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Introduction

The main criterion in radiation therapy is to irradiate tumor vol-
ume with maximum dose while protecting vital organs and sur-
rounding normal tissue from unnecessary irradiation. Using elec-

tron beams for treatment of superficial tumors is one way to achieve the 
above criterion. The most important characteristic of clinical electron 
beams is the sharp dropoff in dose beyond the therapeutic range (R90). In 
cases where the collimator field is not large enough to cover the entire 
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ABSTRACT
Background: Field matching problems in abutting electron fields can be man-
aged by using spoilers.
Objective: The aim of this study was to design a Monte Carlo framework for the 
assessment of spoiler application in abutting electron fields.
Material and Methods: In this experimental study, a Siemens Primus treat-
ment head was simulated for a 5 MeV electron beam using BEAMnrc, DOSXYZnrc 
and EGSnrc user codes. Validation of beam model was done by measurement using 
a MP3-M water tank and a Semi-flex Chamber-31010 (PTW, Freiburg, Germany). 
An in-house routine was developed to calculate the combined isodose curves result-
ing from simulated adjacent fields. The developed framework was analyzed using 
PMMA and chromium spoilers. 
Results: The penumbra width increased from 27.5 mm for open fields to 42 mm 
for PMMA and 40 mm for chromium. The maximum junction dose reduced from 
115% for open fields to 107% for PMMA and 108% for chromium. R90 reduced 
about 6 mm for PMMA and 3 mm for chromium. Uniformity index reduced from 
93% to 77% for both spoilers. Surface dose increased from 79% to 89% for PMMA 
and 88% for chromium. 
Conclusion: Using spoilers, penumbra width at the surface was increased, size 
and depth of hot spots as well as the therapeutic range were reduced and dose homo-
geneity at the junction of abutting electron fields was improved. For both spoilers, 
the uniformity index reduced, and surface percent dose increased. The results of this 
research can be used to optimize dose distribution in electron beam treatment using 
abutting fields. 
Citation: Felfeliyan F, Atarod M, Amouheidari A, Noshadi S, Shokrani P. Design and Implementation of a Monte Carlo Framework for Assess-
ment of Spoiler Applications in Abutting Electron Fields. J Biomed Phys Eng. 2020;10(3):341-348. doi: 10.31661/jbpe.v0i0.609.
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target volume or tumor dose distribution is not 
acceptable due to patient anatomy, abutting 
electron fields are used. Electron beam diver-
gence and lateral scattering may lead to signif-
icant dose inhomogeneity and creation of hot 
or cold points in the junction region [1]. Dif-
ferent solutions have been proposed to solve 
the problem of hot and cold spots in abutting 
electron fields. The simplest technique is the 
use of an optimal skin gap between the two 
adjacent electron fields. However, determina-
tion of an optimal skin gap is complicated due 
to the increased lateral scatter of low energy 
electrons. Additionally, small deviations in 
field separation may lead to significant varia-
tion in dose in the overlap region [1-3]. 

A. M. Kalend et al have suggested the use 
of a beam-edge modifier to broaden electron 
beam penumbra. This device is a high-density 
triangular-toothed comb and its function is to 
reduce electron intensity by selective absorp-
tion of electrons. However, dose ripple effect 
and aligning of the device are limitations of 
this method [4]. 

Alternatively, use of electron spoiler was 
proposed in different studies for a wide range 
of applications [2, 5, 6]. In Mckenzie’s study 
[2], a tissue equivalent resin was used at the 
end of electron applicator in order to produce 
the penumbra broadening required for desir-
able beam matching. The penumbra width is 
defined as the lateral distance between 80% 
and 20% isodose lines. The following advan-
tages for using a spoiler were mentioned: over-
lap or gap is not required between adjacent 
fields, and spoiler design is independent of the 
applicator cone characteristics. The following 
relationships between penumbra widths, beam 
energy and spoiler material specifications 
were proposed:

Pm
2 = P0

2 + Ps
2                   (1)

Ps (mm) = kLz1/2E-1           (2)

Pm and P0 are penumbra widths at the phan-
tom surface with and without spoiler in place, 

respectively. Ps is the broadening resulting 
from the contribution of the spoiler, E (MeV) 
is the beam energy, L (mm) is the distance from 
the inner face of the spoiler to the phantom sur-
face, z (mm) is the thickness of the spoiler and 
k is a constant. Value of k depends on spoiler’s 
density and scattering power. Therefore, it was 
recommended to determine the value of k by 
measurement for other spoiler materials [2]. 
Further measurements are required in order 
to predict the effect of beam spoilers on dose 
distribution in depth, both inside and outside 
the field junction. Dose distribution charac-
teristics include R90, surface dose percentage, 
hot spot specifications and dose uniformity 
index.  A hot spot is an area of at least 2 cm2, 
out of the target which receives a higher dose 
than the target dose [1]. Parameters that af-
fect spoiled beam dose distribution include 
field size, depth, z, ρ, E and L [2]. Considering 
the number of influence factors, Monte Carlo 
simulation method can be used to evaluate the 
effect of adding a spoiler to produce uniform 
dose distribution in abutting fields.  

