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1  | INTRODUCTION

Resveratrol (trans‐3, 5, 40‐trihydroxystilbene) is a natural poly‐
phenolic compound, detected in a variety of plants, foods, 
and drinks, such as grapes, nuts, cranberries, and red wine.1 
Resveratrol has beneficial effects on human health, including 

antiaging, antioxidant, anti‐inflammatory, insulin‐sensitizing, 
cardioprotective, vasodilating, and anti‐neoplastic properties2 
(Figure 1). Therefore, resveratrol intake can improve metabolic 
diseases, such as obesity, diabetes mellitus, and hypertension, 
and reduce the risk of cardiovascular diseases and malignant neo‐
plasm.3 Growing evidence indicates that resveratrol has potential 
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Abstract
Background: Resveratrol is an antiaging, antioxidant, anti‐inflammatory, and insu‐
lin‐sensitizing natural polyphenolic compound. Growing evidence indicates that res‐
veratrol has potential therapeutic effects in infertile women with diminished ovarian 
function, polycystic ovary syndrome (PCOS), or endometriosis. However, only one 
clinical trial in women undergoing in vitro fertilization (IVF) cycles using resveratrol 
has ever been reported. This review focuses on the potential therapeutic effects of 
resveratrol on pregnancy and on its advantages and disadvantages in pregnancy out‐
comes during infertility treatment.
Methods: We performed a literature review to describe the known impacts of res‐
veratrol on the ovary and endometrium.
Results: Resveratrol upregulates sirtuin (SIRT)1 expression in ovaries, which is associ‐
ated with protection against oxidative stress. It leads to the activation of telomerase 
activity and mitochondrial function, improving ovarian function. In the endometrium, 
resveratrol	downregulates	the	CRABP2‐RAR	pathway	leading	to	suppressing	decid‐
ual and senescent changes of endometrial cells, which is essential for embryo im‐
plantation	and	placentation.	Moreover,	resveratrol	may	also	induce	deacetylation	of	
important decidual‐related genes.
Conclusions:  Resveratrol has potential therapeutic effects for improving ovarian 
function; however, it also has anti‐deciduogenic actions in uterine endometrium. In 
addition, its teratogenicity has not yet been ruled out; thus, resveratrol should be 
avoided during the luteal phase and pregnancy.
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therapeutic effects in women with diminished ovarian function, 
polycystic ovary syndrome (PCOS), endometriosis, or uterine fi‐
broids.4‐7 In addition, resveratrol may improve testicular function 
and sperm quality.8,9 Therefore, resveratrol supplementation may 
help to treat both male and female infertility based on animal stud‐
ies. However, in humans, only a single clinical trial on resveratrol 
for women undergoing in vitro fertilization (IVF) cycles has been 
carried out.10 Our review discusses the potential therapeutic ef‐
fects of resveratrol on pregnancy and its advantages and disad‐
vantages for pregnancy outcomes during infertility treatment.

2  | IMPACT ON OVARY FOR PREGNANCY

2.1 | Aging

Aging	is	a	major	detrimental	factor	for	achieving	pregnancy11‐13 due 
to ovarian aging leading to mitochondrial dysfunction, telomere 
shortening,	 cohesion	 dysfunctions,	 and	 spindle	 instability.	 Both	
genetic and environmental factors contribute to aging damage, but 
the major mechanism underlying ovarian deterioration is chronic 
damage by reactive oxygen species (ROS).11,14‐16 Reactive oxygen 
species	can	damage	mitochondria	DNA,	promoting	mutations,	and	
induce telomere shortening and cellular senescence.17 Resveratrol 
is	 a	natural	 activator	of	 sirtuin,	 the	NAD+‐dependent deacetylase. 
Sirtuins are emerging molecules in aging diseases.18 In mice oocytes, 
sirtuin (SIRT)1 is upregulated in response to oxidative stress, whereas 
a SIRT1 inhibitor increases intracellular ROS.19 SIRT1 may protect 

mitochondria against oxidative stress (Figure 2). However, aged oo‐
cytes have undetectable SIRT1 expression levels and low ability to 
regulate SIRT1.19,20 Therefore, aged oocytes may be susceptible to 
the effects of oxidative stress through their decreased ability to pro‐
duce SIRT1. Resveratrol may compensate for the decreased SIRT1 
expression in aged oocytes, leading to the inhibition of age‐associ‐
ated ovarian aging changes. In rats, resveratrol intake increased the 
number of follicles and had ovary life‐extending effects.4	Moreover,	
resveratrol improved the number of follicle in aged mice ovaries.21 
Therefore, resveratrol may protect the ovarian reserve against aging 
via SIRT1 activation, resulting in prolonged ovarian life span.

