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Abstract

Background: Epilepsy is one of the most prevalent neurological disorders. It remains medically intractable for about
one-third of patients with focal epilepsy, for whom precise localization of the epileptogenic zone responsible for
seizure initiation may be critical for successful surgery. Existing fMRI literature points to widespread network
disturbances in functional connectivity. Per previous scalp and intracranial EEG studies and consistent with
excessive local synchronization during interictal discharges, we hypothesized that, relative to same regions in
healthy controls, epileptogenic foci would exhibit less chaotic dynamics, identifiable via entropic analyses of
resting state fMRI time series.

Methods: In order to first validate this hypothesis on a cohort of patients with known ground truth, here we test
individuals with well-defined epileptogenic foci (left mesial temporal lobe epilepsy). We analyzed voxel-wise
resting-state fMRI time-series using the autocorrelation function (ACF), an entropic measure of regulation and
feedback, and performed follow-up seed-to-voxel functional connectivity analysis. Disruptions in connectivity of
the region exhibiting abnormal dynamics were examined in relation to duration of epilepsy and patients’
cognitive performance using a delayed verbal memory recall task.

Results: ACF analysis revealed constrained (less chaotic) functional dynamics in left temporal lobe epilepsy patients,
primarily localized to ipsilateral temporal pole, proximal to presumed focal points. Autocorrelation decay rates
differentiated, with 100 % accuracy, between patients and healthy controls on a subject-by-subject basis within a
leave-one-subject out classification framework. Regions identified via ACF analysis formed a less efficient network
in patients, as compared to controls. Constrained dynamics were linked with locally increased and long-range
decreased connectivity that, in turn, correlated significantly with impaired memory (local left temporal connectivity)
and epilepsy duration (left temporal – posterior cingulate cortex connectivity).

Conclusions: Our current results suggest that data driven functional MRI methods that target network dynamics hold
promise in providing clinically valuable tools for identification of epileptic regions.
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Background
Epilepsy is one of the most prevalent neurological disor-
ders, affecting approximately 50 million people worldwide
[1]. It is characterized by seizures, resulting from abnor-
mal transient change in the synchronized firing of neurons
[2]. For one-third of patients with focal epilepsy, debilitat-
ing seizures persist despite antiepileptic drug therapy,
leaving surgical resection of the suspected epileptogenic
focal region as the most effective treatment option [3, 4].
Precise localization of the epileptogenic zone responsible
for initiation and propagation of seizures, and its delin-
eation from eloquent cortex, are crucial for successful
surgery. However, current standard non-invasive surgi-
cal evaluation (looking for congruence of seizure semi-
ology, abnormalities on structural MRI images and
spikes in scalp EEG recordings) fails to identify an epi-
leptic focus in approximately 40 % of patients with drug
resistant epilepsy [5]. The current gold standard for
localization of focal regions includes identification of
an epileptogenic zone on intracranial EEG recordings
combined with postoperative seizure freedom following
its resection; however, invasive pre-surgical workup carries
additional risks and has been associated with complica-
tions in about 23 % of patients [5]. Thus, the development
of noninvasive techniques capable of accurately localizing
epileptogenic regions on a subject-by-subject basis will be
critical for improving surgical outcomes.
Multimodal studies, especially those utilizing simultan-

eous EEG-fMRI recordings, increasingly have been used
to provide complementary information in presurgical
work-up. EEG-fMRI allows mapping of hemodynamic
changes related to seizure-related events, such as interictal
discharges (IEDs). Spikes are manually detected in EEG
data and, in traditional “spike-correlated” analysis, they
are treated as zero-duration events, convolved with ca-
nonical hemodynamic response function (HRF), and in-
cluded as regressors of interest in a General Linear Model
(GLM) along with simultaneously acquired BOLD time
series as dependent variables. fMRI maps related to IEDs
often show multiple regions or “networks,” rather than
focal singularities, and thus effective connectivity ap-
proaches such as Dynamic Causal Modeling (DCM) have
been proposed to identify which brain regions drive the
generation of seizures within the epileptic network [6, 7].
The EEG-fMRI approach suffers from a few potential

drawbacks. First, a significant portion of subjects do not
experience enough detectable IEDs during simultaneous
recording. This problem is partially addressed by intro-
duction of topography-related techniques, which, instead
of requiring simultaneously recorded spikes, use subject-
specific voltage maps based on long-term video monitor-
ing [8]. Second, epilepsy may alter the shape of the HRF,
which could result in decreased sensitivity [9]. Third, in
addition to setup time, EEG-fMRI requires on average

30 min of motionless cooperation from subjects, which
may be problematic for certain patients, especially children.
Fourth, the use of scalp EEG is inherently constrained
by its limited sensitivity to deep activity. Despite this,
sensitivity of topography-related EEG-fMRI in refrac-
tory focal epilepsy was found to be about 80 % [8, 10].
However, measured sensitivity appears to be highly study-
dependent. For example, a recent study proposing con-
current use of four different modalities found that top-
ography-related EEG-fMRI method on its own showed
clinically meaningful result in five out of twelve studied
patients ([11]). Here we propose an alternative data-driven
method utilizing only resting state fMRI data.
As a matter of general research strategy, any method

with potential to identify seizure onset zones first needs
to be validated with respect to a “ground truth.” In the
case of epilepsy, the most straightforward option is to
use patients with clinically well-defined focal regions;
after validation against these cases, one can then apply
the method to more challenging cryptogenic cases. Me-
sial Temporal Lobe Epilepsy (MTLE) is the most preva-
lent and best-characterized subset of drug resistant focal
epilepsy in adults, and thus is an ideal cohort for valid-
ation of novel methods aimed at identification and
localization of epileptic foci and/or networks.
Brain regions involved in the onset and propagation of

