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Abstract
Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon

in biology systems and has been the focus of many experimental and computational stud-

ies. This work presents a simulation method to directly study the equilibrium of multiple

states. This method constructs a virtual mixture of multiple states (VMMS) to sample the

conformational space of all chemical states simultaneously. The VMMS system consists of

multiple subsystems, one for each state. The subsystem contains a solute and a solvent

environment. The solute molecules in all subsystems share the same conformation but

have their own solvent environments. Transition between states is implicated by the change

of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative

free energies of all states, which in turn determine their equilibrium molar fractions. For sys-

tems with a large number of state transition sites, an implicit site approximation is introduced

to minimize the cost of simulation. A direct application of the VMMSmethod is for constant

pH simulation to study protonation equilibrium. Applying the VMMSmethod to a heptapep-

tide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit

states and with implicit sites and obtained consistent results. For mouse epidermal growth

factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9

ionizable groups and the results agree qualitatively with NMRmeasurement. This example

demonstrates the VMMSmethod can be applied to systems of a large number of ionizable

groups and the computational cost scales linearly with the number of ionizable groups. For

one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our

VMMS simulation shows that it is the state-dependent water penetration that causes the

large deviation in lysine66’s pKa.

Author Summary

Computer simulation plays an important role to understand molecular systems and has
been applied to problems of increasing complexity. Multistate equilibrium is a fundamen-
tal concept behind the structure and function of biological systems. Due to the limit in
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computing resources and lack of good alternative methods, computer simulation has been
conducted for systems in a single state, sampling from one state to another to infer equilib-
rium properties. This sequential approach has been successful in many cases such as pro-
tonation equilibrium with implicit solvation model. However, state transition is difficult
when explicit solvent is used for more accurate solvation description. Many efforts have
been dedicated to overcome this difficulty. Analogous to real multistate systems, we pro-
posed a virtual mixture of multiple states (VMMS) to directly simulate the equilibrium.
State transitions are replaced by changes in state molar fractions. Mimicking a test tube
environment, all states are simulated in parallel to equilibrate with each other. Application
to constant pH simulation in explicit water demonstrates the capability of this method. It
is expected that the VMMS method will find more applications in biological problems
related to the equilibrium of competing states.

“This is a PLOS Computational BiologyMethods paper”

Introduction
Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in
biological systems. Typical examples of multiple state equilibria are protonation equilibrium,
ligand binding equilibrium, and phosphorylation equilibrium. For example, through the equi-
librium of different protonation states, protein can fold or unfold in different pH environ-
ments. By changing phosphorylation states, protein can activate or deactivate certain
functions. Ligand binding equilibrium controls the inhibition of enzyme activities.

Computer simulation has played an increasingly important role in understanding biological
systems. However, due to the limit of computing resources and lack of good alternative meth-
ods, equilibrium of multiple states is often studied through simulations of individual states in
order to minimize size and complexity of simulation systems. Equilibrium properties are
derived indirectly through free energy calculation. For example, ligand binding equilibrium is
indirectly studied by calculating binding affinities.

Some methods directly addressing state equilibrium have been developed recently. For
example, constant pH simulation methods [1–20] can simulate equilibrium between different
protonation states. In these methods, equilibrium between states is simulated through visiting
or sampling different states sequentially. In other words, through frequently changing from
one state to another, a simulation samples the equilibrium distributions of various states. Such
a sequential sampling process works well if the transition between states is easy. For example,
with implicit solvation models, transition between protonated and deprotonated states has no
difficulty since implicit water reorganizes instantly, and proper sampling can be achieved
through, for example, Monte Carlo[5] or replica-exchange[12]. However, when transition
between states is difficult, such as in explicit solvent where large barriers exist between states,
special efforts are needed to improve the sampling efficiency. Typical examples are the λ-
dynamics[14] and the Enveloping Distribution Sampling[19,21–23].

In this work, we present a new simulation approach to address multi-state equilibrium in a
parallel way without direct transition between states. All states exist simultaneously in a simu-
lation with populations defined by their molar fractions. The transition between states is impli-
cated by changes of their molar fractions. By avoiding direct transitions between states, this

The VMMSMethod for Constant pH Simulation in Explicit Water

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004480 October 27, 2015 2 / 29



method is designed for problems where transitions between states are difficult, such as depro-
tonation in explicit solvent. We call this new approach the virtual mixture of multi-states
(VMMS) method, because this method simulates multiple states explicitly and treats explicit
states as though in a virtual mixture to equilibrate with each other.

Results
The VMMS simulation method uses multiple techniques to achieve efficient simulation.
Through several examples, we validate the techniques and demonstrate the application of the
VMMS method in the study of protonation equilibrium.

Free energy calculation with IPS
Using the IPS potential for long range energy calculation is a key factor for VMMS efficiency.
The IPS potential converts long-range interactions to pairwise interactions within a certain
range, typically within a cutoff. This cutoff region is called the local region. Everywhere beyond
the local region is called the remote region. Interactions with the remote region are replaced by
interactions with the isotropic periodic image of the local region. The summation over the IPS
image is an analytic function of the distance between particles within a local region. Ewald sum
uses lattice images to calculate long range interactions. It has contributions from all atom pairs
and depends not only on the distances, but also on the orientations of all atom pairs. Due to
these complexities, Ewald summation needs special numerical methods such as the Particle
Meshed Ewald (PME) technique to improve efficiency. Apparently, IPS and PME are based on
similar concepts, but with different local regions and images. It has been demonstrated that IPS
produces very similar results as PME [24–29]. However, PME is not pairwise and to separate
solute and solvent interactions requires multiple PME calculations, thus, making it less suitable
for the VMMS simulation.

Although many cutoff methods are pairwise, they cannot provide accurate free energies,
which is crucial for the study of state equilibrium. IPS is as simple as any cutoff method, but, as
accurate as PME [25–32]. To demonstrate the accuracy of IPS potential, we calculated the
deprotonation free energies of the model compounds. The free energy profiles during the cal-
culations are shown in Fig 1. For comparison, Fig 1 also shows the results from PME and
another cutoff method.

The deprotonation free energies were calculated through thermodynamic integration with
the PERT module of CHARMM. Each of the model compounds was dissolved in a box of
TIP3P water. The box size was 31.1×31.1×31.1 Å3. The cutoff method[33] used force shift for
electrostatic potential and energy switch for Lennard-Jones potential with ron = 10 Å and roff =
12 Å. The 3D IPS used a local radius of Rc = 12Å. For PME, a real space cutoff of 12 Å was used
and the grid dimension for Fast Fourier transform (FFT) calculation was 32×32×32. There
were total 190 λ windows, Δλ = 0.01 for 0�λ�0.9 and Δλ = 0.001 for 0.9<λ�1. For each win-
dow a 10 ps LD simulation was performed with a friction constant of 1/ps.