2.2 | Primary ovarian insufficiency (POI)

Primary ovarian insufficiency is an ovarian dysfunction with amenor‐
rhea and sex steroid deficiency in women younger than 40 years.22 It 
can be caused by genetic abnormalities and ovarian damage due to 
chemotherapy, radiotherapy, or surgery. However, in most cases, the 
cause of premature depletion of primordial follicles is unknown.23 
During oocyte maturation and folliculogenesis, the phosphatidylino‐
sitol‐4,5‐bisphosphate	3	kinase	(PI3K)/protein	kinase	B	(Akt)/mam‐
malian target of rapamycin (mTOR) and nuclear factor‐κ light‐chain 
enhancer	of	activated	B	cell	(NF‐κB)	signaling	pathway	play	roles	in	
the development of primordial follicles and oocytes and in the prolif‐
eration and differentiation of granulosa cells.24,25 In a rat POI model 
induced by chemotherapy or radiotherapy, resveratrol inhibited oxi‐
dative stress and inflammatory events in ovaries by activating the 
PI3K/Akt/mTOR	 and	 NF‐κB	 signaling	 pathways.26‐28 Resveratrol 
also improved loss of the oogonial stem cells through antiapoptotic 
effects in POI model mice.29 Therefore, resveratrol may help as a 
therapeutic POI supplement; however, this has not yet been proven 
in human studies.

2.3 | PCOS and obesity‐related infertility

Polycystic ovary syndrome is characterized by enlarged polycystic 
ovaries with a hyperplastic theca compartment and clinical and/or 
biochemical signs of hyperandrogenism, resulting in ovulation dis‐
orders.30 In rat studies, resveratrol has antiproliferative effects on 
thecal interstitial cells via inhibition of the mevalonate pathway, in‐
volved in cholesterol production and steroidogenesis.31	Moreover,	
resveratrol can also suppress cellular expression of the Cyp17α1 
(17α‐hydroxylase) that catalyzes various reactions, including andro‐
gen production.32,33 In a rat model of PCOS, resveratrol intake im‐
proved the increased number of secondary and atretic follicles and 
the reduced number of Graafian follicles through antioxidant and 
anti‐inflammatory effects, reducing aberrant elevated levels of tes‐
tosterone,	luteinizing	hormone,	and	anti‐Müllerian	hormones.34,35

Advanced	glycation	end	products	 (AGEs)	are	generated	by	 the	
reaction between reducing sugars and proteins, lipids, or nucleic 
acids, and their accumulation in tissues has been involved in the 
pathogenesis of various diseases, including diabetes mellitus and 
PCOS.36	 Methylglyoxal	 is	 the	 most	 powerful	 precursor	 of	 AGEs.	

F I G U R E  1   Effects of resveratrol on human health. Resveratrol 
has beneficial effects on human health, including antiaging, 
antioxidant, anti‐inflammatory, insulin‐sensitizing, cardioprotective, 
vasodilating, and anti‐neoplastic properties
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SIRT1 is associated with the response to methylglyoxal‐dependent 
glycation stress, and it may have a positive effect on the ovarian 
function	in	PCOS	by	interfering	with	AGEs.37

In an obese mouse model study on IVF, resveratrol supplemen‐
tation increased the number of oocytes collected after ovarian 
hyperstimulation via anti‐inflammatory, insulin‐sensitizing, and anti‐
hyperandrogenism effects.38

According	to	animal	experiments,	resveratrol	is	a	candidate	novel	
treatment against PCOS. In humans, a randomized double‐blind clin‐
ical trial in women with PCOS showed that high‐dose resveratrol 
administration (1.5 g per day) significantly decreased the levels of 
total testosterone, dehydroepiandrosterone sulfate, and fasting in‐
sulin and increased the insulin sensitivity index.39 However, the fer‐
tility outcome following the treatment of resveratrol in women with 
PCOS has not been evaluated. Further clinical trials are warranted.