MTLE have been studied extensively, with the most com-
monly associated pathology being hippocampal sclerosis
(HS). Seizures originating in the medial temporal region
are known to rapidly spread to lateral temporal regions,
the insula, the thalamus, and the contralateral temporal
lobe (among other regions) [12], suggesting that MTLE
may be characterized by a network disturbance. Indeed,
recent structural and functional MRI studies have revealed
widespread abnormalities, with structural changes primar-
ily involving atrophy of ipsilateral temporal pole and other
temporolimbic structures [13, 14]. Functional MRI (fMRI)
studies have found changes in functional connectivity of
the temporal region with other brain areas, along with im-
paired resting state networks such as perceptual, attention
and default mode networks [15–24].
Graph theoretical network analyses of brain networks

use sets of nodes connected by edges in order to quantify
general structural features of brain connectivity between
regions. Numerous studies suggest that healthy brain net-
works show a high degree of small-worldness (for a review
see [25]), which provides a balance between local cluster-
ing (characteristic of highly ordered, regular networks)
and long-range connections (characteristic of low order,
random networks). This balance reflects the result of
synaptic optimization over the efficiency of information
transfer and the need for redundancy in case of injury.
In individuals with focal temporal and extratemporal neo-
cortical epilepsy, fMRI, EEG, MEG, and intracerebral
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recordings suggest that this balance appears to be shifted
towards predominantly local clustering [20, 26, 27], which
may predispose the network towards synchronized oscilla-
tions characteristic of seizures [28].
However, findings are not clear-cut. While many stud-

ies report decreases in functional connectivity localized
near the suspected seizure onset zone [16, 17, 22, 23],
others show increases [15, 20, 29–31], potentially due to
differences in connectivity metrics used, as well as het-
erogeneity of patient populations and small sample sizes.
It is important to note that, in spite of the benefits of
considering epileptic networks, accurate localization is still
clinically desirable as suggested by the relatively high suc-
cess rate of surgical treatment for ‘focal’ epilepsies (about
66 %) [2]. Yet most fMRI studies aimed at localization of
the epileptogenic zone point to widespread abnormalities
that are, at best, lateralized to one of the hemispheres.
Complex systems produce outputs that are balanced

between overly chaotic and overly predictable dynamics;
as such, they have the advantage of requiring a minimum
of energy both to respond to inputs as well as to return to
baseline (as required for allostasis). Complexity in brain
activity has been observed and modeled on many levels,
from neurotransmitter release [32], neuronal spiking
[33, 34] and local field potentials [35] to slow cortical
potentials [36], electrocorticography (ECoG) [37] and
EEG [38], suggesting that scale-free behavior may be
fundamental to efficient neural information processing.
Deviations from optimal range of functioning in fMRI
time series have been used diagnostically in identifying
brain-based disease [37, 39, 40]. In the case of a disease
as heterogeneous as epilepsy, fMRI’s exploratory cap-
ability (simultaneously acquiring functional information
over focal, hemispheric, and whole-brain neural networks)
may provide a clinically valuable tool in guiding placement
of intracranial EEG, as the process of seizure generation is
not necessarily confined to a focal area and may involve
distant or contralateral areas of the brain. Here we
propose to use autocorrelation function (ACF) as a
measure of complexity in resting-state fMRI time series,
with the aim of localizing deviations from optimal dynam-
ics in epilepsy.
Brain trauma increases risk for seizures. One possible

mechanism suggested by animal models of epilepsy is the
enhanced synaptic sprouting due to MMP-9 mediated
matrix-degradation that occurs as a compensatory re-
sponse to injury [41]. Alternatively, metabolic damage af-
fecting the brain's ability to utilize glucose may impact the
brain’s creation of long-range, but not short-range, con-
nections, upsetting balance between the two. Thus, we hy-
pothesized that the hippocampal sclerosis common to
MTLE patients might result in hubs surrounded by
more dense local connectivity. This can constrain dy-
namics within the hub either by increased density of

inhibitory or excitatory inputs, both of which would re-
sult in less chaotic resting state fMRI time series. We
expected abnormal dynamics to be identifiable through
comparison of decay rates of the time series’ ACF in
patients and in healthy controls. This is consistent with
previous findings from scalp and intracranial EEG
studies [42–45], as well as with excessive local
synchronization during interictal discharges.
Less chaotic dynamics in focal region(s) may lead to

increased local synchronization and transient seizures.
Repeated seizures could in turn lead to damage in con-
nections of this region with contralateral regions and
major hubs in the brain. We therefore hypothesized that
these disconnections would be detectable via seed-to-voxel
functional connectivity analyses of fMRI time-series, using
the region with abnormal dynamics (identified through ACF
analyses) as a seed. Finally, we expected that abnormalities
in connectivity would correlate with the duration of epilepsy
as well as with patients’ cognitive performance on a verbal
memory recall task. To determine whether group differ-
ences achieving statistical significance continued to hold on
the single-subject level (as required for future application of
individual neurodiagnostics to other, cryptogenic, forms of
epilepsy), we applied Gaussian Process Classification with
leave-one-subject-out cross validation to ACF decay rates in
regions with altered dynamics.