From Fig 1 we can see that the IPS results converge well with the PME results at λ = 1, with
an average deviation of 0.37 kcal/mol. The cutoff results have an average deviation of 4.4 kcal/
mol from the PME results. These results demonstrate that IPS is an efficient and competitive
alternative to PME when pairwise properties are needed. The cutoff methods can provide pair-
wise terms, but their deviation from PME makes them a poor choice for quantitative studies.

Note that at intermediate λ the IPS and the PME results are differ, but at the significant end
points (λ = 0 and λ = 1) the variation of free energy differences between IPS and PME is very
small. During the free energy calculation, the energy at intermediate λ was a combination of
the two end states. The difference at intermediate λ values is due to the different treatments of

The VMMSMethod for Constant pH Simulation in Explicit Water

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004480 October 27, 2015 3 / 29



boundary interactions in the two methods. What matters is the free energy difference between
the end states, which is used to determine the state equilibrium.

VMMS ensemble distribution
Reweighting a VMMS conformation distribution to obtain the pure state conformational dis-
tributions is the key to simulate multistate equilibrium. The partition function of the VMMS
ensemble, Eq (6), describes the VMMS conformational distribution and provides a reweighting
relation, Eqs (9) and (10), to convert a VMMS distribution to a pure state distribution. Here we
use two simple systems to demonstrate this reweighting relation.

First, we use a model compound, ACE-ASP-NME, with the generalized Born (GB) implicit
solvation model[34] to examine the VMMS ensemble. With an implicit solvation model, the
VMMS system contains only the solute in two charge states, the protonated state (state 0) and
the deprotonated state (state 1). Fig 2 shows the energy distributions from the VMMS simula-
tion at xH = xD = 0.5 and from the Langevin dynamics (LD) simulations of the pure states. As
can be seen, the two ensembles have quite different energy distributions, with the VMMS
ensemble shifting toward higher energy. After reweighting with Eq (10), the VMMS results
match very well with the LD results for the pure states, validating the reweighting relation, Eq
(10) and verifying indirectly that Eq (6) describes the conformational distribution of the
VMMS ensemble. It should be noted that the reweighting process often has large noise at high
energy region. A peak around -58 kcal/mol in the reweighted distribution (green line) is due to
such noise.

Next, we examine a very simple model system with explicit solvent. Because a regular system
with explicit solvent is often overwhelmed by solvent-solvent interactions, making it difficult

Fig 1. Deprotonation free energy profiles during the thermodynamic integration calculations. The
PME and IPS results are shown as solid and dashed lines, respectively. The cutoff results are shown with
open circles. Results for different residues are colored differently as labeled.

doi:10.1371/journal.pcbi.1004480.g001
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to see the difference between a VMMS state and a pure state, we built a model solution
with just one water molecule as the solute and 10 water molecules as the solvent in a cubic
periodic box for each state. To make the two states more distinct, the solute charges were
changed to have qO = 2.64e and qH1 = 0 and qH2 = -0.64 e for state 0 and qO = -2.64 e, qH1 =
0.64 e, and qH2 = 0 for state 1. As a result, the solute had a net charge of +2e in state 0 and a
net charge of -2e in state 1. The solvent charges were scaled by 0.1 to have qO = -0.0834 e and
qH1 = qH2 = 0.0417 e. The solvent charge scaling made this solution a homogeneous system at
T = 300 K and made the two states distinct in energy distribution. The cubic box size was
15.55×15.55×15.55 Å3. The 3D IPS potentials, Eqs (11)–(16), with a cutoff radius of 7.5 Å,
which was less than half of the box size, were used for both Lennard-Jones and electrostatic
interactions.

We performed a VMMS simulation at xH = xD = 0.5 and LD simulations for both pure
states. All simulation were done at T = 300K and ξ = 1/ps. The energy distributions of this
model solution are shown in Fig 3. The VMMS distributions are quite different from the LD
distributions for both states. After reweighting, the VMMS energy distributions match very
well with the LD distributions. This example validates the VMMS reweighting function, Eq
(10), for explicit solvent.

VMMS simulations of model compounds
The VMMS simulation converts a state transition problem to a free energy calculation between
the two states and pushes all contributions, such as chemical bonding and proton creation, into
a reference value derived from the experimental pKa and simulated free energy difference of
model compounds, as described by Eq (24). Therefore, we need to estimate the free energy
difference of the modeling compounds before we can study state equilibrium of interested

Fig 2. Energy distributions of the ASPmodel compound with the GB implicit solvation model in
different states. The solid lines are the protonated state (state 0, black) and deprotonated state (state 1,
red). The red dotted lines with filled symbols are in the V0 (square) state and V1 (circle) state. The green
dotted lines with open symbols are the reweighted results in the V0 (square) and V1 (circle) states.

doi:10.1371/journal.pcbi.1004480.g002
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systems. To calculate the deprotonation free energies of the model compounds, we performed
equal-molar VMMS simulations at fixed composition, xH = xD = 0.5. Fig 4 shows deprotona-
tion free energies evaluated during the equal-molar VMMS simulations. The deprotonation
free energies and the experimental pKas of these model compounds are used as reference free
energies and reference pKas of the corresponding titration sites and are listed in Table 1.

Using these reference deprotonation free energies, we performed VMMS simulations for
the model compounds at constant pH values to identify the equilibrium molar fractions. Fig 5
shows the molar fractions of the deprotonated states as functions of pH. The pKa should be the
pH where xD = 0.5. The pKa values estimated this way are listed in Table 1. As can be seen, the
pKa estimated from the VMMS simulations agree well with the experimental values. Large
fluctuations in the pKa results are caused by the large fluctuation in molar fractions and the
short simulation lengths.

VMMS simulations of a heptapeptide with 3 titration sites
Now we are ready to apply the VMMS method in constant pH simulations. Here, we choose a
peptide of 7 residues with a sequence: ACE-SDNKTYG-NME. This heptapeptide was derived
from OMTKY3 and has been studied experimentally[35] and computationally[3,15,35]. The
peptide was dissolved with 966 TIP3P water molecules in a 31.1Å× 31.1Å× 31.1Å cubic box.

First, we present the results with all titration sites explicitly simulated. There are three
ionizable residues, D, K, and Y and a total of 23 = 8 titration states. For easy discussion, we
denote the 8 states by the states of these three residues, H for a protonated residue and D for a
deprotonated residue. For example, HHH stands for a state where all the three residues are in

Fig 3. Energy distributions of the model HOH solution in the canonical ensemble and in the VMMS
ensemble. The black lines are the LD simulation results for state 0 (solid) and state 1 (dashed). The red lines
with squares are the VMMS simulation results for state V0 (filled) and state V1 (open). The green lines with
circles are the reweighted VMMS simulation results for state V0 (filled) and state V1(open).

doi:10.1371/journal.pcbi.1004480.g003
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protonated states and DHD stands for a state where residues D and Y are in the deprotonated
state and residue K in the protonated state.

As described in the method section, with 3 explicit sites, the VMMS system contains 8 simu-
lation boxes with each state in one box. The peptide in the 8 boxes has the same conformation
and moves the same way, but water molecules in each box interact with the peptide in one of
the eight states and are independent of water in other boxes.