2.4 | In vitro maturation (IVM) and IVF

Resveratrol has a therapeutic direct effect on oocytes in in vitro 
culture. Treating the culture media with resveratrol improves oo‐
cyte maturation and the developmental competence of embryos to 
blastocysts in both animals and humans.40‐44	Moreover,	during	IVF	
treatments, minimization of the time‐dependent deterioration after 
ovulation (postovulatory oocyte aging) is a key for successful preg‐
nancies. Resveratrol treatment can protect against postovulatory 
oocyte aging in vivo in middle‐aged mice.45 This effect is attributed 
to the intracellular ROS level reduction and mitochondrial function 
improvement by resveratrol via SIRT1 activation. The quality and 

quantity of mitochondria are associated with the balance of mito‐
chondrial biogenesis and autophagy. Resveratrol has effects on 
mitochondrial biogenesis as well as autophagy in the process of oo‐
cyte development, leading to remaining homeostasis in oocytes and 
granulosa cells through the clearance of damaged mitochondria.44 
Resveratrol also protects postovulatory human granulosa cells from 
apoptosis by activating the ERK pathway associated with the follicu‐
lar antiapoptotic effect and by suppressing inflammatory functions 
of	NF‐κB	signaling.46

Taken together, the addition of resveratrol to in vitro culture 
media may have local beneficial impacts on human oocytes, leading 
to improved oocyte maturation and developmental competence of 
embryos. However, data from human studies are still limited.

3  | IMPACT ON ENDOMETRIUM FOR 
PREGNANCY

3.1 | Effects on human endometrium in vitro

Successful pregnancy requires endometrial receptivity with optimal 
decidualization and synchronization with developmentally compe‐
tent embryos.47 Decidualization consists in cellular morphological 
changes of the human endometrial stromal cells (HESCs) accom‐
panied by integrated gene expression alterations, such as those 
of	 prolactin	 (PRL)	 and	 insulin‐like	 growth	 factor‐binding	 protein‐1	
(IGFBP‐1),	 generating	 an	 implantation	window.47,48 During decidu‐
alization, the endometrium is receptive for implantation and mainte‐
nance of pregnancy, resists oxidative stress, and promotes immune 

F I G U R E  2   Effects of resveratrol on 
ovaries and endometrium. Resveratrol 
upregulates ovarian SIRT1 expression, 
which is associated with protection 
against oxidative stress and glycation 
stress.	Moreover,	it	activates	telomerase	
activity and mitochondrial function, 
improving ovarian function. In the 
decidualized endometrium, resveratrol 
accelerates	downregulation	of	CRABP2‐
RAR	pathway,	inhibiting	decidual	
senescence and decidualization. In 
addition, resveratrol may also induce 
deacetylation of important decidual‐
related genes. Up‐ and down‐arrowheads: 
promotive and inhibitive actions
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tolerance by modulating a local inflammatory reaction to allow 
trophoblast	 invasion.	By	 contrast,	 impaired	 decidualization	 causes	
a variety of pre‐ and post‐pregnancy disorders, such as implantation 
failure, pregnancy loss, and uteroplacental dysfunction.47,49‐51

The evidence for the effects of resveratrol on the human endo‐
metrium is still limited. Resveratrol promotes calcium‐dependent, cell 
adhesion–related gene E‐cadherin expression via increased expres‐
sion of SIRT1 in Ishikawa cells, which means it can induce embryo at‐
tachment to the endometrium.52	Also,	resveratrol	has	antiapoptosis	
and antiproliferative effects, and it can inhibit progression of ecto‐
pic endometrium (endometriosis).6 These reports suggest beneficial 
therapeutic effects of resveratrol on infertility with endometriosis.

However, implantation requires an inflammatory reaction with 
local secretion of proinflammatory cytokines and prostaglandins from 
the decidualized endometrium.53‐55 Resveratrol has anti‐inflammatory 
actions that may suppress embryo implantation directly. The decidual‐
ization of endometrial stromal cells does not entail only cellular differ‐
entiation; the alteration requires a combination of differentiation and 
apoptosis/senescence.56‐58 In fact, decidual cells secrete proapoptotic 
factors during the decidualization of HESCs.58 In in vitro primary cul‐
tures, the decidualization of HESCs induces senescence‐associated 
β‐galactosidase	 (SAβG) activity and increases expressions of major 
senescent markers, including p16 and p53.56,57 Decidual cells secrete 
inflammatory mediators associated with endometrial receptivity, 
through acute cellular senescence. In addition, pro‐senescent decidual 
cells	are	cleared	by	uterine	natural	killer	(uNK)	cells	(the	most	abun‐
dant immune cells in the decidualized endometrium) for remodeling 
and rejuvenating the environment.57	A	suppressor	of	cellular	senes‐
cence,	the	mTOR	inhibitor	rapamycin	inhibits	SAβG‐positive cells, ex‐
pression of senescent markers, and decidualization, leading to reduced 
expression of decidual marker genes, PRL and IGFBP1.57 Resveratrol 
as an anti‐senescence agent also has potential adverse effects on the 
decidua of humans and may impair implantation and pregnancy.