Methods
Participants
Nineteen patients (mean age = 40 years ± 13; 8 males,
11 females) with mesial left temporal lobe epilepsy (LTLE)
were included in this study based on a clear clinical diag-
nosis of unilateral (left) temporal epileptic activity accord-
ing to concordant clinical information. The inclusion
criteria were: 1) seizure semiology consistent with MTLE,
which included epigastric, autonomic, or psychic auras
followed by behavioral arrest, progressive clouding of con-
sciousness, oroalimentary and manual automatisms, and
autonomic phenomena; 2) anterior and mesial temporal
interictal spikes; 3) video-EEG monitoring with seizure
onsets arising exclusively from the temporal lobe; 4) MRI
with no other lesion than hippocampal atrophy and a hy-
perintense signal on T2-weighted sequences; and 5) med-
ically refractory MTLE, defined as failure to respond to at
least two antiepileptic drugs after adequate trials. For pa-
tients whose scalp ictal EEG recordings were inconclusive,
foramen oval electrodes or depth electrodes were used to
define lateralization of seizure foci. Table 1 lists demo-
graphic and clinical characteristics of all patients studied
here. Nineteen healthy controls (mean age = 41 years ±
12; 8 males, 11 females), age and sex-matched to patients
(2-sample t test p = 0.78), were scanned under the same
protocol. Because temporal lobe epilepsy affects the
hippocampus, and is associated with progressive memory
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Table 1 Demographic and clinical information

Patient Gender Age/Onset Frequency
(month)

Febrile
seizures

Seizure type Interictal EEG Ictal EEG MRI findings Antiepileptic
medications

Surgical
outcome

1 F 44/18 30 No Masticatory automatisms Left temporal paroxysms Bilateral theta rhythm, late
left lateralization

Left HA PHT, TPM 3

2 M 59/10 4 Yes Complex partial 100 % left temporal Left temporal Left HA CBZ 1

3 F 27/13 4 No Complex partial 70 % left, 30 % right
temporal

Left temporal Left HA LTG, CLB, OXC 1

4 M 47/24 4 No Lack of consciousness, no aura Left temporal sharp
waves (89 %, T1, T9)

Left temporal theta Left HA CBZ, LTG, CLB 1

5 F 32/19 0.5 No Complex partial Rare left temporal Left temporal Discrete left HA CBZ, PB, CLB 1

6 F 34/25 4 No Complex partial 53 % left, 47 % right
temporal

Left temporal Discrete left HA,
normal volume

TPM, OXC, CLB 3

7 M 26/5 4 No Complex partial Normal Left temporal delta rhythm Left HA VPA, OXC, CLB 1

8 F 44/9 4 No Complex partial 70 % left, 30 % right
temporal

Left temporal Left HA CBZ, TPM, CLN 3

9 F 47/17 4 No Lack of consciousness,
automatisms

Slow theta in left
temporal

Bilateral theta activity followed
by left temporal theta

Left HA LTG, CBZ 1

10 M 37/2 2 No Complex partial 95 % left, 5 % right
temporal

Left temporal Left HA OXC, LTG 1

11 M 46/18 n/a No Complex partial Slow waves in left
temporal

Left hemisphere diffuse
desynchronization

Left HA PHT, PB 1

12 F 52/14 2 Yes Complex partial 100 % left temporal Left temporal Left HA CBZ, TPM 2

13 F 22/19 3 Yes Tonic-clonic secondarily
generalized

Left spikes Left temporal Left HA OXC, VPA, CLB 1

14 F 22/1 16 Yes Complex partial Left temporal Left temporal Left HA TPM, OXC 1

15 F 49/15 1 No Complex partial 100 % left temporal Left temporal Left HA CBZ, PB 1

16 M 59/53 1 No Complex partial 100 % left temporal Left temporal Left HA PHT 3

17 M 20/4 30 Yes Epigastric aura and lack of
consciousness

Left temporal slow
waves

Left temporal Left HA CBZ, VPA 1

18 F 30/10 30 No Complex partial seizures preceded
by sensitive auras

Left temporal theta rhythm Complex partial seizure Discrete HA +
double cortex

LTG, CLB n/a

19 M 19/8 8 No Complex partial 100 % left temporal Left temporal Left HA TPM, CBZ, CLN 3

Abbreviations: HA hippocampal atrophy, PHT Phenytoin, TPM Topiramate, CBZ Carbamazepine, LTG Lamotrigine, CLB Clobazam, OXC Oxcarbazepine, PB Phenobarbital, VPA Valproic Acid, CLN Clobazam. Surgical
Outcome: 1 - seizure free, 2 - significant improvement, 3 - no improvement
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deficits [46], in order to assess clinical symptoms patients
were asked to complete the Logical Memory Delayed Re-
call (LM-DR) subtest of the Wechsler Memory Scale –
Revised [47]. This task requires subjects to recall specific
details of information presented orally in a story format
thirty minutes after a single exposure. The research proto-
col was approved by the local Ethical Committee of
Clinics Hospital at Ribeirao Preto, São Paulo, Brazil. Writ-
ten informed consent was obtained from the patient for
publication of their individual details in this manuscript.
All subjects were older than 18 years of age and were cap-
able of providing informed consent.

Data acquisition
All subjects were scanned using a Philips Achieva 3 T
scanner with an eight-channel head coil. Whole brain
functional volumes were acquired under resting state
using soft-tone sequences (TR = 2000 ms, TE = 30 ms,
200 volumes, voxel dimensions: 3 × 3 × 4 mm, 32 slices,
0.5 mm gap, matrix size = 80 × 80, flip angle = 80°).
Subjects were instructed to keep their eyes open and to
refrain from falling asleep. The eyes open condition was
used rather than eyes closed condition to ensure that
subjects remained awake during scanning. T1-weighted
anatomical images were acquired using a conventional
3D-T1 MPRAGE sequence (TR = 7.0, TE = 3.2, matrix
size = 240 × 240, flip angle = 8°, 1 mm isotropic voxels).

fMRI data preprocessing
Functional MRI data were preprocessed by correcting
for motion (rigid realignment, 6°-of-freedom), slice-time
correction, normalization to MNI space (affine registra-
tion followed by a nonlinear transformation between aver-
age fMRI and EPI template, and sync interpolation), and
smoothing with an 8-mm FWHM Gaussian kernel in
SPM8 (www.fil.ion.ucl.ac.u/spm).