The VMMS simulations were performed for the peptide at constant pH of 0, 2, 4, 6, 8, 10,
12, and 14. All states initially had a molar fraction of 0.125 and were allowed to change to reach
equilibrium. The state molar fractions during these simulations are shown in Fig 6. At pH = 0
and 2, all states approached zero except state HHH. At pH = 4, state DHH became dominant
followed by state HHH. At pH = 6 and 8, DHH was the only noticeable state. At pH = 10,
DHH and DHD were the competitive dominant forms. At pH = 12, DDD became the domi-
nant form with significant amount of DHD. At pH = 14, DDD was the only dominant form.

The equilibrium molar fractions of all states are plotted against pH in Fig 7. There are in
total 12 deprotonation processes between these 8 states. The pKa of these deprotonation pro-
cesses can be determined by the pH values where the molar fractions of both the protonated
state and deprotonated state are equal. There are four deprotonation processes for each residue
and their equal molar positions are circled in Fig 7. As can be seen, the intersections of proton-
ated state and deprotonated state are around pH = 4 for Asp, around 11 for Lys, and around
10 for Tyr. The pKa values of the ionizable residues are determined by the most dominant
states and the results are listed in Table 2. These results are reasonably close to the pH-REMD
and CpH results obtained with an implicit solvation model[15].

Next, we show the results of VMMS–1 simulations where at any moment only one site was
explicit and the other two sites were implicit. As described in the method section, when a site is
implicit, the atomic charges of this site will be calculated with Eq (27) based on the atomic

Fig 4. Deprotonation free energies evaluated during the equal-molar VMMS simulations of the model
compounds.

doi:10.1371/journal.pcbi.1004480.g004
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charges in protonated and deprotonated states and their molar fractions. When a site changes
from implicit to explicit, atomic charges return to the values in the corresponding states.

In the VMMS–1 simulations, each site was explicitly simulated for 10 ps and then became
implicit. The first 2 ps simulation was used for equilibrium and the following 8 ps were used to
evaluate free energy differences and to update molar fractions of explicit states. After becoming
implicit, the ionizable sites maintain their state molar fractions until they become explicit
again.

Fig 8 shows the molar fractions of the three ionizable sites during the VMMS–1 simulations
at various pH values. All simulations started with the deprotonated molar fractions, xD, of 0.5
for all three sites. The molar fractions of these three sites responded differently to pH values.
Large fluctuations in molar fractions were observed when the pH value was close to the pKa
value.

Table 1. Deprotonation free energies calculated using equal-molar VMMS simulations and pKa values calculated from constant pH VMMS simula-
tions. Experimental pKa values are listed as reference pKas.

Compounds ΔGref, kcal/mol pKa(VMMS) pKaref(exp)[12]

ASP -62.4±0.4 4.0±0.2 4.0

GLU -66.2±0.4 4.4±0.2 4.4

HISδ -18.0±0.4 6.4±0.4 6.5

HISε -3.4±0.4 7.4±0.4 7.1

ARG -2.6±0.3 12.4±0.3 12.5

LYS 15.9±0.4 10.4±0.2 10.4

TYR -117.4±0.5 9.6±0.2 9.6

Nter 57.9±0.3 7.4±0.5 7.5

Cter -80.2±0.4 3.8±0.6 3.8

doi:10.1371/journal.pcbi.1004480.t001

Fig 5. The titration curves of the model compounds obtained from the VMMS simulations.

doi:10.1371/journal.pcbi.1004480.g005
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Fig 9 plots the molar fractions as functions of pH for the three ionizable residues. The pKa
values determined from the pH values where xD = 0.5, are listed in Table 2. Within the statistic
ranges, the VMMS and VMMS–1 results agree with each other. The consistency of the results
from the fully explicit VMMS and the partially implicit VMMS–1 demonstrates that the
implicit site approximation is acceptable for this system.

Mouse epidermal growth factor with 9 ionizable groups
To further illustrate the application of the VMMS method in constant pH study, we applied
the VMMS method to mouse epidermal growth factor (EPG) in explicit water, for which pKa’s
of 9 ionizable groups have been determined by NMR[36] (Table 3). It is impractical to explic-
itly simulate all protonation states of these 9 ionizable groups. Instead, we performed VMMS–
1 simulations where only one site at a time was explicit and the rest were implicit.

EPG has 53 residues. Its structure is available in PDB (PDB code: 1EPI). This structure was
dissolved in a 62.21×46.65×46.65 Å3 water box with 4273 TIP3P water molecules. Simulations
were performed at constant temperature of 300 K and constant volume. 3D IPS with a local

Fig 6. State molar fractions of the heptapeptide, Ace-SDNKTYG-NME, during constant pH VMMS
simulations. pH values are labeled in each panel. All states have an initial molar fraction of 0.125.

doi:10.1371/journal.pcbi.1004480.g006
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region radius of 12 Å was used for both Lennard-Jones and electrostatic interactions. Every
ionizable group was explicitly simulated for 10 ps in the sequential order.

The VMMS–1 simulations were performed at 10 pH values: 0, 2, 3, 4, 5, 6, 7, 8, 9, and 10.
The molar fractions of the 9 ionizable groups are shown in Fig 10. As can be seen, starting
from 0.5, the deprotonated molar fractions of these ionizable groups changed gradually to
approach their equilibrium values. While 5 ns was not long enough for all states to reached
their equilibrium molar fractions, the results show that the molar fractions of different group
responded differently to the pH changes and provide rough estimates of the pKas.

For the N-terminal group at Asn1 the deprotonated molar fraction approached 0 when
pH<9 and 1 when pH = 10. The four Asp residues, Asp11, Asp27, Asp40, and Asp46, were all
different from each other. For Asp11, the titration point falls between pH = 2 and pH = 3. For
Asp27, the titration point is between pH = 4 and pH = 5. Whereas for Asp40, it is between
pH = 3 and pH = 4, and for Asp46, it is between pH = 5 and pH = 6.

We used the average molar fractions between 2 and 5 ns to plot the titration curves for each
ionizable group in Fig 11. From the curves we can read the pKa values of these 9 groups, which
are listed in Table 3. The agreement with NMR results is qualitatively good. To increase the
accuracy, we need much longer simulations. Also, the simulation setup may also affect the
results, such as salt concentration, force field, water model, etc. From this example, we

Fig 7. State molar fractions obtained from the constant pH VMMS simulations. There are 12
deprotonations and their pKa can be found from the intersection pH between curves of the protonated and
deprotonated states, where xH = xD. The overall pKa will be determined by the dominant forms, i.e., the lowest
intersections.

doi:10.1371/journal.pcbi.1004480.g007

Table 2. pKa of the ionizable residues in the heptapeptide from the VMMS simulations and other studies.

residues VMMS VMMS–1 pH-REMD[15] CpHMD[15] Exp[35]

asp 3.6±0.5 4.1±0.3 3.6±0.2 3.7±0.2 3.6

lys 11.5±0.5 11.1±0.4 10.6±0.1 10.6±0.1

tyr 10.2±0.5 9.9±0.5 10.1±0.1 9.9±0.1

doi:10.1371/journal.pcbi.1004480.t002
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demonstrated that the VMMS–1 method can be applied to systems of many ionizable sites and
the computing cost scales linearly with the number of ionizable sites.

