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Abstract: Compelling evidence from preclinical and clinical studies has shown that mild
hypothermia is neuroprotective against ischemic stroke. We investigated the neuroprotective effect of
post-risperidone (RIS) treatment against transient ischemic injury and its mechanisms in the gerbil
brain. Transient ischemia (TI) was induced in the telencephalon by bilateral common carotid artery
occlusion (BCCAO) for 5 min under normothermic condition (37 ± 0.2 ◦C). Treatment of RIS induced
hypothermia until 12 h after TI in the TI-induced animals under uncontrolled body temperature
(UBT) compared to that under controlled body temperature (CBT) (about 37 ◦C). Neuroprotective
effect was statistically significant when we used 5 and 10 mg/kg doses (p < 0.05, respectively). In the
RIS-treated TI group, many CA1 pyramidal neurons of the hippocampus survived under UBT
compared to those under CBT. In this group under UBT, post-treatment with RIS to TI-induced
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animals markedly attenuated the activation of glial cells, an increase of oxidative stress markers
[dihydroethidium, 8-hydroxy-2′ -deoxyguanosine (8-OHdG), and 4-Hydroxynonenal (4-HNE)],
and a decrease of superoxide dismutase 2 (SOD2) in their CA1 pyramidal neurons. Furthermore,
RIS-induced hypothermia was significantly interrupted by NBOH-2C-CN hydrochloride (a selective
5-HT2A receptor agonist), but not bromocriptine mesylate (a D2 receptor agonist). Our findings
indicate that RIS-induced hypothermia can effectively protect neuronal cell death from TI injury
through attenuation of glial activation and maintenance of antioxidants, showing that 5-HT2A

receptor is involved in RIS-induced hypothermia. Therefore, RIS could be introduced to reduce
body temperature rapidly and might be applied to patients for hypothermic therapy following
ischemic stroke.

Keywords: ischemia/reperfusion; delayed neuronal death; antipsychotic drug; post-treatment;
thermoregulation; 5-HT2A antagonist

1. Introduction

Neuroprotective compounds provide protection in models of ischemic stroke; however, none have
shown efficacy in clinical trials [1]. Body temperature influences outcome of ischemic stroke [2,3],
and hypothermia is one of the most promising neuroprotective therapies, as assessed by the Stroke
Therapy Academic Industry Roundtable Criteria [4]. Although the precise mechanism of hypothermic
neuroprotection in ischemic stroke is not known, hypothermia may act upon multiple pathways
to ultimately prevent neuronal death [5]. It has been attempted to find drugs, including atypical
antipsychotic agents with hypothermic effects [6,7], to treat ischemic stroke. The drugs reduce
temperature instantly when a patient is picked up by emergency personnel, which are already approved
for patient treatment and used anywhere, independent of sophisticated cooling equipment, and may
prolong therapeutic time window for other treatments. Thus, atypical antipsychotic agent-induced
hypothermia may help to overcome brain injury following ischemic stroke. For several decades,
risperidone (RIS) has been widely used for treatment of schizophrenia as a selective monoaminergic
antagonist with high-affinity for serotonin type 2 (5-HT2A) receptor and dopamine type 2 (D2) receptor
in the limbic system [8,9]. In addition, RIS-induced hypothermia has been reported [10,11]. It remains
possible that RIS contains neuroprotection against ischemic stroke via hypothermia. Thus, this study
determined whether neuroprotective effect of RIS is hypothermia as a post-conditioning stimulus for
inducing ischemic tolerance and elucidated RIS-induced hypothermic mechanisms. For this purpose,
we intended (1) to compare effects of RIS on transient ischemic damage between ischemic animals
without regulating body temperature and with maintaining body temperature; (2) to study effects of
RIS against ischemia-induced oxidative stress; and (3) to investigate roles of central 5-HT2A and D2

receptors in body temperature regulation in RIS-treated animals.

2. Results

2.1. Effects of RIS Against TI Injury Under Uncontrolled Body Temperature (UBT)

2.1.1. Body Temperature under UBT Condition after TI

Under UBT condition, an abrupt elevation of body temperature was seen in the TI + vehicle group
after TI, and the maximum temperature (39 ± 0.5 ◦C) was at 1 h after TI; thereafter, body temperature
was gradually decreased (Figure 1A). Unlike the TI + vehicle group, in the TI + RIS groups under UBT
condition, body temperature was decreased, as shown in Figure 1A. RIS produced a dose-dependent
decrease in body temperature, and the effect was statistically significant in 5 and 10 mg/kg doses
(p < 0.05, respectively) in comparison to the TI + vehicle group (Figure 1A). In particular, the time
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course shows a rapid onset in the highest dose, with a maximal effect between 1 and 2 h and duration
of 6 h. A similar pattern, although less pronounced, was seen with the two lower doses.
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Figure 1. Effects of risperidone (RIS) against transient ischemia (TI) injury under uncontrolled body
temperature (UBT) condition. (A) Changes in body temperature under UBT condition for 12 h after TI.
Body temperature is significantly low in the TI + 10 mg/kg RIS group compared to the TI + vehicle group.
White arrows indicate times of RIS treatment. The bars indicate the means ± SEM, n = 7/group, two-way
analysis of variance (ANOVA) with a post-hoc Bonferroni’s multiple comparison test (* p < 0.05 vs.
sham + vehicle group; # p < 0.05 vs. TI + vehicle group). (B) Effects of RIS on NeuN+ and F-J B+