Autocorrelation function (ACF) method
An autocorrelation function (ACF) measures similarity
(cross-correlation) of a signal with itself over different
time lags, and can therefore be used to identify shifts to-
wards chaos vs. order in the time domain, in a manner
that is analogous to power spectral scale invariance
(PSSI) analysis [40, 48, 49] in the frequency domain.
PSSI and ACF are related via the Wiener-Khinchin the-
orem, which states that Fourier transform of the ACF is
the power spectral density (P(f ) = ∫− ∞

∞ ACF(t)e− 2πiftdt).
PSSI of fMRI time series has already been used to

quantify limbic dysregulation in trait anxious adults [49]
and effectively discriminate between normal and patho-
genic network dynamics in schizophrenia [40] and gen-
eralized anxiety disorder (DeDora et al., under review).
PSSI analysis is based on the finding that fMRI BOLD
time series exhibit power spectral density that follows a

power law [50] P(f ) ~ 1/fβ, where β is the scaling expo-
nent. The scaling exponent β then measures relative fre-
quency content of the signal and is evaluated as the
negative slope of a straight line fit to power spectral
density as a function of frequency on log-log scale. Lin-
ear least squares method is employed. In contrast, the
ACF of voxel-wise BOLD time series can be modeled as
an exponential decay:

ACFðtÞ ¼ ae−bt ;

for which t is time lag in units of TR, and a and b are
constants such that b > 0. The rate of this decay, which
is proportional to the constant b, may be used as a com-
pact measure of randomness of a time series, with
higher b signifying faster decay (more randomness) and
lower b signifying slower decay (more persistence). ACF
b values are then related to the mean lifetime decay of a
signal, τ (seconds), via the relation τ = 1/b × TR. Con-
ceptually, τ represents the length of time that a signal
maintains a high degree of association with its past values.
A random time series (white noise) would have τ = 0. Lar-
ger values of τ would imply longer memory in the signal.
ACF has several advantages as compared to PSSI. First,

ACF decay times have physiologically intuitive meaning,
understood as self-similarity over different lengths of time
(in seconds). Second, ACF model fits for fMRI time-series
are improved compared with PSSI, because ACF avoids
the need to use linear least squares fitting in log-log
space [51].
Prior to whole brain voxel-wise computation of ACF b

values, to remove potential effects of nuisance variables
and improve signal to noise ratio, we performed further
preprocessing of fMRI time series. The preprocessing
procedure included detrending and regression of mean
white matter and mean cerebrospinal fluid (CSF) signals,
as well as regression of six degrees of motion. Motion
parameters were derived from the realignment procedure,
while global regressors were obtained from canonical
masks for white matter and CSF included in the SPM8.
To rule out head motion related artifacts on b values, we
confirmed that there were no statistically significant differ-
ences in movement between the two subject groups using
root mean square displacement (2 sample t-test: p = 0.37).
Root mean square displacement was calculated as the
square root of the sum of squares of all six motion param-
eters [52].
The residual time series were band-pass filtered in the

0.01 - 0.1 Hz frequency range using 10th order Butter-
worth filter. Fitting was performed within a frequency
range of 0.01-0.1 Hz since low frequency oscillations in
this band show power-law behavior [37, 50], making
PSSI-related inferences valid in this range, and are fur-
thermore of special interest in resting-state fMRI
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connectivity analyses since they have been shown to
have neuronal basis [51, 53, 54].
We estimated voxel-wise time series ACF using the

Econometrics Toolbox implemented in MATLAB R2010a.
We then fit an exponential function of the form y = ae− bx

to the first 9 (lag = 8) points of each voxel’s ACF using the
nonlinear least-squares fitting method as implemented in
the Curve Fitting Toolbox, also part of MATLAB R2010a.
Lag of 8 (16.8 s at TR of 2 s) was determined as most
appropriate based on considerations of goodness of fit
of the exponential function and duration of canonical
hemodynamic response [55].
Group differences in voxel-wise b values were exam-

ined using a two sample t-test in SPM8. Clusters greater
than 26 voxels with p < 0.005 were isolated and used in
further analyses. Prior to voxel-wise t-tests, the Lilliefors
goodness-of-fit test (as implemented in REST toolbox
[56]) was used to confirm that voxel-wise ACF-b values
were normally distributed within each group of subjects.
We found that the hypothesis of normality was supported
by the vast majority (94 %) of brain voxels in each group
at the p = 0.05 level.

Classification
To verify that the group differences in b values were
statistically significant and capable of differentiating be-
tween patients and healthy controls, even on an indi-
vidual subject-by-subject basis, we conducted follow-up
machine learning analyses on ACF b maps using Pattern
Recognition for Neuroimaging Toolbox (PRoNTo) [57].
We constrained the analyses to those regions that were
identified as having different b values between the two
groups using the 2-sample t-test in SPM8. We
employed Binary Gaussian Process Classification with
leave one subject out cross-validation. Follow-up per-
mutation testing (with 2000 repetitions) was used to
test whether the obtained overall and class accuracies
were significantly above chance, and thus indicate
whether the pattern of ACF decay times in those brain
regions encodes sufficient information to diagnose (cor-
rectly classify) MTLE.