VMMS simulation of SNase Δ+PHS/V66K in explicit water
To illustrate the capability of the VMMS method, we chose to simulate one of the most chal-
lenging systems in constant pH simulation, SNase Δ+PHS/V66K (PDB: 3HZX). This system is
challenging because the Lys66 is buried inside the protein and has a large deviation in pKa
from typical lysine residues. This system has been the focus of many studies[37–39]. Experi-
mentally the pKa of this lysine is 5.6, very different from typical pKa of 10.4 for lysine.

In our VMMS simulation, only K66 has explicit protonated and deprotonated states. This
protein was dissolved with 2830 TIP3P water in a 46.65×46.65×46.65 Å3 cubic box. 100 ns
VMMS simulation was performed at constant molar fraction of xH = xD = 0.5.

Fig 8. Themolar fractions of deprotonated states during the VMMS–1 simulations of the
heptapeptide.

doi:10.1371/journal.pcbi.1004480.g008
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The pKa of K66 obtained from the simulation is shown in Fig 12. Clearly, the pKa had large
fluctuations, representing environment changes around K66. The pKa quickly reached 7 in 3
ns and remained there for more than 10 ns. The pKa dropped to below 4 at around 20 ns, then
came back to above 7 at about 30 ns. Before 40 ns the pKa dropped to below 5.6 and fluctuated
around 5.6 afterward.

We examined the simulation trajectory to determine what causes the large deviation and
fluctuation in K66’s pKa. First, we found that the protein conformation remained stable
throughout the simulation. As shown in the rmsd plot of Fig 12, after the 100 ns simulation,
the rmsds of the protein backbone and all atoms from the initial structure were about 1.4 Å
and 2 Å, respectively. While certain conformational fluctuations occurred, the sidechain of
K66 remained inside its original place, indicating that the large deviation of K66’s pKa is not
necessarily due to its sidechain flipping in and out at different protonation states. Next, we

Fig 9. Themolar fractions of deprotonated states as functions of pH for the heptapeptide obtained
from the VMMS–1 simulations.

doi:10.1371/journal.pcbi.1004480.g009

Table 3. pKa of the ionizable residues in mouse epidermal growth factor from the VMMS simulations
and other studies.

residues group VMMS–1 NMR[36]

Asn1 α-NH3 9.5±0.5 7.7±0.1

Asp11 β-COOH 2.7±0.4 3.9±0.05

His22 imidazole 7.5±0.5 6.8±0.1

Glu24 γ-COOH 4.6±0.3 4.1±0.1

Asp27 β-COOH 4.5±0.5 4.0±0.1

Asp40 β-COOH 3.5±0.5 3.6±0.1

Asp46 β-COOH 5.5±0.5 3.8±0.1

Glu51 γ-COOH 5.4±0.5 ~4

Arg53 α-COOH 4.6±0.4 3.5±0.1

doi:10.1371/journal.pcbi.1004480.t003
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examined the hydrogen bonding water molecules during the simulation. Because each state
had its own solvent boxes, we can easily see the differences in solute-solvent interactions. In the
middle panel of Fig 12, we plot the numbers of water molecules that hydrogen bond to the side-
chain of K66. As can be seen, the VMMS simulation started with the same conformations for
both states where there were 3 water molecules hydrogen bonding to K66’s sidechain. At 10 ns,
the hydrogen bonded water in the deprotonated state reduced to 2 and the pKa reduced to
between 7 and 8. At 20 ns the hydrogen bonded water of the deprotonated state reduced fur-
ther to 1 and the pKa decreased to below 4. Then at 30ns, the hydrogen bonding water of the
deprotonated state increased to 2 and the pKa reached over 7 again. At 40 ns, the hydrogen
bonding water of the deprotonated state reduced to 1 and the pKa value reduced to slightly
below the experiment value of 5.6. This tight correlation between the hydrogen bonding water
number and the pKa value strongly suggests that water penetration around the K66 sidechain
plays an important role in the large deviation of K66’s pKa. This result agrees with the high
dielectric constant observed in the interior of this protein[40]. Fig 13 shows the protein and the
hydrogen bonding water in both states.

The large fluctuation in the pKa of lysine66 shown in Fig 12 indicates that much longer sim-
ulation is needed to provide an accurate pKa value. This short simulation only provides a pre-
liminary insight of the system. Thorough understanding of the system is beyond the scope of
this paper.

Fig 10. The molar fractions of deprotonated states for the 9 ionizable groups of EPG during the VMMS–1 simulations.

doi:10.1371/journal.pcbi.1004480.g010
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This example shows the advantage to have explicit solvent for each protonation state in the
VMMS method. For single state simulation methods, for example, λ-dynamics, conformations
are sampled in a serial manner. The free energy difference between two states can only be cal-
culated after a significant number of transitions between states. While in VMMS, both states
are sampled simultaneously, and the free energy difference can be estimated right away. The
most striking benefit is when the energy barrier for state transition is high, the VMMS method
does not suffer the energy barrier crossing difficulty. In addition, the VMMS method can be
combined with other existing accelerated simulation methods, such as the self-guided Langevin
dynamics[41–43] to reach the conformation favoring dominant states quickly.

The protonation equilibrium is especially suitable for the VMMS method. By forcing the
solute to sample the overlapping conformational space of different states, the VMMS method
can accurately estimate the free energy differences between these states. However, when the sol-
ute conformation spaces of some states are not completely accessible by other states, alternate
techniques or companion methods need to be employed to properly sample all important con-
formational spaces. Therefore, the VMMS method of current version is limited to cases where
the solute conformation of one state is fully accessible by other states. In addition to proton-
ation equilibrium, another such case is oxidation-reduction equilibrium where the oxidized
and reduced states are different only by charges.

Fig 11. The titration curves of the 9 ionizable groups of EPG as functions of pH values obtained from
the VMMS–1 simulations.

doi:10.1371/journal.pcbi.1004480.g011
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Discussions
This work presents the VMMS simulation method for directly simulating the equilibrium of
multiple chemical states. Through including explicit solvent environments of all states, this
method avoids the time-consuming solvent reorientation between states, allowing free energy
differences between different states to be efficiently estimated during simulation. Using model
systems, we examined the conformational distribution of the VMMS ensemble and validated
the reweighting formula from the VMMS distributions to pure state distributions.

The VMMS method is applied here to study protonation equilibrium. At a given pH, the
VMMS simulation produces equilibrium molar fractions of all states. These molar fractions in
turn will affect the potential energy of the VMMS solute and the conformational search. pKa
can be determined by identifying the pH where the protonated and deprotonated states have
equal molar fractions.

