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Abstract

Bulked segregant analysis (BSA) is an efficient method to rapidly and efficiently map genes responsible for mutant
phenotypes. BSA requires access to quantitative genetic markers that are polymorphic in the mapping population. We have
developed a modification of BSA (BSR-Seq) that makes use of RNA-Seq reads to efficiently map genes even in populations
for which no polymorphic markers have been previously identified. Because of the digital nature of next-generation
sequencing (NGS) data, it is possible to conduct de novo SNP discovery and quantitatively genotype BSA samples by
analyzing the same RNA-Seq data using an empirical Bayesian approach. In addition, analysis of the RNA-Seq data provides
information on the effects of the mutant on global patterns of gene expression at no extra cost. In combination these
results greatly simplify gene cloning experiments. To demonstrate the utility of this strategy BSR-Seq was used to clone the
glossy3 (gl3) gene of maize. Mutants of the glossy loci exhibit altered accumulation of epicuticular waxes on juvenile leaves.
By subjecting the reference allele of gl3 to BSR-Seq, we were able to map the gl3 locus to an ,2 Mb interval. The single
gene located in the ,2 Mb mapping interval whose expression was down-regulated in the mutant pool was subsequently
demonstrated to be the gl3 gene via the analysis of multiple independent transposon induced mutant alleles. The gl3 gene
encodes a putative myb transcription factor, which directly or indirectly affects the expression of a number of genes
involved in the biosynthesis of very-long-chain fatty acids.
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Introduction

Next generation sequencing (NGS) technologies [1–5] are

revolutionizing biology much as PCR technologies did at the

end of the last century. Adaptations of NGS technologies are

proving to be superior to alternative technologies for genome-wide

measurements of mRNA, small RNAs, transcription-factor

binding sites, DNA methylation, chromatin structure and

structural variation [1,2,6,7].

The mapping of the genetic determinants of phenotypic

variation is often a key step in the characterization of mutants

and QTLs. In complex genomes mapping remains a non-trivial

process. Bulked segregant analysis (BSA) is a method used to

rapidly identify genetic markers linked to a genomic region

associated with the selected phenotype [8]. Genetic linkage

between markers and the causal gene is determined via

quantification of allelic frequencies of genetic markers in the pools

(bulks) of organisms that do and do not express a given phenotype.

A wide variety of genetic markers have been used for BSA. The

only requirement is that selected markers provide quantitative

measurements of allelic frequencies. Examples include hybridiza-

tion-based markers such as Restriction Fragment Length Poly-

morphisms (RFLPs) [8], Single Feature Polymorphisms (SFPs) [9],

and Diversity Array Markers (DArTs) [10], as well as PCR-based

methods such as Random Amplified Polymorphic DNAs (RAPDs)

[11], Simple Sequence Repeats (SSRs, or microsatellites) [12–14],

Amplified Fragment Length Polymorphisms (AFLPs) [15,16],

Cleaved Amplified Polymorphic Sequence (CAPS) for detecting

Single Nucleotide Polymorphisms (SNPs) [17] and Sequenom

SNP-typing [18]. More recently the efficiency of BSA has been

greatly enhanced by the application of sequence-based markers

such as restriction-site associated DNA (RAD) markers [19] and

whole genome sequencing [20]. Both of these technologies fail to

select against repetitive genomic sequences that are not typically

useful in mapping experiments. In addition, even given the

extraordinary advances in the throughput of NGS, whole genome

sequencing remains expensive for large genomes, making it less

suitable for mapping experiments that include many mutants.

One of the most widely adopted adaptations of NGS technology

is RNA-Seq [21–27], which enables the comparative quantifica-

tion of gene expression in, for example, various genotypes. RNA-

Seq relies on the principle that read counts for each transcript

from the NGS data reflects relative transcript concentrations. This

relative quantification is reproducible and highly accurate [2,25–

28]. RNA-Seq reads can also be mined for DNA sequence

polymorphisms such as single nucleotide polymorphisms (SNPs)

[29,30], which can be converted into genetic markers [18,31–34].

We combined the power of BSA with the ease of RNA-Seq and

appropriate statistical procedures into a new genetic mapping

strategy called BSR-Seq (Bulked Segregant RNA-Seq). As a proof

of concept, RNA-Seq was conducted on mutant and non-mutant

pools of maize seedlings segregating for gl3, a recessive mutant

involved in the accumulation of epicuticular wax [35,36]. After

quantifying allele frequency via read counts in RNA-Seq,
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a Bayesian-based BSA approach was developed to map gl3. The

resulting mapping data were consistent with previous mapping

results obtained via independent approaches. The mapping results

were combined with transcriptional profiles from the RNA-Seq

data to facilitate the cloning of gl3. The successful cloning of gl3

demonstrates the utility of BSR-Seq.