Functional connectivity
In order to gain further understanding of the functional
network features that might underlie abnormalities in
fMRI signal dynamics, we used the cluster in the left an-
terior temporal pole identified as having most significantly
different ACF b values in patients compared to controls
(cluster extent = 59 voxels; Fig. 1a) as a seed in seed-to-
voxel functional connectivity analysis using CONN Tool-
box (http://www.nitrc.org/projects/conn/; v 13.p). We
examined the differences in seed-to-voxel connectivity be-
tween LTLE patients and healthy controls using one-sided
2 sample t-tests. Time series were extracted from spatially

smoothed images. They were detrended, despiked (a hyper-
bolic tangent squashing function was applied to reduce the
influence of potential outlier scans), and white matter, cere-
brospinal fluid, and motion parameters from SPM’s re-
alignment step and their first derivatives were regressed
out as confounds. Finally, the residual time series were
band-pass filtered in the [0.01-0.1] Hz range. Correlation
maps were computed from the seed to all voxels in the
brain and transformed to Fisher-z values (to ensure
normality) prior to performing t-tests to look at differ-
ences between the two groups. We identified clusters of
voxels that were significantly differently connected to
the region exhibiting constrained dynamics (identified
via ACF analysis) in patients relative to controls. We
then used correlation analysis to test whether connect-
ivity of these clusters to the seed was related to dur-
ation of epilepsy and verbal memory as measured by
the LM-DR task.

Graph-theoretic analyses
To determine whether complexity and connectivity re-
sults reflected global differences in network structure,
we used the CONN Toolbox to investigate graph-theoretic
characteristics of the network with nodes at clusters identi-
fied as having different ACF b values in patients compared
to controls. Bivariate correlation of the mean time series
was used as a measure of association between the nodes.
For this 16-node network, we compared the two subject
groups with respect to Global Efficiency, Local Efficiency,
Betweenness-Centrality, Average Path Length, Clustering
Coefficient, and Degree under a range of values of cost
(0.1 – 0.3) [58, 59].

Results
Left temporal lobe epilepsy patients show constrained
dynamics of left temporal pole
Unbiased (exploratory) analyses identified the superior
left temporal pole (peak MNI coordinate: (−36 2–17),
p < 0.005 uncorrected, cluster extent = 59 voxels, peak
T36 = 7.11; Fig. 1) as showing the greatest differences
between LTLE patients and healthy controls; patients
showed significantly decreased ACF b values (i.e., slower
ACF decay, more constrained dynamics). In addition, 15
other regions, all exceeding 27 voxels, showed lowered
ACF b values in patients at p < 0.005. Regions involved in-
clude portions of the right inferior frontal gyrus, left thal-
amus, right precuneus, right caudate, bilateral heschl
gyrus, bilateral inferior parietal and postcentral area, and
bilateral insula. These results are presented in Table 2.
No regions showed increased ACF b values in patients
compared to controls. We repeated the 2-sample t-test 38
times, each time leaving one subject out. Each time, a
cluster at MNI (−36 2–17) was found to be significantly
different between the LTLE patients and healthy controls,
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Table 2 List of regions showing significantly different values of ACF b in patients relative to controls

Left TLE < healthy controls

Peak MNI Location description (AAL) Cluster extent t-test (peak-level T (p))

1 [−36, 2, −17] L Superior Temporal Pole, Middle Temporal Pole, Insula, Amygdala 59 7.11 (1.18 × 10−8)

2 [13, 23, 42] R Inferior Frontal Gyrus, Pars Triangularis, Inferior Frontal Gyrus, Pars Opercularis 71 4.59 (2.61 × 10−5)

3 [−27, −7, 28] L White Matter (Precentral) 43 4.57 (2.79 × 10−5)

4 [−12, −10, −2] L Thalamus 33 4.56 (2.85 × 10−5)

5 [−45, −37, 43] L Inferior Parietal Lobule, 69 4.40 (4.64 × 10−5)

Postcentral Gyrus

6 [8, 21, 25] R Caudate 69 4.31 (5.95 × 10−5)

7 [36, −22, 19] R Insula, R Heschl 27 4.20 (8.37 × 10−5)

8 [30, −43, 52] R Inferior Parietal Lobule 88 4.10 (1.13 × 10−4)

9 [15, −46, 7] R Precuneus 34 4.07 (1.22 × 10−4)

10 [−24, −34, 70] L Postcentral Gyrus, 60 3.99 (1.53 × 10−4)

Paracentral Gyrus

11 [30, 41, 1] R White Matter (Frontal) 42 3.89 (2.01 × 10−4)

12 [12, −112, −2] L Calcarine 31 3.84 (2.41 × 10−4)

13 [−30, −43, 25] L White Matter (Parietal) 31 3.68 (3.78 × 10−4)

14 [30, 2, 58] R Middle Frontal Gyrus, 29 3.62 (4.46 × 10−4)

Superior Frontal Gyrus

15 [−54, −10, 10] L Heschl 29 3.46 (6.95 × 10−4)

16 [3, −91, 10] L Calcarine 30 3.28 (1.20 × 10−3)

Two-sample t-test was performed in SPM8 (p < 0.005, k ≥ 27)