cells in the CA1 under UBT condition after TI. In the sham + vehicle group, CA1 pyramidal neurons
are well stained with NeuN; however, no F-J B+ CA1 pyramidal cells are found. In the TI + vehicle
group, a few NeuN+ cells (arrows) are shown in the stratum pyramidale (SP) 5 days after TI; however,
the distribution of NeuN+ cells in the TI + RIS group is similar to that in the sham + vehicle group.
In the TI + vehicle group, many F-J B+ cells (asterisks) are detected in the SP 5 days after TI, and many
F-J B+ CA1 pyramidal cells (asterisks) are detected; however, in the TI + RIS group, RIS produces a
dose-dependent increase in the number of NeuN+ CA1 pyramidal neurons, and a dose-dependent
decrease in the number of F-J B+ CA1 pyramidal cells 5 days after TI. CA1, cornu ammonis 1; CA3,
cornu ammonis 3; DG, dentate gyrus; SO, stratum oriens; SR, stratum radiatum. Scale bar = 50 µm.
Note histograms of quantitative analyses of NeuN+ and F-J B+ cells in all the groups, as shown (C) and
(D). The bars indicate the means ± SEM, n = 7/group, two-way analysis of variance (ANOVA) with
a post-hoc Bonferroni’s multiple comparison test (* p < 0.05 vs. sham + vehicle group; # p < 0.05 vs.
TI + vehicle group).

2.1.2. Neuronal Nuclear Antigen (NeuN) Positive (+) and Fluoro-Jade B (F-J B)+ Neurons

The protection afforded by RIS against TI-induced neuronal death in the CA1 was assessed under
UBT condition using NeuN immunohistochemistry and F-J B histofluorescence staining (Figure 1B–D).
In the sham + vehicle group, pyramidal cells or neurons in the CA1, which are called CA1 pyramidal
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neurons, were well stained with NeuN; however, no F-J B+ CA1 pyramidal cells were found. At 5 days
after TI, NeuN+ CA1 pyramidal neurons were markedly decreased, and many F-J B+ CA1 pyramidal
cells were detected. In the sham + RIS group, CA1 pyramidal neurons were also well stained with
NeuN, and F-J B+ cells were not observed. In the TI + RIS group, RIS produced a dose-dependent
increase in the number of NeuN+ CA1 pyramidal neurons, and a dose-dependent decrease in the
number of F-J B+ CA1 pyramidal cells 5 days after TI: The results were statistically significant for 5 and
10 mg/kg doses (p < 0.05, respectively) in comparison with the TI + vehicle group. Based on these
findings, we found better results in the TI + RIS (10 mg/kg) group than those in the TI + RIS (5 mg/kg)
group, and examined the underlying hypothermic mechanism related to the neuroprotective effect of
RIS against TI damage in the TI + RIS (10 mg/kg) group.

2.1.3. Glial Fibrillary Acidic Protein (GFAP)+ and Ionized Calcium-Binding Adapter Molecule 1
(Iba-1)+ Cells

Changes in GFAP+ and Iba-1+ cells in the CA1 were examined at 1 day and 5 days after TI
(Figure 2A–D). GFAP+ and Iba-1+ cells, as a resting for, were distributed throughout all layers of
the CA1 of the sham + vehicle group. In the TI + vehicle group, immunoreactivity of the GFAP and
Iba-1 was slightly increased 1 day after TI compared to that in the sham + vehicle group. Five days
after TI, the immunoreactivity was significantly increased, and most of the GFAP+ and Iba-1+ cells
were hypertrophied in the CA1. In the sham + RIS group, the immunoreactivity and morphology of
GFAP+ and Iba-1+ cells were similar to that in the sham + vehicle group. In the TI + RIS group at 1
day after TI, the immunoreactivity and morphology of GFAP+ and Iba-1+ cells were not significantly
changed compared to the sham + vehicle group. However, 5 days after TI, these immunoreactivity in
the TI + RIS group was significantly lower than that in the TI + vehicle group.
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Figure 2. Effects of RIS on GFAP+ astrocytes (A) and Iba-1+ microglia (B) in the CA1 after TI under
UBT condition. GFAP+ astrocytes (arrows in (A)) and Iba-1+ microglia (arrows in (B)) are markedly
increased in the TI + vehicle group 5 days after TI; however, their immunoreactivity in the TI + RIS
group is significantly lower than that in the TI + vehicle group. SO, stratum oriens; SP, stratum
pyramidale; SR, stratum radiatum. Scale bar = 50 µm. Quantitative analyses of GFAP+ (C) and Iba-1+

cells (D). The bars indicate the means ± SEM, n = 7/group, two-way analysis of variance (ANOVA)
with a post-hoc Bonferroni’s multiple comparison test (* p < 0.05 vs. sham + vehicle group; # p < 0.05
vs. TI + vehicle group).
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2.2. Abolishment of RIS-Mediated Neuroprotection under Controlled Body Temperature (CBT)

2.2.1. Body Temperature under CBT Condition after TI

After the onset of TI, body temperature was maintained within normothermic range (37.0–37.3 ◦C)
with a feedback-regulated heating pad for 12 h (Figure 3A). An abrupt elevation of body temperature
was seen in the TI + vehicle group at 1 h after TI under CBT condition: The temperature was intensely
increased (approximately 39.1 ± 0.5 ◦C). Thereafter, body temperature was gradually decreased.
However, under CBT condition, the degree of hypothermia induced by 5 and 10 mg/kg RIS injection
was higher, respectively, than that under UBT condition, showing that body temperature was 36.8 and
36.1 ◦C, respectively, at 1 h after the first RIS treatment, and 36.6 and 36.1 ◦C, respectively, after the
second injection.