Results

An individual heterozygous for the gl3-ref allele was self-

pollinated to generate a segregating F2 population. Consistent

with expectations based on the fact that the gl3 mutant is recessive,

,25% of the F2 seedlings expressed the mutant phenotype. RNA

samples from mutant and non-mutant individuals from this F2
population were combined into two separate pools and subjected

to RNA-Seq (Figure 1, Methods). One lane of an Illumina GAIIx

flowcell was used for each of the two RNA samples; each lane

yielded more than 13 million 75-bp single-end reads (Table S1).

Reads that had been trimmed based on quality scores were

mapped to the B73 maize reference genome using GSNAP that

allows intron-spanning alignments (Methods). In total, 53.3% and

54.9% of the trimmed reads from the mutant and non-mutant

pools were uniquely mapped to the reference genome, respective-

ly. Of these uniquely mapped reads, 89.5–90.5% were located in

high-confidence gene models [37]. In total, 76% (24,757/32,540)

of the gene models had read(s) from at least one of the RNA-Seq

datasets (Table S1).

RNA-Seq of gl3 vs. Non-mutant Siblings
An RNA-Seq analysis was conducted on the 16,726 maize genes

for which at least 40 uniquely mapped reads were obtained from

the combined mutant and non-mutant pools. In this analysis 1,095

genes were differentially expressed between the two pools

(FDR=0.1%; and having an absolute log2 fold change of .0.8;

Figures S1–4; Tables S2 and S3).

Mapping of gl3 via BSR-Seq
To map the gl3 gene, polymorphic SNPs that could serve as

genetic markers were identified in the mapping population using

the RNA-Seq data. By pooling RNA-Seq data from the two

samples statistical power was increased and more than 64,000

high-confidence SNPs were discovered (Tables S4 and S5).

We next sought to identify SNPs that linked to the causal gene.

In the absence of allele-specific expression (ASE), the two alleles of

a given SNP site should be detected in approximately equal

numbers of RNA-Seq reads when considering both pools of RNA-

Seq data. Only one allele of a SNP that is completely linked to the

causal gene should be present among the RNA-Seq reads from the

mutant pool. In practice, however, as a consequence of ASE and

sampling bias, particularly for genes that are expressed at low

levels, only a single allele of many SNPs are detected in the mutant

pool. To correct for these and other biological and technical

artifacts, we used an empirical Bayesian approach to estimate

linkage probability that is the probability of a SNP exhibiting

complete linkage disequilibrium with the causal gene (Methods).

The linkage probability of each SNP was plotted against its

physical coordinate in the reference genome as shown in Figure 1B.

SNP markers having high probabilities of being linked to the gl3

gene clustered on the long arm on chromosome 4. No SNP

markers with high linkage probability were observed on any other

chromosomes. This BSR-Seq-based localization of the gl3 gene is

consistent with previous mapping results obtained using in-

dependent approaches [18]. To narrow down the interval within

which the gl3 gene is located, chromosome 4 was scanned using

a window of a fixed number of SNPs (N=50) and a step size of

5 SNPs. The median linkage probability across the 50 SNPs of

each window was plotted against the physical midpoint of each

window (Figure 1D). A strong peak, indicating a high probability

of complete linkage disequilibrium with the gl3 gene, was observed

at physical position ,183–194 Mb of the B73 reference genome.

The top 10 windows with the highest median linkage probability

were located at physical position ,183.5–185.2 Mb.