Fig. 1 Autocorrelation decay rates (ACF b) are altered close to presumed focal regions. a: Left Temporal Lobe Epilepsy (LTLE) patients exhibit lower
ACF b values (slower decay of autocorrelation) relative to Healthy Controls (HC) in the Left Superior Temporal Pole (peak MNI coordinate [−36, 2, −17],
cluster extent = 59 voxels, peak p = 1.18 × 10−8, bHC(cluster) = 0.71 ± 0.09, bLTLE(cluster) = 0.57 ± 0.05)). b: Modeled ACF decay for the left
superior temporal pole cluster for HC and LTLE patients
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confirming reliability across subjects, and the absence of
outlier-effects. In addition, to probe the potential for
single-subject analyses, we compared voxel-wise whole-
brain individual patients’ ACF b maps to the average
healthy control ACF b map, and found that for 13 out of
19 patients there was a cluster (>6 voxels, median size =
32 voxels) at the identical coordinate (−36 2–17) which
had b values that were more than two standard deviations
lower than those in the same region in the mean control
map. Remaining patients had such clusters within the left
temporal lobe.

Classification analyses achieve 100 % accuracy in
distinguishing patients vs. controls
To verify that the differences in ACF b values were not
only statistically significant at the group level, but also
capable of differentiating between patients and healthy
controls even on a subject-by-subject basis, we con-
ducted follow-up classification analyses on ACF b maps
using Gaussian Process Classification with leave one
subject out cross-validation. We used the mask consist-
ing of 16 clusters identified as different between groups

as a 2nd level mask in PRoNTo. Every single subject
was classified correctly, achieving 100 % accuracy.
Graph of prediction values and the associated density
functions and weights map are shown in Fig. 2. While
it is the combination of all weights that defines the
model and individual contributions of voxels in the 2nd

level mask cannot be accessed directly, the weights map
confirms that most discriminative voxels are the ones
in the left temporal pole. Perfect accuracy implies that
the b-values in these regions encode sufficient informa-
tion for successful discrimination between the two
groups.
Using only the top cluster, which showed most signifi-

cant abnormality in patients according to the t-test, as a
2nd level mask, the accuracy went down, but remained
highly significant. Overall accuracy was 84.2 %, with spe-
cificity and sensitivity of 84.2 % (correctly classifying 16
out of 19 subjects in each group). Follow-up permuta-
tion testing (with 2000 repetitions) confirmed that both
the overall accuracy (p = 0.005) and the class accuracies
(p = 0.005; p = 0.005) were significantly above chance.
Therefore, ACF b values from this part of brain alone

Fig. 2 Autocorrelation decay rates classify patients with epilepsy with 100 % accuracy. a: Plot of prediction values at each level of the leave-one-sub-
ject-out cross-validation (fold) shows 100 % accuracy when employing Gaussian Process Classification within Pattern Recognition for Neuroimaging
Toolbox (PRoNTo) and using group differences in ACF b values as a 2nd level mask. b: Density estimates of predicted function values for the two classes
have a small overlap area, which is a sign of a good classifier. c: Weights map shows that the left temporal lobe cluster carries most weight in
the decision process
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contain sufficient information for significant discrimin-
ation between the two subject groups.
As a control, we repeated the classification using the

entire grey matter mask as a 2nd level mask. Gray matter
mask was obtained from SPM8 and thresholded at 0.5.
This resulted in reduced specificity of 53 %, not signifi-
cantly greater than the one expected by chance. This con-
firms that we discarded most of irrelevant information
when constraining the analyses to either of the two 2nd

level masks described above.

Constrained dynamics are linked with locally dense/long-
range sparse connectivity
Seed-to-voxel functional connectivity analysis revealed
that LTLE patients show increase in connectivity of the
most dynamically constrained cluster (ACF-identified clus-
ter at MNI (−36 2–17)) with neighboring left temporal and
frontal regions, as well as decreases in connectivity of this
cluster with parts of bilateral dorsal posterior cingulate
cortex (PCC), contralateral inferior temporal gyrus, and
contralateral thalamus, when compared to healthy con-
trols (p < 0.005 uncorrected; cluster extent > 10 voxels),
as shown in Fig. 3. Table 3 contains a complete list of
significant seed-to-voxel connectivity differences.

Connectivity abnormalities correlate with epilepsy duration
In linking neural and clinical features, for the latter
we focused on duration rather than seizure frequency

since our patient sample did not provide significant
variance in the latter. We found a significant positive
linear correlation (Pearson’s r = 0.61, p = 0.005) be-
tween the mean connectivity of the cluster in PCC
with the ACF-identified seed in left temporal pole
and the duration of epilepsy. Therefore, while PCC
exhibited overall decrease in connectivity with the
seed in patients relative to controls, patients with lon-
ger duration of epilepsy had increased connectivity.
On the other hand, for the cluster within the contra-
lateral inferior temporal gyrus, there was a clear, but
non-significant, trend towards negative correlation of
this area’s connectivity with the seed and duration of
epilepsy (Pearson’s r = −0.44, p = 0.060). For other
areas that showed abnormal connectivity to the ACF-
identified seed, connectivity with the seed did not
exhibit linear relation to epilepsy duration.

Connectivity abnormalities correlate with verbal memory
task performance
We found that disrupted local connectivity of the left
temporal lobe ACF cluster correlated negatively with
performance on the LM-DR task (Pearson’s r = −0.50,
p = 0.03, Fig. 4); that is, patients who performed
poorly on the verbal memory task exhibited higher
local connectivity relative to those who did well.
Greater severity of clinical symptoms was thus associ-
ated with higher local connectivity.