2.2.2. NeuN+ Neurons, F-J B+ Cells, GFAP+ Astrocytes, and Iba-1+ Microglia

Effects of CBT on RIS-mediated neuroprotection are shown in Figure 3B,C. In the sham + RIS
group under CBT, the distribution of NeuN+ CA1 pyramidal neurons was similar to that in the sham +

vehicle group. In the TI + RIS group under CBT, NeuN+ CA1 pyramidal neurons were significantly
decreased 5 days after TI. In addition, many F-J B+ CA1 pyramidal cells were shown 5 days after TI
under CBT condition. Changes of GFAP+ and Iba-1+ cells under CBT condition were examined in
the CA1 5 days after TI (Figure 3B,D). In the sham + RIS group under CBT, the immunoreactivity
and morphology of GFAP+ and Iba-1+ cells were not significantly different from those of the sham +

vehicle group. In the TI + RIS group under CBT, GFAP and Iba-1 immunoreactivity 5 days after TI was
significantly increased in the CA1, like the TI + vehicle group under UBT condition.
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Figure 3. Effects of RIS against TI injury under controlled body temperature (CBT) condition.
(A) Changes in body temperature under CBT condition for 12 h after TI. Body temperature is slightly
low in the TI + 10 mg/kg RIS group compared to the TI + 5 mg/kg RIS group. White arrows indicate
times of RIS treatment. The bars indicate the means ± SEM, n = 7/group, two-way analysis of variance
(ANOVA) with a post-hoc Bonferroni’s multiple comparison test (* p < 0.05 vs. sham + vehicle group;
# p < 0.05 vs. TI + vehicle group). (B) Effect of RIS (10 mg/kg) on NeuN+, F-J B+, GFAP+, and Iba-1+

cells in the CA1 under CBT after TI 5 days after TI. In the TI + RIS group, a few NeuN+ neurons
(arrows) and many F-J B+ cells (asterisks) are shown in the stratum pyramidale (SP) at 5 days after
TI. GFAP+ astrocytes (arrows) and Iba-1+ microglia (asterisks) are markedly increased in the TI + RIS
group under CBT 5 days after TI. SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum.
Scale bar = 50 µm. Quantitative analyses of NeuN+ and F-J B+ cells (C), and GFAP+ and Iba-1+ cells
(D). The bars indicate the means ± SEM, n = 7/group, two-way analysis of variance (ANOVA) with a
post-hoc Bonferroni’s multiple comparison test (* p < 0.05 vs. sham + vehicle group).
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2.3. Effects of RIS Against TI-Induced Oxidative Stress under UBT and CBT Conditions

2.3.1. Superoxide Anion Production

To analyze the potential role of superoxide anion in RIS-mediated neuroprotection against TI
injury, the production of superoxide anion in the CA1 pyramidal neurons was determined using
DHE reactivity after TI (Figure 4A,B). DHE reactivity was similar in all sham groups. Under UBT
condition, superoxide anion was intensely induced in CA1 pyramidal neurons 1 day after TI; however,
the reactivity was significantly decreased in the TI + RIS group. At this time, under CBT condition,
superoxide anion production in the TI + RIS group was similar to that in the TI + vehicle group under
UBT condition. Five days after TI, DHE reactivity in CA1 pyramidal neurons was hardly shown in all
groups, because CA1 pyramidal neurons were killed in the TI + vehicle and TI + RIS groups under
CBT condition, and CA1 pyramidal cells in the TI + RIS under UBT condition survived and did not
product superoxide anion.
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Figure 4. Effects of RIS on superoxide anion production after TI under UBT and CBT conditions.
(A) Changes of DHE immunofluorescence in the CA1 after TI under UBT and CBT conditions.
DHE immunofluorescence is significantly increased in CA1 pyramidal neurons of the stratum
pyramidale (SP, asterisks) in the TI + vehicle group under UBT and TI + RIS group under CBT
at 1 day after TI; however, DHE immunofluorescence is not significantly increased in the SP of the TI +

RIS group under UBT condition. SO, stratum oriens; SR, stratum radiatum. Scale bar = 50 µm. (B) Note
analyses of DHE immunofluorescence in the SP. A ratio of the ROD is calibrated as %, with the sham +

vehicle group designated as 100%. The bars indicate the means ± SEM, n = 7/group, two-way analysis
of variance (ANOVA) with a post-hoc Bonferroni’s multiple comparison test (* p < 0.05 vs. sham + TI +

vehicle group under UBT condition; # p < 0.05 vs. TI + vehicle group under UBT condition; † p < 0.05
vs. TI + RIS group under UBT condition.).