The Cloning and Validation of gl3
To validate the mapping results from the BSR-Seq experiment

we cloned the gl3 gene. The high copy Mu transposon system is

widely used as a mutagenic agent in forward genetic mutant

screens of maize [38]. Using this transposon system we generated

six additional gl3 mutant alleles (Methods). The genomic

sequences flanking the Mu transposons in maize stocks carrying

each of these newly isolated gl3-Mu alleles were independently

determined using the DLA-454 method [39]. We expected that

most, if not all, of these independent alleles would contain a Mu

transposon insertion site within the gl3 gene. Among the 48 genes

(4a.53 B73 filtered gene set) located in the ,2 Mb interval

identified by the BSR-Seq experiment, two genes contained $3

independent Mu insertions. Based on the RNA-Seq experiment,

one of these genes, GRMZM2G162434, was significantly down-

regulated in the mutant pool as compared to the non-mutant

pool (Figure 2A). Using PCR primers specific to the inverted

repeats of Mu transposons and to the gl3 candidate gene

(GRMZM2G162434) it was possible to amplify Mu insertions

from three of the six gl3 alleles derived from the forward Mu

mutant screen. In addition, two previously identified EMS-

induced alleles of gl3 contain the typical EMS-induced G/C-to-

A/T transitions [40] in GRMZM2G162434; both of these

transitions generated premature stop codons (Figure 2B). Se-

quence analysis of the reference allele, gl3-ref, originally reported in

1928 [35], appears to contain a large insertion or other

rearrangement between 430–758 nt of the coding region of

GRMZM2G162434 that can not be PCR amplified (Figure 2B).

Consistently, very few RNA-Seq reads were obtained 39 of this

region (Figure 2A).

Based on comparisons to the Arabidopsis and rice genomes, the

gl3 gene is predicted to encode an R2R3 type myb transcription

factor [41] that contains two Myb DNA-binding domains. The

GL3 protein is most similar to the Arabidopsis proteins MYB30

and MYB60. Consistent with the phenotype of the gl3 mutant, the

Arabidopsis Myb30 gene regulates the biosynthesis of very-long-

chain fatty acids [42], which are precursors to epicuticular waxes.

Considering 30 maize candidate genes implicated in the

accumulation of epicuticular waxes, including maize orthologs of

Arabidopsis epicuticular wax genes (Methods), 22 accumulated at

least 40 read counts across the two pools. Of these 22 genes, 6 are

differentially expressed in the gl3 mutant as compared to non-

mutant siblings (3 up-regulated, 3 down-regulated) (Table S6).

Collectively, these results demonstrate that GRMZM2G162434

is the gl3 gene. Because GRMZM2G162434 is located within the

,2 Mb interval defined by the BSR-Seq experiment, these results

demonstrate the utility of BSR-Seq for gene mapping and cloning.

Discussion

Advantages of BSR-Seq
Evolving NGS technologies are powerful tools for answering

biological questions. For example, RNA-Seq is a highly accurate

and robust approach for quantifying gene expression. Here we

have reported a BSA-based mapping strategy (BSR-Seq) that relies

Bulked Segregant RNA-Seq (BSR-Seq)
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Figure 1. BSR-Seq. A. A flowchart of BSR-Seq experimental design. B. The physical position of each SNP marker (x-axis) was plotted versus the
probability of each SNP marker being in complete linkage disequilibrium with the causal gene (y-axis). C. gl3 mutants (the gl3-ref allele) express
a glossy phenotype due to altered accumulation of epicuticular waxes. Water is sprayed on seedlings to distinguish mutant (gl3-ref/gl3-ref) from non-
mutant (gl3-ref/+ or +/+). D. Chromosome 4 was scanned by using a window containing 50 SNPs with a step size of 5 SNPs. Within each window, the
median linkage probability obtained from a Bayesian BSA analysis across all the 50 SNPs was determined and was plotted against the middle physical
position of the window.
doi:10.1371/journal.pone.0036406.g001

Bulked Segregant RNA-Seq (BSR-Seq)
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on RNA-Seq data. For relatively small genomes that contain little

repetitive DNA (e.g., Caenorhabditis elegans or Arabidopsis), it is

feasible to conduct BSA using whole genome shotgun (WGS)

sequencing [20,43]. However, for mapping mutants in large

genomes (e.g., maize and humans), WGS is not cost efficient. In

these species BSR-Seq is both inexpensive and efficient.

BSR-Seq provides not only the map position of a gene

responsible for a mutant phenotype but also the effects of such

a mutant on global patterns of gene expression. The expression

patterns of genes within the mapping interval can be used to

prioritize candidate genes based on the fact that the causal gene

will often be down-regulated in the mutant pool as compared to

the non-mutant pool. In addition, this strategy yields a collection

of polymorphic SNPs that are tightly linked to the mutant. These

SNPs could be used to fine map the mutant or clone the affected

gene via chromosome walking. Hence, BSR-Seq is not only an

efficient strategy for mapping genes, but also yields other data that

facilitate gene cloning.