Decidual changes of HESCs depend on orchestrated repro‐
gramming of various pathways, including that of retinoic acid 
(RA)	 signaling.47,59 Retinoic acid regulates two opposing cell fates, 

differentiation	and	apoptosis,	by	binding	to	cellular	RA‐binding	pro‐
teins,	CRABP2	or	FABP5,	and	getting	activated	by	 the	nuclear	 re‐
ceptors	 (retinoic	 acid	 receptor,	 RAR)	 to	 promote	 the	 activation	 of	
genes involved in apoptotic machinery and cell cycle arrest, or by 
peroxisome	 the	 proliferator‐activated	 receptor	 (PPAR)	 β/δ to pro‐
mote cell differentiation. Decidualization of HESCs downregulates 
RA	signaling	via	a	decrease	in	cytoplasmic	binding	proteins,	CRABP2	
and	FABP5.	Moreover,	RA‐binding	receptors,	RAR	and	PPARβ/δ, are 
induced and suppressed by decidualization, respectively. Therefore, 
decidualization of HESCs requires an appropriate suppression of the 
proapoptotic	CRABP2‐RAR	signaling	pathway.59 SIRT1 is an import‐
ant	modulator	of	RA	signaling,	and	it	interacts	with	and	deacetylates	
CRABP260	 and	 also	 inhibits	 the	 transcriptional	 activity	 of	 RAR.61 
Our previous study demonstrated that resveratrol treatment accel‐
erates	downregulation	of	the	CRABP2‐RAR	pathway	in	decidualized	
HESCs,	leading	to	decreasing	SAβG activity and expression of p53.56 
In addition, decidual markers were inhibited in decidual cells treated 
with resveratrol 56 (Figure 2). Impaired decidualization causes im‐
plantation failure and pregnancy loss.49

Moreover,	decidualization	of	HESCs	 is	 associated	with	epigen‐
etic changes, including H3K27 acetylation of promoter regions in 
decidual	markers	PRL	and	IGFBP1.62‐66 SIRT1 has histone deacetyl‐
ation	 effects	 on	 decidual‐related	 genes	 (PRL,	 IGFBP1,	 p53,	 and	
FOXO‐family).60,67‐70 Thus, resveratrol supplementation may inhibit 
decidual senescence and induce deacetylation of important decid‐
ual‐related genes, leading to decreasing endometrial receptivity, in 
the clinical practice (Figure 2).

3.2 | Clinical study on IVF treatment with 
resveratrol supplementation

Resveratrol has potential therapeutic effects in women with dimin‐
ished ovarian reserve and function through its suppression of oxida‐
tive stress and its stimulation of mitochondrial biogenesis, but it also 
has adverse effects on implantation and endometrial decidualiza‐
tion. Is resveratrol “a friend or a foe” for pregnancy?