The goal of this research was to design a 
Monte Carlo framework for the assessment of 
spoiler application in abutted electron fields. 
Using this framework, thickness of different 
spoilers for specific dose distribution criteria 
in the junction of abutting fields can be deter-
mined. This framework was implemented for 
a low energy electron beam, a low density and 
an intermediate density spoiler material.

Material and Methods
In this experimental study a Siemens Primus 

linear accelerator was simulated for a 5 MeV 
nominal energy electron beam. After validat-
ing the simulation results, the impact of spoil-
ers on dose distribution inside and outside the 
junction of abutting electron fields were inves-
tigated.

Simulation of Beam Model
In this work, a Monte Carlo model of Sie-

mens Primus linear accelerator was simulated 
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for a 5 MeV nominal energy electron beam 
using manufacture provided specifications. 
BEAMnrc and EGSnrc user codes were used 
to simulate the treatment head in electron 
mode [7-10]. The following component mod-
ules were used to simulate different head com-
ponents: exit window (SLAB), primary and 
secondary scattering foils (CONESTAK), ion 
chamber (CHAMBER), collimating Y jaws 
(JAWS), X-multi leaf collimator (MLC), ac-
cessory slot 1 (CONESTAK), accessory slot 
2 (CONESTAK) and applicator (APPLICAT) 
[11]. A circular electron beam (ISOURC=0) 
with radius equal to 0.1 cm was used. Particle 
related data were as follows: 5×107 particles, 
global cut-off energies for electron was 0.7 
MeV and for photon was 0.01 MeV. The field 
size was 10×10 cm2.

Dose Calculations
The resulting phase space file was used as 

a source for dose calculations for 10×10 cm2 
field size at SSD=100 cm in a 30×30×45 cm3 
water phantom using DOSXYZnrc user code 
[12]. Voxel sizes (x×y×z) at different percent 
depth dose (PDD) and beam profile regions 
were set as follows: 1 cm×1 cm×0.2 cm in 
PDD build-up region, 1 cm×1 cm×0.5 cm be-
yond the build-up region and 1 cm×1 cm×0.5 
cm for beam profile.

Verification of Electron Beam Model
An automatic MP3-M water phantom tank, 

MEPHYSTO mc2 software platform and a 
Semi-flex Chamber-31010 with sensitive vol-
ume of 0.125 cm3 (PTW, Freiburg, Germany) 
were used for dose distribution measurements. 
Moreover, the electron field size was 10×10 
cm2 and SSD=100 cm. Validation of devel-
oped beam model was done by comparing the 
measured and calculated depth and lateral 
dose distributions. The percentage difference 
of calculated and measured values was deter-
mined using the following formula 

(   
 

calculated dose measured dose
measured dose

− ×100) and 

were used to compare with acceptance criteri-
on [13]. The acceptance criterion for simulat-
ed beam model is 2% difference for PDD build 
up region and 3% difference beyond the build-
up region and for beam profile is 2% differ-
ence at the edges and 1% difference in other 
regions [14].

Simulation of Spoiler
Simulation of spoilers (using SLAB compo-

nent module) placed at the end of the electron 
applicator, was done using previously vali-
dated phase space file for a 5 MeV nominal 
energy and 10×10 cm2 field size. PMMA and 
chromium were selected as low and interme-
diate density materials, respectively. A thick-
ness of 5 mm was selected for PMMA as the 
reference thickness. For chromium, the thick-
ness to produce the same angular spread as 
5mm PMMA was calculated to be 0.3 mm, 
using the radiation length (X0) concept. Ra-
diation length is the mass thickness in which 
the transmitted electron beam energy reduces 
to 1/e of its original energy, due to radiative 
interactions. The impact of these materials as 
spoilers on dose distribution inside and out-
side of the junction between abutting electron 
fields was investigated.

Calculation of Dose Distribution 
in Abutting Electron Fields

An in-house routine was developed in order 
to calculate the combined isodose curves re-
sulting from the two simulated abutting fields. 
SSD was 100 cm and the gantry angle for both 
fields was 0°. Resultant isodose curves were 
calculated and the following parameters were 
estimated: R90, surface dose percentage is rela-
tive to dose at depth of maximum dose (dmax), 
hot spots specifications and dose uniformity 
index.