2.3.2. 8-Hydroxy-2′-deoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (4-HNE) Immunoreactivity

Changes in 8-OHdG (oxidative DNA damage) and 4-HNE (lipid peroxidation) in the CA1 were
examined at 1 day and 5 days after TI (Figure 5A–D). Very weak 8-OHdG and 4-HNE immunoreactivity
was detected in CA1 pyramidal neurons in all sham groups. At 1 day after TI, in the TI + vehicle
group under UBT, immunoreactivity of the 8-OHdG and 4-HNE in CA1 pyramidal neurons was
dramatically increased. At this point in time, these immunoreactivity in the TI + RIS group under UBT
was slightly increased; however, in the TI + RIS group under CBT, immunoreactivity of the 8-OHdG
and 4-HNE was similar to that in the TI + vehicle group under UBT condition. Five days after TI,
immunoreactivity of the 8-OHdG and 4-HNE in CA1 pyramidal neurons of the TI + vehicle groups



Int. J. Mol. Sci. 2019, 20, 4621 8 of 17

disappeared due to death of CA1 pyramidal neurons. At this point in time, in the TI + RIS group
under UBT, the immunoreactivity in CA1 pyramidal neurons was similar to that at 1 day after TI,
and 8-OHdG and 4-HNE immunoreactivity of the TI + RIS under CBT was hardly shown because CA1
pyramidal neurons were killed under CBT condition. In the TI + vehicle group under UBT, 8-OHdG
immunoreactivity was significantly increased in CA1 pyramidal neurons 1 day after TI, and, at 5 days
after TI, 8-OHdG immunoreactivity was hardly shown due to loss of CA1 pyramidal neurons.
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Figure 5. Effects of RIS on 8-OhdG and 4-HNE immunoreactivities after TI under UBT and CBT
conditions. Representative images of immunohistochemistry for 8-OhdG (A) and 4-HNE (B) in the
hippocampal CA1 after TI under UBT and CBT conditions. Under UBT condition, 8-OhdG and 4-HNE
immunoreactivities in the TI + vehicle group are significantly increased in CA1 pyramidal neurons of
the stratum pyramidale (SP, asterisks) in the TI + vehicle group under UBT and TI + RIS group under
CBT at 1 day after TI; however, the immunoreactivities are significantly low (arrows) in the TI + RIS
group under UBT. Scale bar = 50 µm. Note analyses of 8-OhdG (C) and 4-HNE (D) immunoreactivity
in the SP. A ratio of the ROD is calibrated as %, with the sham + vehicle group designated as 100%.
The bars indicate the means ± SEM, n = 7/group, two-way analysis of variance (ANOVA) with a
post-hoc Bonferroni’s multiple comparison test (* p < 0.05 vs. sham + vehicle group under UBT
condition; # p < 0.05 vs. TI + vehicle group under UBT condition; † p < 0.05 vs. TI + RIS group under
UBT condition).

2.3.3. Superoxide Dismutase 2 (SOD2) Level and Immunoreactivity

SOD2 protein levels in the CA1 were differently changed according to body temperature condition
(Figure 6A). SOD2 protein levels in all sham groups were not significantly different between the groups.
Under UBT condition, SOD2 level of the TI + vehicle group was dramatically decreased 1 day (41%
of the sham group) after TI, and more decreased 5 days (22% of the sham group) after TI. In the TI
+ RIS group, SOD2 level was not significantly changed at any time after TI. However, under CBT
condition, the change pattern of SOD2 level was similar to that in the TI + vehicle group (54% and
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12% of the sham group). SOD2 immunoreactivity in CA1 pyramidal neurons was differently altered
according to body temperature condition (Figure 6B). In all sham groups, SOD2 immunoreactivity
in CA1 pyramidal neurons was similar. Under UBT, SOD2 immunoreactivity in the TI + vehicle
group was significantly reduced 1 day after TI. At 5 days after TI, SOD2 immunoreactivity was more
decreased; in particular, many non-pyramidal cells showed strong SOD2 immunoreactivity. In the TI +

RIS group, SOD2 immunoreactivity in CA1 pyramidal neurons was maintained at all times after TI.
Under CBT condition, the change pattern of SOD2 immunoreactivity in the CA1 of the TI + RIS group
was like that in the TI + vehicle group.
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Figure 6. Effects of RIS on levels and immunoreactivity of SOD2 protein after TI under UBT and CBT
conditions. (A) Western blot analysis of SOD2 protein in the hippocampus after TI under UBT and
CBT conditions. Note that SOD2 levels are maintained in the TI + RIS group under UBT after TI.
(B) Quantitative analysis of SOD2 protein in the hippocampus. Protein expression is normalized to
β-actin. The bars indicate the means ± SEM, n = 7/group, two-way analysis of variance (ANOVA)
with a post-hoc Bonferroni’s multiple comparison test (* p < 0.05 vs. sham + vehicle group under
UBT condition; † p < 0.05 vs. TI + RIS group under UBT condition). (C) Representative images of
immunohistochemistry for SOD2 in the hippocampal CA1 after TI under UBT and CBT conditions.
SOD2 immunoreactivity is significantly decreased in CA1 pyramidal neurons of the stratum pyramidale
(SP, asterisks) in the TI + vehicle group under UBT and TI + RIS group under CBT at 1 day after TI;
however, the immunoreactivity is maintained (arrows) in the TI + RIS group under UBT. SO, stratum
oriens; SR, stratum radiatum. Scale bar = 50 µm. (D) Quantitative analysis of SOD2 immunoreactivity
in CA1 pyramidal neurons. A ratio of ROD is calibrated as %, with the sham + vehicle group designated
as 100%. The bars indicate the means ± SEM, n = 7/group, two-way analysis of variance (ANOVA)
with a post-hoc Bonferroni’s multiple comparison test (* p < 0.05 vs. sham + vehicle group under UBT
condition; † p < 0.05 vs. TI + RIS group under UBT condition).
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2.4. Effects of 5-HT2A- and D2- Receptors on RIS-Induced Hypothermia