Potential Problems and Strategies for the Improvement
We have used BSR-Seq to successfully map five genes

(unpublished results). The size of the mapping interval obtained

from a BSR-Seq experiment depends on the number of individuals

included in the mutant and non-mutant pools, the sequencing

depth, and the density of polymorphisms in the mapping

population. For each parameter more is better. In the reported

proof-of-principle experiment designed to map the gl3 locus, we

included only ,30 individuals in each pool and generated only

one lane of GAIIx data for each pool (,13 M reads/pool). Maize

is a highly polymorphic species whose transcriptome contains .4

SNPs/kb [30]. Given these conditions it was possible to map the

gl3 gene to an interval of only a few megabases. In the gl3 BSR-Seq

experiment, the haplotype of either parent was not used for the

BSR-Seq analysis.

The mutants used to map the gl3 gene are fully recessive and

easily distinguished from non-mutants. The accurate classification

of mutant and non-mutant individuals is not always so straightfor-

ward. The inclusion of non-mutants in the mutant pool would

negatively impact a BSR-Seq experiment. In our Bayesian analysis

approach, a SNP is classified as having a high probability of being

in complete linkage disequilibrium with the causal gene only if it is

‘‘fixed’’ in the mutant pool, i.e., the mutant pool contains only

a single allele. This criterion is too strict if non-mutants are likely

to be inadvertently included in the mutant pool as a consequence

of misclassification errors. To adapt our approach for the existence

of such errors, a gene could still be classified as having a high

probability of being in complete linkage disequilibrium with the

causal gene even if it exhibited some defined (but low) level of

Figure 2. Gene structure of the gl3 gene and lesions of its mutant alleles. A. RNA-Seq reads shown in the Integrative Genomics Viewer. Blue
indicates reads that have a forward orientation relative to the reference genome; red indicates reverse orientation. B. Based on the supporting ESTs
and the annotation from the gene models, the gl3 gene contains only a single exon. All six lesions associated with gl3 mutant alleles are located in
the coding region. They include Mu insertion alleles (a: gl3-93-4700-5; b: gl3-93-4700-6; c: gl3-93B111), EMS alleles (1: gl3-AEW-A632-363-EMS,
premature stop at position 171 nt in coding region (G-.A); 2: gl3-94-1001-326-EMS, premature stop at position 358 nt in coding region (C–T)) and the
reference allele (3: gl3-ref, insertion or rearrangement at 430–758 nt of the coding region).
doi:10.1371/journal.pone.0036406.g002
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apparent recombination with the causal gene. The inadvertent

inclusion of a small number of mutants in the non-mutant pool (as

would be the case for an incompletely recessive mutant) is less

likely to seriously impact mapping accuracy.

A mutant that influences the regulation of allele-specific

expression [44–47] has the potential to generate false-positive

SNPs in a BSR-Seq mapping experiment. To avoid these

problems the second stage of our analysis focuses on only that

subset of SNPs whose read counts in the mutant and non-mutant

pools suggest that they co-localize with the causal gene (Methods).

Using this two-stage approach, we did not observe any SNPs that

incorrectly exhibited a high probability of linkage to the gl3 gene

outside of chromosome 4.

In principle, BSR-Seq could be extended to other applications,

including the mapping of genes defined by dominant mutants and

major QTL loci. In this case the analysis would, however, require

some modifications. A related situation would be the mapping of

a causal gene whose expression is influenced by genetic modifiers.

We anticipate that BSR-Seq could be adapted to enable the

simultaneous mapping of the causal gene and the modifiers.

One of the advantages of BSR-Seq is that it yields not only

mapping data, but also information on the effects of the mutant on

global patterns of gene expression. Of the 1,095 significantly

differentially expressed genes in the RNA-Seq experiment, 446

were down-regulated and 633 were up-regulated in the gl3

mutants as compared to their non-mutant siblings, yielding a ratio

of down-regulated to up-regulated genes of 0.7 (Table S7). In

contrast, considering only the genes on chromosome 4 (which

contains the gl3 gene) this ratio is 1.6, which is significantly

higher than that of all other chromosomes (Pearson’s Chi-square

test, x2 = 22.11, df = 1, p-value = 2.58e206). And within the 180–

195 Mb interval of chromosome 4 that contains the gl3 gene, this

ratio is 3.3 (10:3). This bias likely reflects the combined effects of

downwardly biased read counts in gene linked to gl3 due to

polymorphisms in expressed genes in coupling with gl3. Hence,

interpretation of differential gene expression within the mapping

interval must be treated with caution.