For systems with many titration sites, we employ implicit sites to reduce the number of sub-
systems in a VMMS simulation. This implicit site treatment allows VMMS simulations scale
linearly with the number of titration sites. Through the heptapeptide we demonstrated that the
VMMS–1 simulation with one explicit site and two implicit sites produced very similar result
to the VMMS simulation with all explicit sites. We applied VMMS–1 simulations to evaluated

Fig 12. The pKa of K66 and conformational properties of SNaseΔ+PHS/V66K during the VMMS simulation.

doi:10.1371/journal.pcbi.1004480.g012
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pKas of 9 titration sites in mouse epidermal growth factor and the results agree qualitatively
with the NMRmeasurement[36].

Applying the VMMS method to SNase Δ+PHS/V66K in explicit water, we found that the
large deviation in lysine66’s pKa is likely due to the state-dependent penetration of water into
the protein interior. This example demonstrates the VMMS method can properly handle
explicit water for this difficult case in pKa calculation.

The VMMS method provides a general approach to study multistate equilibrium. Unlike
existing simulation methods that either study state equilibrium indirectly or sample different
states sequentially, the VMMS method simulates all states simultaneously and utilizes experi-
ment observable molar fractions as state variables in simulation. It is expected that the VMMS
method will find more applications in biological problems related to the equilibrium of multi-
ple states.

Methods

The VMMS system
We design a VMMS system to simulate state equilibrium of a solute in a solvent environment,
implicit or explicit. Consider a solute, e.g., a protein, in solution as shown in Fig 14. The solu-
tion (shown in the center) contains a solute in various chemical states, e.g., protonated and
deprotonated states for ionizable residues. All chemical states of the solute coexist in the solu-
tion at equilibrated concentration. At the low concentration limit, the solute molecules in dif-
ferent chemical states do not interact with each other. Therefore, the solute at each state can be
represented by a solvated molecule. In other words, every solute is solvated by its own solvent,
and solvent molecules only interact with the solute of one state.

Because the conformational distribution and the chemical state of solute are interdependent,
conformational sampling should be correlated to the equilibrium of chemical states. The state

Fig 13. SNaseΔ+PHS/V66K in the protonated and deprotonated states after 50 ns VMMS simulation.
K66 sidechain has 3 hydrogen bonding water in the protonated state but only 1 hydrogen bonding water in
the deprotonated state.

doi:10.1371/journal.pcbi.1004480.g013
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equilibrium depends on the state free energies, which can be calculated through adequate sam-
pling of individual states, as well as the overlapping conformational space between states. In
this work, we let solute of all states to share the same conformation to enhance the sampling on
the overlapping region. On the other hand, we let solvents independent of each other to have
adequate sampling of individual solvent states. Here, solvent plays a role to provide solvation
to guide solute dynamic simulation. Even though solvent molecules explicitly surround the sol-
ute, they behave just like an implicit solvation model to provide solvation energy to the solute.
In other words, we use the interaction from the explicit solvent to calculate solvation energy.
Using explicit solvent to provide solvation effect for solute dynamic simulation has been
explored previously[44]. This design avoids solvent reorientation upon state transition and
allows the solute to undergo a state-equilibrated conformational search. The solvent is always
in a state-equilibrated condition and provides more accurate solvation than an implicit solva-
tion model.

If the solute has n chemical states, the VMMS system will have n subsystems, one for each
state including the environment (solvent) around it. While the solute at each state has its own
solvent environment, the solute molecules at all states share the same conformation and they
search the conformational space together. In other words, each subsystem is a solute-solvent
simulation box containing a solute surrounded by its implicit/explicit solvent environment.
The solute molecules in all subsystems are constrained to have the same conformation and
move the same way, but the solvent molecules are not constrained and move under their own
interaction environment. The solvents sample their own conformational space to provide
equilibrated solvation to their solute. This design makes it very convenient to calculate relative

Fig 14. State equilibrium is represented as a virtual mixture of multiple states (VMMS). In a solution
shown in the center, all states equilibrate with each other and exist by state molar fractions, x1, x2,� � �, xn. In
VMMS, every state is explicitly represented by an all-atom subsystem. Each state has its own solvent
environment and solvent can be either implicit or explicit. All subsystems form a virtual ideal solution to
equilibrate with each other.

doi:10.1371/journal.pcbi.1004480.g014
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free energies of the states using Bennett’s ratio method [45]. Let’s image that the n states form
an ideal solution and that each state has its own population defined as state molar fractions, x1,
x2,� � �, xn, where x1 + x2 +� � �+ xn = 1. At equilibrium, all states have the same chemical poten-
tial, which determine the equilibrium molar fractions of all states. Because these states are not
physically mixed to form a real solution as in a mixture simulation[46], the system is the so-
called virtual mixture of multiple states (VMMS).

In summary, a VMMS system contains one solute distributing in n states, P(x1, x2,� � �, xn),
and n solvents,Wi, i = 1,2,. . .,n, which provide solvation to the n states. The solute exists in all
n chemical states by the state molar fractions of x1, x2,� � �, xn. SolventWi only interacts with the

solute of state i. The VMMS system is denoted as: Pðx1; x2; � � � ; xnÞ þ
Xn

i

Wi. We define a

VMMS state j, denoted as Vj, as the solute at the mixed states, P(x1, x2,� � �, xn), in solventWj.
The difference between a pure state j and a VMMS state j lays at the solute only. In a pure state,
the solute exists only in one chemical state, i.e., P(xj = 1, xi 6¼ j = 0), while in the VMMS state,
Vj, the solute exists in all chemical states, i.e., P(x1, x2,� � �, xn).

VMMS conformational distribution
For a subsystem j containing a solute, P, of state j and solventWj, the potential energy, E

(j), can

be separated into solute part, EðjÞ
P , and solvent part, E

ðjÞ
W:

EðjÞ ¼ EðjÞ
P þ EðjÞ

W ð1Þ

The solute interaction is a sum of all pairwise interactions involving the solute, including
solute-solute and solute-solvent interactions:

EðjÞ
P ¼

X
a2P

EðjÞ
a ¼ 1

2

X
a2P

XNðjÞ

i

εðjÞai ð2Þ

Here, N(j) is the number of atoms, EðjÞ
a is the total interaction energy of atom a, and εðjÞai is the

interaction between atom a and atom i in subsystem j. Similarly, the solvent interaction is a
sum of all pairwise interactions involving the solvent, including solvent-solvent and solute-sol-
vent interactions:

EðjÞ
W ¼

X
a2Wj

EðjÞ
a ¼ 1

2

X
a2Wj

XNðjÞ

i

EðjÞ
ai ð3Þ

For a VMMS system, Pðx1; x2; � � � ; xnÞ þ
Xn

i

Wi, there are n subsystems, one for each state.