As shown in Figure 7, basal body temperature in all sham groups was homogenous (36.9 to 37.2 ◦C).
Treatment with RIS (10 mg/kg) produced significant reduction (31.6 ± 0.91 ◦C) of body temperature at
60 min after the administration and slowly increased thereafter, and the hypothermic effect disappeared
completely 240 min after the administration. NBOH-2C-CN hydrochloride (5 mg/kg) treatment did
not significantly change body temperature, but bromocriptine mesylate (5 mg/kg) treatment showed
significant decrease at 80 min after the administration (32.9 ± 1.64 ◦C), and the hypothermic effect
disappeared 240 min after the administration. On the other hand, (±)-DOI hydrochloride (5 mg/kg)
treatment slightly increased body temperature at 60 min after the administration (38.6 ± 0.93 ◦C).
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Figure 7. Effects of endogenous 5-HT2A- and, D2-receptors on RIS-induced hypothermia. Hypothermia
was defined as a reduction of at least 2 ◦C below baseline (normothermia). NBOH-2C-CN hydrochloride
does not alter body temperature, but bromocriptine mesylate significant decreased body temperature
at 80 min after the administration, and (±)-DOI hydrochloride slightly increases body temperature
at 60 min after the administration. Namely, RIS-induced hypothermia is interrupted following the
administration of NBOH-2C-CN hydrochloride and (±)-DOI hydrochloride. The bars indicate the
means ± SEM, n = 7/group, two-way analysis of variance (ANOVA) with a post-hoc Bonferroni’s
multiple comparison test (* p < 0.05 vs. sham group; # p < 0.05 vs. RIS group).

To find out roles of endogenous 5-HT2A- and D2- receptors in RIS-induced hypothermic effect,
animals were pre-treated with NBOH-2C-CN hydrochloride, (±)-DOI hydrochloride, and bromocriptine
mesylate before RIS treatment. Significant inhibition of RIS-induced hypothermia was observed in the
animals treated with NBOH-2C-CN hydrochloride and (±)-DOI hydrochloride in comparison to the
animals treated with RIS alone. Unlike the 5-HT2A receptor agonist, the hypothermic effect produced
by RIS was significantly aggravated by bromocriptine mesylate. This finding might conclude that
hypothermia induced by RIS could be a consequence of 5-HT2A receptor antagonism.

3. Discussion

TI selectively induces delayed neuronal death (DND) in CA1 pyramidal neurons [12]. Recently,
we reported that treatment with RIS dose-dependently protected against TI-induced DND of CA1
pyramidal neurons in the gerbil hippocampus [13]. In this study, we compared neuroprotection of RIS
against TI under UBT and CBT and found that 10 mg/kg RIS post-treatment significantly attenuated
the DND of CA1 pyramidal neurons under UBT; however, RIS did not protect the neurons under CBT
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after TI. This finding suggests that a critical interaction between body temperature and RIS appears to
permit or prevent neuroprotection.

Hypothermia is clearly established as an effective protectant against neuronal damage/death after
TI [5]. In humans, hypothermia also serves as a neuroprotective procedure against cerebral hypoxia
during neurosurgery and cardiovascular surgery [14,15]. Optimal protection is typically gained when
hypothermia is induced as early as possible after stroke onset, with a mild-to-moderate hypothermia
(32 to 35 ◦C) that lasts at least 1 to 2 h [16]. From laboratory studies, it is clear that hypothermia
more consistently protects hippocampal neurons when applied soon after or even before the onset of
TI [17,18]. Therefore, therapeutic hypothermia should be initiated as soon as possible to achieve its
optimal beneficial effect. The American Heart Association cardiopulmonary resuscitation guidelines
recommends that the duration of hypothermia should be at least 12 h [19]. Common methods for
inducing therapeutic hypothermia are surface cooling and pharmacological cooling; each offers unique
advantages and disadvantages [20]. In most clinical studies, therapeutic hypothermia is induced by
body surface cooling. Unfortunately, the forced cooling method is slow and cumbersome, typically
requiring several hours to reach target core temperature, and must be closely monitored to ensure
the achievement of target temperature [21]. Furthermore, with surface cooling, precise control of core
temperature is difficult. Recent methods using pharmacological agents have been suggested as a more
efficient and faster way to reduce core temperature than surface cooling [22]. RIS has been reported to
display hypothermia [6,10]. Therefore, this property makes RIS to recommend an ideal candidate for
pharmacological agent as a more efficient and safer way for reducing body core temperature against
ischemic insults. We, in this study, demonstrated that RIS treatment induced hypothermia within
30 min after post-TI and was maintained for 6 h. Although we originally planned to use an automated
hypothermia retaining system to maintain hypothermia for more than 24 h, it was limited to 12 h
because it was difficult to sustain due to practical problems. However, based on our study, we suggest
that RIS treatment after post-TI might be easier to achieve hypothermia in the whole body and must be
more practical in the clinic.