During BSR-Seq, RNA-Seq reads are used for both the

identification and quantification of SNPs and tests for differential

gene expression. This BSR-Seq experiment made use of

unreplicated RNA-Seq data. The lack of replication would not

be expected to adversely affect the mapping results. On the other

hand, to accurately identify differentially expressed genes it would

be desirable to have replicated RNA-Seq data.

The decision of which tissue from which to collect RNA-Seq

data does not seriously impact the genetic mapping function of

BSR-Seq. It is not necessary that the causal gene be expressed in

the samples used for BSR-Seq. This is because SNPs in all genes

located near the causal gene and that are expressed in these

samples can be used as markers to map the causal gene. On the

other hand, one of the advantages of BSR-Seq over other mapping

strategies is that it also has the potential to provide expression data.

Hence, it would be ideal to extract the RNA from a tissue in which

the causal gene is expressed. This would most likely be the case if

a tissue in which the mutant phenotype is evident is selected for

BSR-Seq.

Both WGS-BSA and BSR-Seq depend on access to a reference

genome and both approaches are affected by the quality of that

reference genome and the degree of structural variation within the

species being analyzed. Mis-assemblies in the reference genome

and copy number variation (CNV) between the genomes present

in the mapping population and the reference genome could

potentially negatively influence mapping success. Even so,

although the B73 reference genome (version 1) contained a major

assembly error in the vicinity of gl3 (data not shown), and maize

contains extremely high levels of CNV [48] we were able to

successfully map gl3 using BSR-Seq.

Methods

Genetic Materials
A plant carrying a gl3-ref allele in a non-B73 genetic background

was crossed to the inbred line B73. The gl3-ref allele was obtained

from Donald Robertson, Iowa State University [36]. A single

progeny was self-pollinated to generate a segregating F2 popula-

tion for use in the RNA-Seq experiment. Additional alleles were

generated via direct Mutator transposon tagging experiments via

Crosses 1: Gl3/Gl3 (Mu stock) x gl3-ref/gl3-ref. Two existing EMS-

(ethylmethane sulphonate) induced alleles of gl3 (gl3-AEW-A632-

363-EMS and gl3-94-1001-326-EMS) generated by Gerry Neuffer

were used for verification of the candidate gl3 gene. Confirmed gl3

mutant alleles will be deposited in the maize genetics stock center.

RNA Isolation and RNA-Seq
F2 seeds were grown at 25uC for six days (2-leaf stage), at which

time the lower leaves of 32 mutants (gl3-ref/gl3-ref) and 31 non-

mutant siblings (gl3-ref/Gl3-B73 or Gl3-B73/Gl3-B73) were

collected and separately pooled for RNA extraction (RNeasy mini

kit, Qiagen, Chatsworth, CA) followed by treatment with DNase I.

Sequencing libraries were constructed using the Illumina mRNA-

Seq sample preparation kit (Solexa/Illumina, Catalog no. RS-100-

0801). The resulting libraries were sequenced on an Illumina

Genome Analyzer II with 75 cycles, resulting in 75 bp single end

reads (GenBank accession no. SRA049037).

Mapping RNA-Seq Reads
Raw RNA-Seq reads were trimmed to remove low-quality

nucleotides via an in-house trimming script. GSNAP (Genomic

Short-read Nucleotide Alignment Program, version 2010-03-09)

[49], which allows gap alignment including intron-spanning

alignment, was used to map trimmed reads to the B73 reference

genomes (B73ref_v1) [37], the mitochondrial genome (Genbank

acc#: AY506529.1) and the chloroplast genome (Genbank acc#:

X86563.2). Reads that uniquely mapped to B73ref_v1 with #2

mismatches every 36 bp (a site with insertions or deletions was

counted as a mismatch) were used for further analyses. The read

number of each gene model (Refgen1, 4a.53) [37] was computed

based on the coordinates of mapped reads. A read was counted if

any portion of that read’s coordinates were included within a gene

model.