The VMMS system has the solvents of all subsystems, but only 1 solute, distributing in all states
by the state molar fractions. Therefore, the VMMS potential energy has the following form:

EðVMMSÞ ¼
Xn

i

ðxiEðiÞ
P þ EðiÞ

W Þ ð4Þ

The VMMS state j, Vj, contains the VMMS solute and the solvent interacting with the solute
at state j. The potential energy of Vj is a sum of the solute potential energy and the solvent
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potential energy in subsystem j:

EðVjÞ ¼
Xn

i

ðxiEðiÞ
P Þ þ EðjÞ

W ð5Þ

which is different from the potential energy of the pure state j, Eq (1), in the solute part.
The partition function of the VMMS ensemble is:

QðVMMSÞ ¼
X

OðVMMSÞ
expð�bðEðVMMSÞÞ ¼

X
OðVMMSÞ

Yn
i

expð�bðxiEðiÞ
P þ EðiÞ

W Þ ð6Þ

where O(VMMS) represents the conformational space of the VMMS system and b ¼ 1
kT
.

When xj = 1 and xi 6¼ j = 0, the VMMS system becomes a pure state j plus all other solvents,
Wi 6¼ j. The partition function can be written to the following form:

QðVMMSÞðxj ¼ 1; xi 6¼j ¼ 0Þ ¼
X

OðVMMSÞ
expð�bðEðjÞ

P þ EðjÞ
WÞÞ
Yn
i6¼j

expð�bEðiÞ
W Þ ð7Þ

Therefore, we have the relation between VMMS ensembles at (x1, x2,� � �, xn) and at (xj = 1,
xi 6¼ j = 0):

QðVMMSÞðxj ¼ 1Þ
QðVMMSÞðx1; x2; � � � ; xnÞ

¼

X
OðVMMSÞ

expð�b EðVjÞ
P þ

Xn
i

EðiÞ
W

 !
Þ

X
OðVMMSÞ

expð�b
Xn

i

xiE
ðiÞ
P þ EðiÞ

W

� �
Þ

¼

X
OðVMMSÞ

expð�bðEðjÞ
P �

Xn
i

xiE
ðiÞ
P ÞÞexpð�b

Xn
i

xiE
ðiÞ
P þ EðiÞ

W

� �
Þ

X
OðVMMSÞ

expð�b
Xn

i

xiE
ðiÞ
P þ EðiÞ

W

� �
Þ

¼< expð�b EðjÞ
P �

Xn
i

xiE
ðiÞ
P

 !
>VMMS

¼< expð�bðEðjÞ � EðVjÞÞ>VMMS

ð8Þ

Eq (8) shows that the VMMS ensemble average of property P at (xj = 1, xi 6¼ j = 0) can be
obtained in a VMMS simulation at (x1, x2,� � �, xn) through reweighting by a factor:

wj ¼ expð�bðEðjÞ � EðVjÞÞÞ ¼ expð�b
Xn

i

xiðEðjÞ
P � EðiÞ

P ÞÞ ð9Þ

Because at (xj = 1, xi 6¼ j = 0) the solute energy depends only on solventWj and is indepen-
dent of all other solvents, it is easy to prove that the VMMS ensemble average of any state j
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related property, Pj, at (xj = 1, xi 6¼ j = 0) equals the canonical ensemble average at pure state j:

< Pj>VMMSðxj¼1Þ ¼

X
OðVMMSÞ

Pjexpð�bðEðjÞ
P þ EðjÞ

WÞÞ
Yn
i 6¼j

expð�bEðiÞ
W Þ

X
OðVMMSÞ

expð�bðEðjÞ
P þ EðjÞ

WÞÞ
Yn
i 6¼j

expð�bEðiÞ
W Þ

¼

X
OðVMMSÞ

Pjexpð�bðEðjÞ
P þ EðjÞ

WÞÞ
Yn
i 6¼j

expð�bEðiÞ
WÞX

OðVMMSÞ
expð�bðEðjÞ

P þ EðjÞ
WÞÞ

X
OðVMMSÞ

expð�bðEðjÞ
P þ EðjÞ

WÞÞ

X
OðVMMSÞ

expð�bðEðjÞ
P þ EðjÞ

WÞÞ
Yn
i6¼j

expð�bEðiÞ
W Þ

¼
< Pj

Yn
i 6¼j

expð�bEðiÞ
WÞ>j

<
Yn
i 6¼j

expð�bEðiÞ
WÞ>j

¼
< Pj>j <

Yn
i 6¼j

expð�bEðiÞ
W Þ>j

<
Yn
i 6¼j

expð�bEðiÞ
WÞ>j

¼< Pj>j

The separation of Pj and
Yn
i 6¼j

expð�bEðiÞ
WÞ is because they are independent of each other at

(xj = 1, xi 6¼ j = 0). Therefore, the ensemble average of any state j related property, Pj, in pure
state j can be reweighted from a VMMS simulation by:

< Pj>j ¼< Pj>VMMSðxj¼1Þ ¼
< Pjwj>VMMS

< wj>VMMS

ð10Þ

Using 3D IPS in VMMS simulation
The reweighting in VMMS simulation as shown in Eqs (9) and (10) need solute energies,
which can be efficiently estimated from pairwise interactions by Eq (2). The isotropic periodic
sum (IPS) method provides a pairwise way to accurately calculate long range interactions
[24,47–50]. The use of IPS here can simplify or eliminate some of the problems encountered
with Ewald methods. Specifically, the use of IPS allows the partition of energy components in a
manner that is not possible with PME, unless a separate PME calculation is done for each state
and for solute and solvent separately. In the result section, we validate the IPS accuracy through
free energy calculation of model compounds.

The IPS potential for polar electrostatic interaction is[24]:

εIPSpele ðr;RcÞ ¼
qiqj
r

1� 19

16

r
Rc

� �
þ 35

16

r
Rc

� �3

� 21

16

r
Rc

� �5

þ 5

16

r
Rc

� �7
 !

r � Rc

0 r > Rc

ð11Þ

8><
>:

where Rc is the local region radius, commonly called cutoff distance. qi and qj are charges at
atoms i and j, respectively. The total electrostatic interaction energy can be calculated as simple
as typical cutoff methods:

EðIPSÞ
ele ðrN ;RcÞ ¼

1

2

XN
i

XN
j

εðIPSpÞele ðrij;RcÞ ¼
1

2

XN
i

X
rij<Rc

εðIPSpÞele ðrij;RcÞ ð12Þ

Here, we use the neutral charge assumption so that the total IPS boundary electrostatic energy
is zero. For Lennard-Jones (L-J) energy, the IPS potentials for the dispersion and repulsive
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parts are:

ε3D�IPS
disp ðr;RcÞ � � C

r6
1þ 7

16

r
Rc

� �6

þ 9

14

r
Rc

� �8

� 3

28

r
Rc

� �10

þ 6

7

r
Rc

� �12
 !

ð13Þ

ε3D�IPS
rep ðr;RcÞ �

A
r12

1þ 5

787

r
Rc

� �12

þ 9

26

r
Rc

� �16

� 3

13

r
Rc

� �20

þ 27

26

r
Rc

� �24
 !