It is well known that glial cells, including astrocytes and microglia, are activated by ischemic
stroke, and the activated glia has been suggested to contribute to delayed neuronal death, presumably
via releasing neurotoxic substances, including reactive oxygen intermediates and pro-inflammatory
cytokines [23–25]. To visualize glial cells in the hippocampal CA1 region induced by TI, we chose to use
immunohistochemical staining for anti-Iba-1 (microglia) and anti-GFAP (astrocytes). We found that the
activation of GFAP+ and Iba-1+ cells after post-treatment with RIS was decreased significantly at 1 and
5 days after ischemia-reperfusion under UBT condition compared CBT condition. While resident glial
cells exist in a ramified state, after brain injury they migrate toward the lesion, their cell body becomes
ameboid-shaped, the processes shorten, and become virtually indistinguishable from macrophages.
Consistent with this, in vitro, hypothermia inhibits microglia proliferation, and attenuated microglia
neurotoxicity, during and critically, after exposure to hypoxia and lipopolysaccharide [26–28].
Post-ischemic hypothermia also suppressed activated microglia after cerebral ischemia in fetal sheep [29].
A recent study reported that RIS modulated morphology and functions of glial cells in C6 astroglial
cells model [30]. Also, it was reported that RIS significantly inhibited the production of nitric oxide
and pro-inflammatory cytokines by interferon-γ-activated microglia [31]. Therefore, in the present
study, RIS-induced mild hypothermia also reduced the activation and proliferation or glial cells after
ischemia-reperfusion, and thereby possibly mitigated further pathological events, leading to cell death.

Oxidative stress leads to cell death because the stress causes widespread damage of cellular
components and ultimately promotes cellular death after TI injury [32,33]. Ischemic insults produce
ROSs, and the interaction between ROSs and DNA produces DNA strand break and base modification,
which are frequently assessed by measurement of nucleoside 8-OhdG level. Here, we compared
oxidative stress between the TI + vehicle and TI + RIS group. DHE fluorescence, 8-OhdG, and 4-HNE
immunoreactivity were significantly increased in CA1 pyramidal neurons of the TI + vehicle group
and apparently decreased by RIS treatment under UBT after TI; the effect was abolished under CBT
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after TI. Antipsychotic drugs including RIS have a capacity to elevate antioxidants and could be used
for therapy of oxidative stress that induces neuronal damage [34,35]. Antioxidants have protective
effects against cerebral ischemia, suggesting that antioxidants are involved in the control of cellular
damage after ischemic insults [36,37]. In this context, Altinkilic et al. [34] have demonstrated that
RIS has a capacity to elevate antioxidants and is used for therapy of oxidative stress. In addition,
Yan et al. [13] have reporetd that RIS treatment well maintains protein level and immunoreactivity of
SOD2 in the CA1 induced by TI. In this study, level and immunoreactivity of SOD2 in the TI + RIS
group was maintained under UBT, but significantly decreased under CBT. Therefore, we represent that
RIS-induced hypothermia protects neurons from TI damage via maintaining endogenous antioxidants.

Alternatively, regulated hypothermia by downregulation of endogenous thermoregulation may
be a better method to achieve therapeutic efficacy without severe adverse events. RIS has strong
affinity for 5-HT2A and D2 receptor with hypothermic regulatory action in the brain, and it is defined
as a drop in core body temperature below 35 ◦C [6,11]. In this regard, we hypothesized that 5-HT2A

and receptor D2 antagonism play roles in RIS-mediated hypothermia, and found that RIS-induced
hypothermia was blocked by (±)-DOI hydrochloride or NBOH-2C-CN hydrochloride treatment,
suggesting that (±)-DOI hydrochloride may be involved in RIS-mediated thermoregulation. However,
it was difficult to use (±)-DOI hydrochloride because it produced hyperthermia in the sham + vehicle
animals. (±)-DOI hydrochloride induces hyperthermic response via a 5-HT2A-mediated mechanism in
rats [38,39]. Instead, we found that NBOH-2C-CN hydrochloride did not cause hyperthermia in the
vehicle animals, and RIS-induced hypothermia was partially blocked by NBOH-2C-CN hydrochloride.
Based on our findings, we suggest that blockage of 5-HT2A receptor is essential for RIS-induced
hypothermia. Bromocriptine mesylate, a potent agonist at D2 receptor, could be used to control
central hyperthermia [40]. Furthermore, RIS has stronger affinity for 5-HT2A receptor than for D2

receptor [6,41]. Bromocriptine mesylate induces hypothermia and reduces neuronal damage after
global ischemia in rats [42]. We, in this study, found that bromocriptine mesylate significantly lowered
body temperature in the TI + vehicle group and further lowered RIS-mediated hypothermia. From the
reports and our data, we suggest that D2 receptor might be of minor significance since RIS-induced
hypothermia did not recur with a subsequent D2 agonist treatment. Therefore, the hypothermic effect
of RIS leads us to conclude that RIS-induced hypothermia might be mediated by 5-HT2A receptor
antagonism rather than by D2 receptor antagonism.