SNP Calling and Filtration
Sequence variants identified by GSNAP were further filtered to

identify SNPs for BSR-Seq. The alignments of uniquely mapped

reads passing the filtering criteria from the mutant and non-

mutant data sets were merged for SNP discovery using the

following rules. Validated SNP site must have two and only two

SNP-types. Reads from these two SNP-types must account for

$90% of the total reads that align to this SNP site. Each SNP-type

must have$3 reads (quality score of SNP base$15) and the reads

account for $20% of the total reads on that SNP site, which

stringently controls for potential false SNP discovery derived from

sequencing errors or paralogs. The SNP discovery pipeline is

downloadable (http://schnablelab.plantgenomics.iastate.edu/

software). In addition, we previously identified a set of genomic

sites that are either sequencing errors in the B73 reference genome

or paramorphisms [50] (data not shown). These sites were further

filtered from discovered SNPs, followed by the allele-specific

Bulked Segregant RNA-Seq (BSR-Seq)
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quantification on these filtered SNP sites for both mutants and

non-mutants. To get a set of SNPs for the BSR-Seq analysis, at

each SNP we required that at least five sequencing reads in both

the mutant pool and the non-mutant pool and both alleles have at

least one read in the non-mutant pool.

Identification of SNP Markers Tightly Linked to the
Mutant Gene
An empirical Bayesian approach was used to estimate, for each

SNP, the conditional probability of no recombination between the

SNP marker and the causal gene in the mutant pool, given the

SNP allele-specific counts.

Using Bayes’ theorem, we can write this conditional probability

as

P(noR x1,j x2)~
P(x1,x2jnoR)P(noR)

P(x1,x2jnoR)P(noR)zP(x1,x2jR)P(R)

~(1zg(x1,x2))
{1

ð1Þ

where ‘‘no R’’ and ‘‘R’’ denote no recombination and re-

combination, respectively, between the SNP and the causal gene

in the mutant pool; x1 and x2 denote the SNP allele counts in the

mutant pool; and

g(x1,x2)~
P(x1,x2jR)P(R)

P(x1,x2jnoR)P(noR)
ð2Þ

In equations (1) and (2), P(noR) is the prior probability that there
is no recombination between a randomly selected SNP and the

causal gene in the mutant pool, and P(R) is the prior probability

that there is recombination between a randomly selected SNP and

the causal gene in the mutant pool. Let d denote the distance in

Morgans between any randomly selected SNP and the causal

gene. If we assume a uniform prior distribution across the genome

for the causal gene location, it follows that the prior for d is

uniform for values of d near zero. For a given distance d, we use

Haldane’s mapping function to compute the prior probability of

no recombination between the SNP and the causal gene as

q(d)~ 1{
1

2
½1{exp({2d)�

� �2N

where N denotes the number of plants in the mutant pool. Note

that q(d) quickly converges to zero as d moves away from zero.

Thus, we can find the approximate expected value of q(d) by

integrating the product of q(d) and the prior density of d in

a neighborhood of zero (0 to 20 cM, for example). This expected

value serves as P(noR) the prior probability of no recombination

between the SNP and the causal gene in the mutant pool. The

prior probability of some recombination between a randomly

selected SNP and the causal gene is given by P(R)~1{P(noR).

Next consider P(x1,x2jnoR), the conditional probability of the

allele counts at a SNP in the mutant pool, given no recombination

between the SNP and the causal gene in the mutant pool. Because

each plant in the mutant pool contains two copies of the mutant

allele and zero copies of the wildtype allele, no recombination

implies that all SNP alleles coupled with the mutant allele. Thus,

P(x1,x2jnoR)~1 if fx1,x2g~f0,ngand 0 otherwise, where n
denotes the total number of reads for the SNP. By expression (1), it

is clear that P(noRjx1,x2)~0 if P(x1,x2jnoR)~0 i.e., if

fx1,x2g=f0,ng.

The final probability needed for the computation of (1)

isP(x1,x2jR). To compute the probability, we condition on the

total number of reads for the SNP (n~x1zx2) and assume that

x1 has a binomial distribution with n trials and success probability

p. Given that there is some recombination between the SNP and

the causal gene, we know that it is possible for RNA sequences in

the mutant pool to contain both SNP alleles. However, we cannot

know precisely the relative probability of each allele. In other

words, the success probability p is unknown and likely to vary from

SNP to SNP. Thus, we require a prior distribution for p to provide

an adequate representation of the possible values for the relative

frequency of each allele. While a variety of choices are possible, we

choose to take advantage of the large quantity of SNP data in the

non-mutant pool to generate an empirical prior distribution. In

particular, we use the observed non-zero relative frequencies of

alleles at each SNP in the non-mutant pool to obtain the prior

distribution for p. It is then straightforward to compute P(x1,x2jR)
as the expected value of P(x1,x2jR,p) with respect to this empirical

prior distribution.