ð14Þ

Here C and A are dispersion and repulsion constants, respectively, for L-J potential. The
pairwise L-J IPS potential is:

ε3D�IPSp
LJ ðr;RcÞ ¼

ε3D�IPSp
disp ðr;RcÞ þ ε3D�IPSp

rep ðr;RcÞ � ε3D�IPSp
disp ðRc;RcÞ � ε3D�IPSp

rep ðRc;RcÞ r � Rc

0 r > Rc

ð15Þ
(

And the total L-J interaction is a sum over all atom pairs:

EðIPSÞ
LJ ðrN ;RcÞ ¼

1

2

XN
i

X
rij<Rc

εðIPSÞLJ ðrij;RcÞ þ
4pR3

c

3NV

XN
i

XN
j

ðεðIPSÞdisp ðRc;RcÞ þ εðIPSÞrep ðRc;RcÞÞ ð16Þ

The first term is the pairwise IPS potential and the second term is the L-J IPS boundary
energy, which is constant during a NVT simulation.

Using pairwise potentials is not only convenient for separating solute and solvent interac-
tions, required by Eqs (1–3), but also helps avoid repeated calculation for the same conforma-
tion at different states, which is essential for free energy calculation. For the same
conformation, energies of different states can be calculated efficiently with a small amount of
overhead:

EðIPSpÞ
ele ðqðkÞÞ ¼ 1

2

XNnc

i

XNnc

j

εðIPSpÞele ðrij;RcÞ þ
XNc

i

qðkÞi

XNnc

j

qjε̂
ðIPSpÞ
ele ðrij;RcÞ þ

1

2

XNc

i

qðkÞi

XNc

j

qðkÞj ε̂ðIPSpÞ
ele ðrij;RcÞ ð17Þ

where Nnc is the number of non-changing atoms and Nc is the number of changing atoms, ε̂ ij is

the unit charge interaction, ε̂ ij ¼ εij=ðqiqjÞ, and qðkÞi is the charge of atom i at state k. The first

term is for atom pairs of unchanged charges, which costs the most, and does not need to be
recalculated for different charge states.

Free energy differences between states
The VMMS simulation samples conformations at all states, providing sufficient information to
calculate free energy differences between all states. Because the solute is not in either of the
pure states, reweighting is needed to obtain conformational distributions at the pure states.

Fig 15 shows the free energy calculation diagram. To calculate free energy between state 0
and state 1, we reweight the VMMS conformation distribution to state 0 and state 1 so that we
can apply Bennett’s ratio method[45]. Here, we modify Bennett’s Ratio method for the VMMS
simulation:

DG01 ¼ C01

� kT ln
< f ðbðEð1Þ � Eð0Þ � C01ÞÞexpð�bðEð0Þ � EðV0ÞÞ>VMMS

< f ðbðEð0Þ � Eð1Þ þ C01ÞÞexpð�bðEð1Þ � EðV1ÞÞ>VMMS

< expð�bðEð1Þ � EðV1ÞÞ>VMMS

< expð�bðEð0Þ � EðV0ÞÞ>VMMS

ð18Þ
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where the Fermi function is defined as:

f ðxÞ ¼ 1

1þ expðxÞ ð19Þ

The VMMS simulation can be performed with enhanced sampling methods, such as self-
guided Langevin dynamics[41,42,51,52], to accelerate the conformation search. When applying
SGLD, the SGLD reweighting factors, wSG0 and wSG1, should be incorporated into Eq (18):

DG01 ¼ C01

� kT ln
< f ðbðEð1Þ � Eð0Þ � C01ÞÞwSG0expð�bðEð0Þ � EðV0ÞÞ>VMMS

< f ðbðEð0Þ � Eð1Þ þ C01ÞÞwSG1expð�bðEð1Þ � EðV1ÞÞ>VMMS

< wSG1expð�bðEð1Þ � EðV1ÞÞ>VMMS

< wSG0expð�bðEð0Þ � EðV0ÞÞ>VMMS

ð20Þ

This equation provides a useful connection between an accelerated VMMS simulation and
the desired canonical ensemble. If choosing SGLDfp[42] or SGLD-GLE[43] where wSG = 1,
one can simply use Eq (18) to calculate relative free energies.

State equilibrium
In VMMS, all states form a virtual solution at equilibriummolar fractions. The chemical poten-
tial of each state depends on its molar fraction:

mi ¼
@G
@ni

¼ m0
i þ kT ln xi ð21Þ

Where m0
i is the standard chemical potential of state i. At equilibrium, the chemical potential of

all states equal: μi = μj, therefore, we have:

xj
xi
¼ expð� m0

j � m0
i

kT
Þ ¼ expð�Dm0

ij

kT
Þ ð22Þ

Fig 15. Calculation diagram for state free energy differences. The conformational distributions of state 0
and 1 can be obtained through reweighting from the VMMS simulation.

doi:10.1371/journal.pcbi.1004480.g015
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For multiple states, we use the following formula to derive molar fractions from the stan-
dard chemical potential differences:

xk ¼

Xn
j

expð�Dm0
kj

kT
Þ

 !�1,
Xn

i

Xn
j

expð�Dm0
ij

kT
Þ

 !�1 ð23Þ

For protonation equilibrium, the standard chemical potential difference contains many con-
tributions such as those from molecular interactions and those from quantum mechanics of
protonation. All contributions other than those from molecular interactions are assumed to be
constant for a given titration site and can be estimated from the equilibrium properties of
model compounds. More details can be found elsewhere.[1,3–6,53] At a given pH, the standard
chemical potential difference of deprotonation can be calculated from the state free energy dif-
ference:

Dm0
ij ¼ DGij � kTðpH � pKarefÞln10� DGref

ij ð24Þ

Here, pKarefij is the experimental pKa of a model compound for the corresponding amino

acid to change from the protonated state, i, to the deprotonated state, j, and DGref
ij is the free

energy difference calculated from simulation of the model compound. Using Eqs (23) and (24),
one can calculate equilibrium molar fractions of all states. Based on the definition of pKa, from
equilibrium molar fractions we can calculate pKa:

pKa ¼ �lg
xD½H�
xH

¼ pHþ pxD � pxH ð25Þ

where xH and xD are the molar fractions of the protonated and deprotonated states, respec-
tively. Typically, in constant pH simulation, pKa is determined by the pH value where xH = xD.
pKa can also be directly calculated from a VMMS simulation at equal state molar fractions
(xH = xD) where Dmij ¼ Dm0

ij ¼ 0 and pKa = pH. From Eq (24), we have:

pKa ¼ pKaref þ DGðxH ¼ xDÞ � DGref

kT ln10
ð26Þ

Using implicit sites to handle systems with a large number of titration
sites
VMMS uses explicit chemical states to efficiently sample the conformations at these states and
avoid difficulties related to state transitions. Because each titration site has two states, for a sys-
tem withm titration sites there would be as many as 2m states. Obviously, it is impractical to
include explicitly all protonation states in a VMMS simulation whenm is large, say, more than
6. To circumvent this burden, we propose a divide-and-conquer approach to explicitly consider
only one or a few titration sites at a time and treat the remaining sites implicitly to have com-
bined states. This implicit site approximation is the same, in spirit, to the titration coordinate
when running λ-dynamics for constant pH simulations[4,6], where the titration coordinate λ
represents a combination of protonated and deprotonated states. In other words, in λ-dynam-
ics all ionizable sites are treated as a mixture of 1-λ protonated and λ deprotonated states, just
like an implicit site described here. The titration of an ionizable site in λ-dynamics corresponds
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to a transition of λ between 0 and 1. But in VMMS, the titration of an ionizable site corre-
sponds to a change of molar fractions, which only happens when an ionizable site is explicit.