In conclusion, RIS-induced hypothermia protected neurons from TI, and the neuroprotection
might be associated with attenuation of glial activation and maintenance of antioxidants following
hypothermia, showing that the hypothermia was abolished by NBOH-2C-CN hydrochloride treatment.
These suggest that 5-HT2A receptor is involved in RIS-mediated reduction of body temperature,
and RIS-induced hypothermia as a post-conditioning stimulus might be given to stroke patients
immediately at pick-up for hospitalization.

4. Materials and Methods

4.1. Animals

Male Mongolian gerbils (total number = 480) at 6 months of age (body weight 65–75 g) were
obtained from the Experimental Animal Center, Kangwon National University, Chuncheon, Republic
of Korea. As we described previously [43], the experimental protocol of this study was approved
(no. KW-160802-1) by the Institutional Animal Care and Use Committee (IACUC) at Kangwon
University. The experimental protocol adhered to guidelines from the current international laws and
policies [43].

4.2. Experimental Groups, Induction of TI, and RIS Treatment

Experiments related with TI were two (experiment I and II). Animals in experiment I were
subjected to 5 min TI, and body temperature of the animals was uncontrolled for 12 h after TI.
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Meanwhile, in experiment II, animals were subjected to 5 min TI, and body temperature of the animals
was controlled (37 ± 0.2 ◦C) for 12 h after TI. Animals (total number = 432) in each experiment were
divided into four groups (n = 7 at each point in time in each group) as follows: (1) Sham + vehicle
group, which was given sham surgery for 5 min TI and intraperitoneally injected with vehicle; (2) TI +

vehicle group, which was given 5 min TI and intraperitoneally injected with vehicle; (3) sham + RIS
group, which was subjected to sham TI and intraperitoneally injected with RIS; and (4) TI + RIS group,
which was subjected to 5 min and treated with RIS.

TI was developed as previously described [44]. In brief, the animals were anesthetized with a
mixture of 2.5% isoflurane in 32% oxygen and 68% nitrous oxide. Both common carotid arteries were
occluded using non-traumatic aneurysm clips (Yasargil FE 723K, Aesculap, Tuttlingen, Germany).
The complete stop of blood circulation was examined in central arteries in both retinae with an
ophthalmoscope (HEINE K180®, Heine Optotechnik, Herrsching, Germany). The body temperature
(37 ± 0.2 ◦C) was controlled using a thermometric blanket before and during the surgery. After 5 min
of occlusion, the aneurysm clips were removed.

Vehicle or RIS (1, 5, and 10 mg/kg; Sigma-Aldrich, St. Louis, MO, USA) was intraperitoneally
administered two times (immediately and at 6 h) after TI operation. Doses of RIS were selected based
on a previous study [45]. RIS was dissolved in 0.3% Tween 80 in saline.

For recording temperature change in the body, rectal temperature was measured every 1 h after
TI, over a 12 h period, in a room with ambient temperature of 22 ± 1 ◦C. The animals in all the groups
were given recovery times of 5 days after TI, because pyramidal neurons in the hippocampal CA1 area
do not die until 3 days and begin to die 4 days after TI [44,46,47].

4.3. Histological Tissue Preparation

As previously described [44], animals (n = 6 at each point in time in each group) were anesthetized
with pentobarbital sodium (30 mg/kg; JW Pharmaceutical, Seoul, Korea) at the designated times
and perfused transcardially with 0.1 M phosphate-buffered saline (PBS, pH 7.4) followed by 4%
paraformaldehyde in 0.1 M phosphate-buffer (PB, pH 7.4). Brain tissues containing hippocampi were
serially sectioned into 30 µm coronal sections in a cryostat (CM1900 UV, Leica, Wetzlar, Germany).

4.4. F-J B Histofluorescence Staining

For neuronal degeneration, F-J B (a high affinity fluorescent marker for neurodegeneration) staining
was performed according to our published procedure [44]. Briefly, the sections were immersed in a
solution containing 1% sodium hydroxide, transferred to a solution of 0.06% potassium permanganate,
and then a solution of 0.0004% Fluoro-Jade B (Histochem, Jefferson, AR, USA). After washing,
the incubated sections were placed on a slide warmer (approximately 50 ◦C) to be reacted. Finally,
we examined the sections using an epifluorescent microscope (Carl Zeiss, Göttingen, Germany) with
blue (450–490 nm) excitation light and a barrier filter.