Fig. 3 Seed-to-voxel connectivity of the ACF-identified left temporal lobe cluster is significantly different in patients. Relative to healthy controls, increases in
connectivity are observed towards neighboring regions, while decreases are observed towards posterior cingulate cortex, thalamus, and the
contralateral temporal lobe
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Clusters with constrained dynamics form a less efficient
network in patients
Global efficiency of the 16-node network was signifi-
cantly decreased in patients compared to controls, with
one-sided 2-sample t-test p < 0.05 when varying over
costs of 0.20, 0.25, and 0.3 (corresponding to 20, 25,
and 30 % of strongest connections kept; p = 0.011,
p = 0.043, and p = 0.020, respectively). By thresholding
at a certain cost we are in effect fixing the average
degree of the network, so that the differences in

graph measures presumably reflect changes in net-
work topology. Nevertheless, it is important to note
that there is no reliable and fully unbiased way of
comparing networks, and that thresholding in this
manner may convert non-significant values into edges
for networks with low overall connectivity, and dis-
card a number of significant connections for networks
with high overall connectivity [60]. We did not find
significant between-group differences in other graph
metrics tested.

Fig. 4 Abnormalities in functional connectivity correlate with patients’ scores on the Logical Memory Delayed Recall task. a: Connectivity of the
dysregulated left temporal pole cluster (red) is increased with the neighboring temporopolar/insular/hippocampal region (blue) in patients
compared to controls (Table 3, Cluster 1). b: The strength of this local connection correlates negatively with patients’ performance on the verbal
memory task (r = −0.50, p = 0.030, N = 19)

Table 3 List of regions showing significantly different functional connectivity to the ACF-identified left temporal pole cluster

Left TLE > healthy controls

Peak MNI Location description Cluster extent t-test (peak level T (p))

1 [−36, −10, −14] L Temporopolar Area (BA 38), Hippocampus, 115 4.23 (7.70 × 10−5)

Inferior Prefrontal Gyrus (BA 47),

Insular Cortex (BA 13)

2 [−24, −25, −20] L Perirhinal Cortex (BA 35), 40 3.34 (9.88 × 10−4)

Parahippocampal Cortex (BA 36)

3 [−36, 29, −2] L Inferior Prefrontal Gyrus (BA 47) 27 3.67 (3.93 × 10−4)

4 [−33, −91, −2] L Secondary Visual Cortex (BA 18) 19 3.35 (9.57 × 10−4)

5 [−27, −67, 31] L Associative Visual Cortex (BA 19) 18 3.27 (1.20 × 10−3)

Left TLE < Healthy Controls

Peak MNI Location description Cluster extent t-test (peak level T (p))

1 [6, −22, 40] Bilateral Dorsal Posterior Cingulate Cortex (BA 31),
L Ventral Anterior Cingulate Cortex (BA 24)

97 −4.13 (1.04 × 10−4)

2 [54, −7, −29] R Inferior Temporal Gyrus (BA 20) 12 −3.61 (4.58 × 10−4)

3 [15, 14, 58] R Premotor Cortex (BA 6) 11 −3.36 (9.27 × 10−4)

4 [6, −22, 4] R Thalamus 11 −3.11 (1.80 × 10−3)

Two-sample t-test was performed in CONN Toolbox (p < 0.005, k ≥ 10 voxels)
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Discussion
We found that patients with left TLE show slower time-
series autocorrelation decay times in the left anterior
temporal pole (proximal to the presumed epileptogenic
zone) relative to decay times from the same region in
healthy controls, indicating loss of complexity and more
constrained functional dynamics. Decay time of the ACF
discriminated successfully between patients and healthy
controls on a subject-by-subjects basis in a purely data-
driven manner, achieving accuracy of 100 % in our sam-
ple of N = 19, and therefore showing potential for future
validation as a neurodiagnostic tool for localization of
epileptic foci.
Changes in BOLD time series complexity were accom-

panied by changes in local and global connectivity, with
increased connectivity with neighboring temporo-frontal
areas, and decreased connectivity with regions of the de-
fault mode network (DMN) and the contralateral temporal
lobe. This result agrees with recent findings that complex-
ity covaries with local connectivity [61] as well as with
recent ICA-based findings that MTLE specific networks
(which include temporal poles) show increased connectiv-
ity in patients, whereas the control-specific network (in-
cluding thalamus and anterior cingulate cortex) shows
decreased connectivity in patients [15].
Complexity of low frequency BOLD fluctuations has been

shown to correlate significantly with local connectivity as
measured by regional homogeneity (ReHo) [61], implying
that increased power spectrum scale invariance β (or, analo-
gously, decreased autocorrelation function b values) may be
a reflection of enhanced local synchronization. In addition,
recent findings suggest that, relative to controls, unilateral
MTLE patients show significantly increased regional homo-
geneity in the ipsilateral parahippocampal gyrus, but also
in the midbrain, insula, corpus callosum, bilateral sensori-
motor cortex, and frontoparietal subcortical structures [62].
This is in agreement with our findings of decreased
ACF b values in a cluster within the left temporal pole
and increased seed-to-voxel connectivity of this cluster
towards neighboring areas, as well as with abnormal
complexity found in the inferior frontal gyrus, bilateral
inferior parietal and postcentral area, and bilateral
insula.
The literature often reports structural changes in MTLE,

which is most often accompanied by hippocampal sclerosis
(HS), but also by (predominantly) ipsilateral atrophy of
temporal pole and other temporolimbic structures [63]. It
is clinically well established that mesial temporal sclerosis
may extend throughout the temporal lobe, and involve the
cortex and the white matter, thus leading to extensive tem-
poral lobe atrophy. Increased diffusion rate and decreased
anisotropy have been observed in the epileptic focus, of
TLE patients with unilateral HS [13, 14]. Increased dif-
fusion rate may be attributed to neuronal necrosis,

