α, μ, and λ,

which were found to be 673.8379, 2.247, and 1.1562, respectively. They examined the validity

of the APED based on the parameters âML, m̂ML and l̂ML, using the Kolmogorov–Smirnov (KS)

test. They observed that the KS test results was 0.0925, and the corresponding p-value was

0.7243. Therefore, they concluded the APE model provides a good fit for the data set presented

above.

Here, we estimate the values of μ and λ when α is known (α = 673.8379). First, we computed

the MLEs of the unknown parameters using the NRM: m̂ML ¼ 2:247 and l̂ML ¼ 1:19161. The

KS distance between the fitted and empirical CDFs was 0.1117, and the associated p-value was

0.487. Therefore, according to the result of the NRMM, we cannot reject the assumption that

the source of the data set is the two-parameter APED. Furthermore, the 95% confidence inter-

vals of μ and λ are (1.89194, 2.60206) and (0.944682, 1.43854).

We also computed the KS distance based on the EMA, where the MLEs of μ and λ were

m̂ML ¼ 2:36522 and l̂ML ¼ 1:2568. The associated 95% confidence intervals were (2.0511,

2.67933) and (1.00053, 1.513), respectively. The KS distance was 0.0927 and the associated p-

value was 0.7217. Based on the p-value of the KS statistic, the MLEs obtained via EMA also

provide a satisfactory estimate of the data set. The empirical survival function and the fitted

survival functions are drawn in Fig 1.

From the above data set, we artificially created a hybrid censored data set with n = 56,

k = 50, and T = 4. Based on the T-IIHC sample, the MLEs obtained via the NRM and EMA for

μ, λ, R(t = 4), and H(t = 4) were computed with the associated 95% confidence intervals; see

Table 3. According to Table 3, all estimates are satisfactory for this data set.

Fig 1. Empirical and ftted survival functions of NRM and EMA estimates for the real data.

https://doi.org/10.1371/journal.pone.0244316.g001

Table 3. MLEs and 95% CIs of μ, λ, R(t) and H(t) with α = 673.8379 and T = 4, for Bader and Priest [28] data.

Method NRM EMA

Estimate 95% CIs Estimate 95% CIs

μ 2.2470 (1.8891, 2.6050) 2.0746 (1.6980, 2.4511)

λ 1.1691 (0.9210, 1.4172) 1.0718 (0.8437, 1.2999)

R(t = 4) 0.5687 (0.4632, 0.6742) 0.5635 (0.4573, 0.6697)

H(t = 4) 0.9842 (0.7027, 1.2657) 0.8894 (0.6452, 1.1336)

https://doi.org/10.1371/journal.pone.0244316.t003
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6 Conclusion

In this article, statistical inference of T-IIHC data from an APED was described. The MLE

method cannot be derived analytically; therefore, the EMA and NRM were conducted to com-

pute the considered parameters. A simulation study was performed to assess the performance

of the different schemes for the APED in estimated and real data. In the simulation study, we

noted that both the EMA and the NRM produced satisfactory results, but the EMA provided

better estimates. Based on the T-IIHC sample, the MLEs obtained via the NRM and EMA for

μ, λ, R(t = 4) and H(t = 4) were computed, along with the associated 95% confidence intervals,

and we can state that all considered estimates are satisfactory for the real data set. Its deserve to

study in future the inferences on APE parameters under a balanced two-sample type-II pro-

gressive censoring scheme.
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