F I G U R E  3   Pre‐treatment with resveratrol does not inhibit decidual marker genes in the decidualized endometrium. Real‐time 
quantitative	PCR	analysis	of	decidual	markers	PRL	and	IGFBP1	in	human	endometrial	stromal	cells	(treated	with	8‐bromoadenosine‐cAMP	
and progesterone (P4) with or without 100 μmol/L	of	resveratrol	for	4	or	8	days	and	pre‐treatment	of	the	cells	with	resveratrol	for	48	h	
followed	by	wash‐off	and	decidualization	without	resveratrol	treatment)	showing	fold	changes	(mean	±	SEM)	in	PRL	and	IGFBP1	transcript	
levels relative to negative control (from four independent primary cultures). Different letters above the error bars suggest groups that are 
significantly different from each other at P < .05. This is a modified graph from our previous reports (Ochiai et al 56)
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We evaluated the impact of resveratrol on human pregnancy out‐
comes during IVF‐embryo transfer (ET) cycles for the first time and 
found poor outcomes.10 The retrospective cross‐sectional study was 
carried out to compare the pregnancy outcomes after ET cycles be‐
tween women with infertility using resveratrol (200 mg per day) contin‐
uously (RES group) and women in a control group not using any (non‐RES 
group). Our multivariate logistic regression analysis demonstrated that 
resveratrol intake was significantly associated with low clinical preg‐
nancy rates (post‐adjusted odds ratio [OR] 0.539, 95% confidence 
interval [CI] 0.341‐0.853) and high miscarriage rates (OR 2.602, 95% 
CI 1.070‐6.325). In agreement with the effects of the senescence sup‐
pressor on decidualization in primary cultures, resveratrol intake may 
adversely impact pregnancy outcomes following ET cycles. In our clini‐
cal study, the patients in the RES group had poor pregnancy outcomes 
after ET even though embryos with good quality were transferred. 
However, in some patients with impaired ovarian reserve, resveratrol 
supplementation may improve oocyte quality and quantity leading to 
the collection of competent embryos. Our study focused on pregnancy 
outcomes after ET, and we had no data on ovarian function before and 
after resveratrol intake. Resveratrol treatment has been shown to pro‐
tect against ovarian aging and to improve PCOS and endometriosis;4‐6 
therefore, resveratrol intake may have benefits for some patients.

Based	 on	 these	 data,	 when	 using	 resveratrol	 during	 infertility	
treatments, if the tissue level of resveratrol vanishes in the endo‐
metrium before decidualization, it may not adversely affect implan‐
tation or pregnancy. In humans, the half‐life of resveratrol is only 
9‐10 hours.71,72 We tested this hypothesis on decidualized primary 
HESCs with or without treatment with 100 μmol/L	of	resveratrol	or	
pre‐treating cells with resveratrol for 48 hours followed by wash‐off 
and decidualization without resveratrol treatment (Figure 3); our re‐
sults showed that resveratrol treatment suppressed PRL and IGFBP1 
expression, but the pre‐treatment had no impact on the induction 
of decidual markers.56 Thus, in the clinical practice, discontinuation 
of resveratrol intake at the beginning of the luteal phase (the day of 
ovulation) or cryopreservation of all embryo (freeze‐all policy) and 
warmed ET without supplementation (Figure 4) should help over‐
come these adverse effects. In all, a randomized controlled trial is 
needed to evaluate the use of resveratrol as an infertility treatment.

4  | POSSIBLE SIDE EFFECTS

Resveratrol does not appear to produce severe side effects at doses 
<1.0 g/day in various in vivo and in vitro studies with a wide range 

of	 resveratrol	 doses,	whereas	 doses	 ≥1.0	 g	may	 produce	 side	 ef‐
fects, including headache, dizziness, nausea, diarrhea, and liver dys‐
function.73‐76 In a phase 2 clinical study, resveratrol intake at doses 
of 5.0 g in patients with refractory multiple myeloma caused severe 
renal failure in 5 of 24 patients before the study was stopped.77 
However, other clinical studies in patients with colorectal cancer 
and healthy volunteers did not show any nephrotoxicity at the same 
dose of resveratrol.78,79 The renal failure may have been caused by 
the progression of multiple myeloma, but as a precaution, high‐
dose resveratrol should not be administered to infertile women. 
Although	little	is	known	about	the	maternal	and	fetal	effects	of	res‐
veratrol, its supplementation should be discontinued during preg‐
nancy, based on the adverse decidualization effects in the human 
endometrium.

5  | CONCLUSIONS AND FUTURE 
PERSPECTIVES

Women with advanced age face difficulties in getting pregnant due 
to decreased quality and quantities in their oocytes. Resveratrol 
has potential therapeutic effects for improving ovarian function; 
however,	it	also	has	anti‐deciduogenic	actions.	Moreover,	its	terato‐
genicity has not yet been ruled out; therefore, resveratrol should be 
avoided during the luteal phase and pregnancy. Further clinical stud‐
ies are needed to establish optimal doses and periods of resveratrol 
intake while preventing adverse effects on implantation, subsequent 
pregnancy, and the fetus.
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F I G U R E  4   Recommendations 
for resveratrol supplementation 
in IVF treatment. We recommend 
discontinuation of resveratrol intake at 
the beginning of the luteal phase (the day 
of ovulation) or cryopreservation of all 
embryos (freeze‐all policy) and vitrified 
and warmed ET without supplementation
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