4.5. Superoxide Anion Production Detection

For the analysis of oxidative stress, an oxidative fluorescent dye, dihydroethidium (DHE;
Sigma-Aldrich), was used to evaluate in situ production of superoxide anion. Histological detection of
superoxide anion was performed as described previously [48] at sham, 1 day and 5 days after TI (n = 7
at each time in each group). In brief, the sections were incubated with DHE (10 µmol/L) in PBS for
30 min at 37 ◦C in a humidified chamber that was shielded from light. DHE was oxidized on reaction
with superoxide to ethidium, which could bind to DNA in the nucleus and fluoresced red. For the
detection of ethidium, the reacted sections were examined with an epifluorescent microscope (Carl
Zeiss) with an excitation wavelength of 520–540 nm. The fluorescence intensity of the sections was
analyzed in the stratum pyramidale at the center of the CA1 field.
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4.6. Immunohistochemistry

Immunohistochemistry was carried out according to our published procedure [43]. In brief,
the sections were incubated with primary mouse anti-NeuN (a neuron-specific soluble nuclear antigen,
diluted 1:1000, Chemicon International, Temecula, CA, USA) for neurons, mouse anti-GFAP (diluted
1:1000, Chemicon International) for astrocytes, rabbit anti-Iba-1 (1:800, Wako, Osaka, Japan) for
microglia, mouse anti-4-HNE (diluted 1:1000; Alexis Biochemicals, San Diego, CA, USA) for lipid
peroxidation [49], goat anti-(8-OhdG) diluted 1:500; EMD Millipore Corporation, Billerica, MA,
USA) for DNA damage [50,51], and sheep anti-SOD2 (1:1000; Calbiochem, San Diego, CA, USA) for
oxidative stress. The incubated sections were reacted with corresponding secondary antibodies (Vector
Laboratories Inc., Burlingame, CA, USA), and developed using Vectastain ABC (Vector Laboratories
Inc.). Finally, the immunoreacted sections were visualized with 3,3′-diaminobenzidine.

4.7. Western Blotting for SOD2

To obtain exact data for alterations in levels of SOD2 protein in the CA1 field after TI, animals
(n = 7 at each point in time) were killed at designated times (sham, 1 day and 5 days) after TI, and tissues
containing the CA1 field were used for Western blot analysis as previously described [44].

4.8. Effects of 5-HT2A and D2 Agonists against RIS-Induced Hypothermia

To examine the contribution of 5-HT2A or D2 antagonism to RIS-induced hypothermia,
additional gerbils (n = 6/group) were intraperitoneally administered with (±)-2,5-dimethoxy-4-
iodoamphetamine hydrochloride ((±)-DOI, 5-HT2A/2C agonist, 5.0 mg/kg, Sigma-Aldrich),
4-[2-[(2-hydroxyphenyl)methylamino]ethyl]-2,5-dimethoxybenzonitrile (NBOH-2C-CN) hydrochloride
(a selective 5-HT2A agonist, 5.0 mg/kg, Tocris Bioscience, Ellisville, MO, USA), or bromocriptine
mesylate (a D2 agonist, 5.0 mg/kg, Sigma-Aldrich) with vehicle or RIS (10.0 mg/kg), simultaneously.
Rectal temperature was measured every 20 min after drug administration, over a 240 min period.

4.9. Data Analysis

Data analyses were performed by two or three investigators, who were blind to the experimental
conditions. To analyze cell numbers and immunoreactivities, we selected six sections/animal
with 120 µm interval according to anatomical landmarks corresponding to AP (anteroposterior)
−1.65 ~ −3.40 mm of the gerbil brain atlas [52]. Firstly, we analyzed cell counts by averaging total
numbers of NeuN-immunoreactive and F-J B-positive cells. Briefly, as previously described [44],
images of the cells were captured in a 200 µm × 200 µm square at the center of the stratum pyramidale
of the CA1 field using an AxioM1 light microscope (Carl Zeiss, Göttingen, Germany) equipped with a
digital camera (Axiocam, Carl Zeiss) connected to a PC monitor. A ratio of the count was calibrated
as % of the sham + vehicle group (NeuN-immunoreactive cells) or TI + vehicle group (F-J B-positive
cells) using an image analyzing system (software: Optimas 6.5, CyberMetrics, Scottsdale, AZ, USA).
Secondly, quantitative analyses of GFAP, Iba-1, 8-OHdG, 4-HNE, and SOD2 immunoreactivities and
DHE fluorescence intensity in the CA1 area were done as previously described [44]. In short, staining
intensities of GFAP, Iba-1, 8-OHdG, 4-HNE-, and SOD2 immunoreactive structures and superoxide
anion radical were evaluated on the basis of an optical density (OD), which was obtained after the
transformation of the mean gray level using the formula: OD = log (256/mean gray level). Background
density in the images was subtracted, and brightness and contrast were calibrated as % (relative optical
density, ROD) using Adobe Photoshop version 8.0 and analyzed using NIH Image J software. A ratio
of the ROD was calibrated as %, with sham + vehicle group designated as 100%.

In addition, according to our previous method [44], we scanned results of Western blot bands
and carried out densitometric analyses for the quantification of the bands using Scion Image software
(Scion Corp., Frederick, MD, USA). Expression rates of the target proteins were normalized through
corresponding expression rates of β-actin.
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4.10. Statistical Analysis

The estimation of sample size was dependent on the standard deviation as in a published study
by Ozkan et al. [53]. Sample size was at least seven gerbils per group with an alpha error of 0.05 and
a power of > 80%, calculated with power calculator (UCLA Department of Statistics, available online:
http://www.stat.ubc.ca/~rollin/stats/ssize). All data are presented as mean ± SEM. A multiple-sample
comparison was applied to test the differences between groups (two-way analysis of variance (ANOVA)
with a post-hoc Bonferroni’s multiple comparison test). Statistical significance was considered at p < 0.05.
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