gliosis, and expanded extracellular space, while the reduc-
tion in anisotropy may come from a loss of ordered struc-
ture, myelin degradation, and lowered cell density.
Structural changes are often non-localizing, and even non-
lateralizing, including altered diffusion properties in the
contralateral temporal and inferior frontal lobes [14] and
widespread significant neocortical thinning in the sensori-
motor cortex [64]. Recurrent seizures and structural degen-
eration may lead to changes in functional connectivity as
well: repair mechanisms (such as MMP-9) that degrade the
matrix, or metabolic changes that impact glucose
utilization, may facilitate local connections while preventing
long-range connections.
Our recent simulation studies show that power spectrum

scale invariance varies as a function of both input type
(excitatory versus inhibitory) and input density, with
greater density of inhibitory or lower density of excita-
tory inputs producing constrained (less complex, more
persistent) dynamics [48]. Although epilepsy is often
thought of as a hyper-excitatory disorder, this may not
necessarily hold true during interictal periods (for ex-
ample, it has been postulated that ictal epileptic neuro-
physiological activity can trigger local area neuronal
network inhibition in attempt to stabilize the local neur-
onal network function [65]); constrained dynamics are, in
fact, consistent with hubs that contain more inhibitory
connections [48]. Furthermore, it has been postulated that
epileptogenesis may involve not just the creation of a hy-
perexcitable state, but also the existence of high con-
nectivity state and non-Markovian recurrent loops [66],
in agreement with our finding that epileptogenic re-
gions show higher local connectivity and exhibit longer
time series memory (slower autocorrelation decay). The
posterior cingulate cortex (PCC) is a pivotal hub for in-
tegration and mediation of information in the brain
[67]. It has been implicated in a range of functions, and
shown to be a part of the Default Mode Network
(DMN) and Dorsal Attention Network. It has strong re-
ciprocal connections to mesial temporal lobe memory-
related structures [68]. Our ACF-identified cluster
showed decreases in connectivity with PCC, in agree-
ment with a couple of recent studies showing diminished
connectivity between PCC and bilateral mesial temporal
structures in left MTLE patients [21, 69]. In addition, our
findings suggest that there is a linear relationship between
left temporal pole connectivity with PCC and epilepsy
duration, over which the connection is restored over time.
However, this restoration seems to be accompanied by ag-
gravated decrease in connectivity with the opposite tem-
poral lobe.
The Wechsler Memory Scale is one of the most com-

monly used memory tests in patients with epilepsy, and
is often a part of standard pre-surgical evaluation. Patients
with temporal lobe epilepsy have been found to have
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lower scores when compared to healthy controls, but the
tests on their own have been unable to lateralize temporal
epilepsy successfully [70, 71]. We found that local increase
in connectivity of the dynamically constrained cluster in
patients correlated negatively with scores on the Logical
Memory Delayed Recall task suggesting, as expected, that
more severe symptoms were associated with higher local
connectivity. Therefore, local connectivity of the left tem-
poral lobe ACF-identified region was not only increased
in patients compared to controls, but was also associated
with severity of verbal memory impairment within the pa-
tient population. This is not surprising considering that
the disconnected cluster included parts of affected hippo-
campus, a structure known to be heavily involved in mem-
ory processing.

Limitations and future directions
The current gold standard for localization of focal regions
includes identification of an epileptogenic zone on intracra-
nial EEG recordings combined with postoperative seizure
freedom following its resection. Due to invasive nature of
intracranial recordings and the extensive temporal duration
required to establish seizure freedom with confidence, data
of such nature are limited. In this study, we utilized data
from nineteen patients with concordant clinical findings,
including results of long-term video EEG monitoring and
structural MRI abnormalities confirmed by an experienced
neurologist. While this group serves as a benchmark for
the application of the technique developed here, and com-
parisons of individual ACF b maps to the mean control
map point to clinically relevant region in 100 % of tested
subjects, future work will address its applicability in sub-
jects with other forms of epilepsy, ideally with the epilepto-
genic zone confirmed via invasive recordings. The method
presented here is an alternative to multimodal methods
such as EEG-fMRI, which has the advantage of elimin-
ating the electrophysiological setups that are incompatible
with some MR head-coils, avoids extensive set-up times, is
completely fMRI data-driven (avoiding assumptions with re-
spect to the shape of the hemodynamic response func-
tion and modeling of epileptic events), and utilizes only ~
seven minutes of resting state data without the necessity
of active patient participation. Our aim is to provide a
first step towards a non-invasive method that reliably
detects focal regions in patients with drug resistant
cryptogenic epilepsy.

Conclusions
We developed techniques for the interictal identification
of epileptic foci through complexity and network analyses
of fMRI time-series. In a completely non-invasive and
data-driven manner, based on complexity values calcu-
lated from resting-state fMRI images alone, we were
able to achieve 100 % accuracy in distinguishing between

19 healthy controls and 19 epileptic patients with well-
defined left temporal epileptic foci. Our method has shown
high sensitivity and specificity in localizing focal points,
while providing additional information about the under-
lying dynamics of epileptic brains. Since the method does
not explicitly depend on existence of MRI-detectable struc-
tural abnormalities, it could eventually be applied to pa-
tients with epileptic foci that are inadequately defined or
poorly localized based on current state of the art neuroim-
aging techniques. Functional MRI analytical methods that
target network dynamics therefore hold promise in provid-
ing novel and clinically valuable tools for the identification
and resection of epileptogenic foci.
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