Once all the component probabilities have been obtained, it is

straightforward to computeP(noRjx1,x2)for each SNP in the

mutant pool. These posterior probabilities can then be used to

identify regions likely to contain the causal gene. However, the

computation of these posterior probabilities makes little use of the

data from the non-mutant pool. We can gain additional

information about the likely location of the causal gene by more

fully utilizing the non-mutant data.

In traditional BSA, DNA sequences that completely linked to

the causal gene are expected to exhibit 1:2 ratio of mutant to

wildtype alleles in the non-mutant pool. However, in BSR-Seq

allele frequencies are measured at the RNA level. There is no

guarantee that the relative frequency observed in RNA-Seq reads

will match the relative frequency at the DNA level. In addition, the

read counts themselves are subject to biological and technical

variation. To address these issues, we use the RNA-Seq data to

estimate, for each SNP, P(pmƒ
1
2
jwm,w), where pm is the

proportion of a mutant allele read at the SNP in the non-mutant

pool, wm is the observed number of reads in the non-mutant pool

that match the mutant allele, and w is the total number of reads at

the SNP in the non-mutant pool. The value of 1
2
is selected here

because we believe it is reasonable to assume that the mutant allele

will be less probable than the wildtype allele for a SNP near the

causal gene in the non-mutant pool, given that the expected

relative frequency of the mutant allele at the DNA level is only half

that of the wildtype allele.

To computeP(pmƒ
1
2
jwm,w), we again use Bayes theorem to

obtain

P(pmƒ
1

2
jwm,w)~

P(wm,wjpmƒ 1
2
)P(pmƒ

1
2
)

P(wm,w)
ð3Þ

The identity of the mutant allele is determined by the most

frequent allele in the mutant pool. This will be correct for SNPs

near the causal gene and irrelevant for other SNPs that will be

ruled out as candidates by our calculation of P(noRjx1,x2). As in
our calculation of P(noRjx1,x2), we use the observed relative

frequencies of alleles at each SNP in the non-mutant pool to

obtain a prior distribution forpm. Each of the probabilities in (3)

can be easily obtained by computing expectation with respect to

this empirical prior.

Once we have computed P(noRjx1,x2) and P(pmƒ
1
2
jwm,w)

for each SNP, we compute the product of these probabilities (final

probabilities) for each SNP to identify SNPs likely to be tightly

Bulked Segregant RNA-Seq (BSR-Seq)

PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e36406



linked to the causal gene. Only SNPs with high values of both

P(noRjx1,x2) and P(pmƒ
1
2
jwm,w) will have a large product.

SNPs for which either P(noRjx1,x2)or P(pmƒ
1
2
jwm,w) is small

will be ruled out.

To obtain the genomic region(s) that are more likely linked to

the causal gene, we scanned the whole genome by sliding windows

with fixed number of SNPs (N= 50) and with a step size of 5 SNPs.

In each window, a median of the final probabilities of all the SNPs

was determined as the ‘‘window linkage probability’’. The

windows with the highest ‘‘window linkage probability’’ are the

regions close to the causal genes.

Identify differentially expressed genes via Fisher’s exact

test. The Fisher’ exact test was used to test the null hypothesis

that the proportions of reads of a given gene among the total reads

uniquely mapped to the reference genome are not different

between the mutants and the non-mutants. Only genes with at

least 40 total reads from both genotypes were used to perform the

Fisher’ exact test. Absolute value of log2 mutant/non-mutant fold

change greater than 0.8 was used to further filter DE genes. The

transcripts were quantified by using normalized read counts plus 1.

The total number of uniquely mapped reads of each data set was

used for the normalization. The significantly expressed genes were

obtained with the additional false discovery control (false discovery

rate, FDR=0.1%) to account for multiple tests [51]. Because this

comparison did not include biological replication, statistically

significant variation can be a consequence of either biological or

technical variation in gene expression between the two samples.

Identification of Maize Genes Involved in the Epicuticular
Wax Pathway
The protein sequences of 13 Arabidopsis genes involved in

biosynthesis and secretion of plant cuticular wax were BLAST to

the maize protein database. The BLAST alignments of E-value ,

e250, .50% identity and .30% coverage were extracted. For

each Arabidopsis gene, we kept at most three best hits. Three

Arabidopsis genes (wsd1, mah1 and cer2) did not have homologs

identified in maize with the criteria. The best hit was extracted as

the homologous gene of each of these three. In total, 25 maize

homologous candidates were identified. With adding cloned maize

glossy genes that are not in the Arabidopsis homologous list, 30

maize genes that might involve in the epicuticular wax pathway

were obtained.