A titration site is explicit when it has distinct protonated and deprotonated states, which dif-
fer by their atomic charges. To make a titration site implicit, its protonated and deprotonated
states are converted to a single state where the atomic charges are a linear combination of the
charges in the two explicit states.

qðimÞ
a ¼ ð1� xDÞqðHÞ

a þ xDq
ðDÞ
a : ð27Þ

Here, qðHÞ
a ; qðDÞa are atomic charges of atom a in the protonated and deprotonated states,

respectively, and qðimÞ
a is the atomic charge in the implicit site. When a site is implicit, all atoms

in the site are implicit and their charges are defined by Eq (27). When a titration site changes
from implicit to explicit, its atomic charges return to qðHÞ

a for the protonated state and to qðDÞa

for the deprotonated state.
During a VMMS simulation, one or a few titration sites are chosen to be explicit and the

rest implicit. The molar fractions of the explicit sites are updated during simulation according
to Eqs (23) and (24). After this explicit simulation period, the explicit sites are converted to
implicit based on Eq (27) and one or a few other implicit sites are chosen to be converted to
explicit for the next explicit simulation period. This process can loop repeatedly through all
titration sites until the molar fractions of all sites converge.

For a system ofm titration sites, a VMMS simulation can be carried out with k explicit titra-
tion sites (0<k�m) andm-k implicit titration sites. We use VMMS-k to characterize a VMMS
simulation by the number of explicit sites. Without mentioning the explicit site number, a
VMMS simulation means a VMMS-m simulation where all titration sites are explicit, k = m.
For example, for a protein of 3 titration sites, a VMMS–1 simulation means that at any
moment during the simulation, there is one explicit site and two implicit sites, while a VMMS–
3 or VMMS simulation means that all 3 sites are explicit. For a VMMS-k simulation, the system
contains 2k subsystems, one for each explicit state. Because the k explicit sites will loop through
them sites, the cost of a VMMS-k simulation is O(2k m / k), which scales linearly with the num-
ber of titration sites,m. This implicit site treatment is optimal for parallel computing where dif-
ferent explicit sites can be simulated in parallel and their results, xD, will be used to update the
atomic charges according to Eq (27) for simulations where the sites are implicit.

Simulation details
The VMMS method is carried out as parallel simulations of a series of subsystems, one for each
explicit chemical state. Energies and forces are calculated as in normal dynamic simulations.
Before integrating the equation of motion, the solute forces are replaced by the weighted com-
bination according to the state molar fractions, while the solvent forces remain unmodified:

f ðVMMSÞ
a ¼

Xn
i

ðxif ðiÞa Þ a 2 P

f ðiÞa a=2P
ð28Þ

8>><
>>:

Using the VMMS forces to integrate the equation of motion for either MD, LD, or SGLD
simulations, we propagate the conformation to sample the conformational space. The VMMS
forces shown in Eq (28) will not conserve the total energy for each subsystem. To maintain
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energy conservation for each subsystem, we scale the solvent velocities in the following way:

vðiÞ
a ¼

v0ðiÞ
a a 2 P

v0ðiÞ
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dðiÞXWi

a

1

2
mav

2
a

vuuuut a=2P
ð29Þ

8>>>>>>><
>>>>>>>:

where v0ðiÞ
a is the velocity after current time step and dðiÞ ¼

X
a2P

ðf ðVMMSÞ
a � f ðiÞa Þv0ðiÞ

a dt is the extra

work of the VMMS forces do to subsystem i. The solute experiences the same forces and moves
exactly the same way in all subsystems. To avoid numerical errors, solute movement is per-
formed only in one subsystem and the coordinates are broadcasted to all subsystems. Other
than these, all procedures are the same as that in regular dynamics simulations.

All simulations presented here were performed with CHARMM[54,55]. The all-atom
CHARMM force field[56] was used for energy calculation. Excepted noted otherwise, all simu-
lations were performed in a constant volume and a constant temperature of 300K using the
SGLD-GLE method[43] with a local averaging time of tL = 0.2 ps, a guiding factor of λ = 1, and
a friction constant of ξ = 10/ps. A time step of 1 fs was used and SHAKE algorithm[57] was
employed to fix the hydrogen connecting bond lengths.

Six typical ionizable residues as well as two terminal groups were examined here. They are
aspartic acid (ASP or D), glutamic acid (GLU or E), lysine (LYS or K), arginine (ARG or R),
histidine (HISδ and HISε or Hδ and Hε), and tyrosine (TYR or Y), N-terminal group (Nter)
and C-terminal group (Cter). Their model compounds were built by adding an acetyl (ACE)
group to the N-terminal and a methyl amide (NME) group to the C-terminal, except for the
terminal groups whose model compounds were built by attaching them to an alanine residue
at one terminal and a block group at the other terminal.

The deprotonated states of ionizable residues have a dummy hydrogen so that both states
have the same number of atoms. The dummy hydrogen atom is identical to a hydrogen atom
except that it has no charge. Fig 16 shows the atomic charges of these ionizable residues in their
protonated and deprotonated states.

The VMMS systems were built by immersing a solute molecule in a box of water and any
water whose oxygen distance to a solute atom was less than 2.4 angstroms was removed. It
should be noted that different states can have different number of solvent molecules and/or
ions. In this work, the same starting conformation was used for all states. During VMMS simu-
lations, the Fermi functions and related weighting factors in Eq (18) were evaluated every 10 fs
and free energies were calculated every 0.5 ps. During simulations, we used the following
scheme to obtain local average free energies:

~Pn ¼ ð1� 1

L
Þ~Pn�1 þ

1

L
Pn ð30Þ

where L is the local averaging period. In the simulations reported here, we used L = 200.
For VMMS simulations at constant pH, molar fractions were updated every 0.5 ps according

to Eq (23). For VMMS–1 simulations, one ionizable site was explicitly simulated for 10 ps
before being converted to implicit. Of the 10 ps explicit simulation period, 2 ps were used for
equilibrium and the remaining 8 ps were used for free energy and state molar fraction calcula-
tion. When a site was implicit, its state molar fractions remained unchanged.
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Fig 16. Atomic charges in the ionizable residues in the protonated/deprotonated states.Dummy
hydrogen atoms with zero charge are added in the deprotonated states.

doi:10.1371/journal.pcbi.1004480.g016
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