Supporting Information

Figure S1 Histogram of p-values for differential expres-
sion tests. Fisher’s exact test was used to test the null hypothesis

that expression of a given gene is not different between the two

groups. A p-value was obtained for each informative gene. The

distribution of p-values under the null hypothesis (no differential

genes existed) is a uniform distribution in the range of 0–1. More

than the expected number of p-values with small values indicates

significantly differentially expressed genes could be statistically

identified.

(DOC)

Figure S2 MA-similar plot. The MA-similar plot provides an

overview of the differential level between groups of the

comparison. Log2 fold change (y-axis) of each informative gene

was plotted against log2 of mean of expression (x-axis).

Significantly differentially expressed genes are highlighted in red.

(DOC)

Figure S3 Volcano plot. The volcano plot compares gene

expression patterns between two groups. Negative log10 p-values

from the differential expression test were plotted against the log2

fold change for each informative gene. Each dot represents a gene,

plotting with 20% transparency. The horizontal dash line indicates

the 0.1% FDR cutoff. The vertical green lines indicate the cutoffs

of log2 wildtype/mutant ratios equaling to -0.8 and 0.8.

(DOC)

Figure S4 Overview of differential expression in the
metabolic pathway in MapMan. MapMan (mapman.gabip-

d.org) provides a useful tool to visualize the alteration of gene

expression in the comparison. Differential expression in the

metabolic pathway was shown as an example. Each square

represents a transcript. The squares were color-coded by log2 fold

change between the gl3 non-mutant pool and the mutant pool

from the RNA-Seq data. The up- and down-regulated genes in the

mutant pool relative to the non-mutant pool were highlighted in

red and blue, respectively. More pathways can be explored by

feeding the data of Table S3 to the MapMan software.

(DOC)

Table S1 Summary of RNA-Seq data and alignments.

(DOC)

Table S2 Result of differential expression tests. Table S2
provides the detailed differential expression test result of genes

(4a53). Test was performed on the informative genes that are those

genes with at least 20 average reads across the two samples.

Description of each column in this table: N GeneID: gene ID; N
Ref: version of the reference genome; N Chr: chromosome; N Ori:
gene orientation (either forward (+) or reverse (2) strand); N Start:
the first physical position of the gene on the chromosome; N End:
the last physical position of the gene on the chromosome; N
ExonSize: total length of all the gene’s annotated exons; N
gl3mut: raw read counts for the gene of the sample of the gl3

mutant pool; N gl3wt: raw read counts for the gene of the sample

of the gl3 non-mutant pool; N gl3mut.RPKM: normalized read

counts of a given gene (‘‘RPKM’’ means reads per kb exonic

sequence per million uniquely mapped reads) in the sample of the

gl3 mutant pool; N gl3wt.RPKM: normalized read counts of

a given gene in the sample of the gl3 non-mutant pool; N
gl3wt:mut_log2FC: log2 of fold change between the gl3 non-

mutant pool and the mutant pool; N gl3wt:mut_pvalue: p_value
of the statistical test for differential expression of this gene between

the gl3 non-mutant pool and the mutant pool; N gl3wt:mut_q-
value: the corrected p-values (q_values) for differential expression

of this gene after correcting for multiple testing; N gl3wt:mut_sig:
the answer to the question ‘‘Is this gene significantly expressed?’’

The gene with the q_value smaller than 0.001 (FDR 0.1%) and

having an absolute log2 fold change of .0.8 was labeled with

‘‘yes’’. N description: description of genes.

(XLS)

Table S3 The expression test data to feed MapMan for
the pathway visualization. Table S3 contains two columns.

The first column is the transcript name; the second column is the

value of log2(fold-change). The transcripts without significantly

differential expression were assigned a value of zero.

(DOC)

Table S4 Summary of SNP discovery.

(DOC)

Table S5 Allele counts in the mutant pool and the non-
mutant pool. Table S5 provides the read counting information

for each of both alleles in the mutant and the non-mutant.

(XLS)
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Table S6 Expression summary of genes involved in the
biosynthesis of very-long-chain fatty acids.

(DOC)

Table S7 Number of differentially expressed genes in
each chromosome.

(DOC)
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