P0, Pm and Ps were calculated at the surface 
using isodose curves and equation (1). The 
value for k was calculated using equation (2). 
In addition, uniformity index produced by dif-
ferent spoilers was compared. Uniformity in-

343



J Biomed Phys Eng 2020; 10(3)

Felfeliyan F. et al

dex is defined as the ratio of width of 90% and 
50% isodose lines at the depth of half of 85% 
depth dose [1]. Moreover, depth of 90% dose 
(R90), inside and outside the junction region, 
were compared to the open beam for different 
spoilers.

Results
Verification of the developed 5.9 MeV elec-

tron beam model was done by comparing the 

calculated and measured dose distributions. 
The maximum percentage difference between 
calculated and measured PDD was 1%, except 
for the build-up region in which the difference 
was 2%. The difference between calculated 
and measured profile was 2% at the edges 
of the field and less than 1% in other regions 
(Figure 1).

Figure 2 illustrates the combined isodose dis-
tribution in water phantom irradiated with two 

Figure 1: Comparison of calculated 5.9  MeV and measured 5 MeV dose distributions for 10×10 
cm2 field size at 100 cm SSD, (a) percent depth dose curves (b) dose profile curves

Figure 2: Combined isodose distribution calculated for two abutting 5 MeV, 10×10 cm2 open 
(without spoiler) electron fields, normalized to dose at the depth of maximum dose outside the 
junction.
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abutting fields without spoiler (open fields). 
The combined isodose patterns of abutting 
electron fields transmitted through PMMA 
and chromium spoilers are shown in Figures 3 
and 4, respectively. Depth dose distributions at 
the field junction for both spoilers are shown 
in Figure 5.

The values for Pm, Ps, k (using equation (2)), 

uniformity index, R90 inside and outside the 
junction and surface dose percentage were cal-
culated for PMMA and chromium and results 
are shown in Table 1.

Discussion
In this work, a Monte Carlo simulation 

framework was designed in order to evaluate  

 
Figure 3: Combined isodose distribution calculated for two abutting 5 MeV, 10×10 cm2 electron 
fields with 5 mm PMMA spoiler, normalized to dose at the depth of maximum dose outside the 
junction.

Figure 4: Combined isodose distribution calculated for two abutting 5 MeV, 10×10 cm2 electron 
fields with 0.3 mm chromium spoiler, normalized to dose at the depth of maximum dose out-
side the junction.
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the effect of spoilers on dose distribution in 
depth, both inside and outside abutted electron 
field junctions. This framework was imple-
mented for PMMA and chromium spoilers and 
the results were analyzed using an in-house 
routine. Using spoilers, penumbra width at the 
surface was increased, size and depth of hot 
spots, as well as the therapeutic range was de-
creased and dose homogeneity was improved 
at the junction of abutting electron fields. The 
amount of junction dose without spoiler at 12 
mm depth was 115% with respect to dose at 
dmax. Using PMMA spoiler, both percent dose 

and depth of hot point reduced to 107% and 
7.1 mm, respectively. For chromium 108% hot 
point was seen at the depth of 8 mm (Figure 
5). Therefore, a reduction of about 7% in dose 
improved dose uniformity in this region due to 
broadening penumbra width. The value of Ps 
and therefore Pm produced by chromium spoil-
er was less compared to PMMA. The value of 
k for PMMA was in agreement with what re-
ported by McKenzie [2]. 

R90 was reduced both inside and outside the 
field junction for both spoilers. Reduction in 
R90 was more for PMMA, about 6 mm versus 3 

 

 
Figure 5: Percent depth dose curves at the junction of abutting 5 MeV, 10×10 cm2 electron fields 
with and without chromium and PMMA spoilers, normalized to the dose at the depth of maxi-
mum dose outside the junction.

spoiler Pm 
(mm)

Ps 
(mm)

P0 
(mm) k Uniformity 

index
R90 inside the 
junction (mm)

R90 outside the 
junction (mm)

Surface 
dose (%)

open (without 
spoiler) _ _ 27.5 _ 0.93 16.5 15.5 79

PMMA 42 31.74 - 1.26 0.77 10 9.5 89
chromium 40 29.04 - 5.08 0.77 13 12.5 88

Table 1: Dose distribution parameters produced using PMMA and chromium spoilers for two 
abutting 5 MeV, 10×10 cm2 electron fields.
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mm for chromium in both regions. Thus, chro-
mium is more suitable to be used as spoiler for 
the treatment of deeper tumors. According to 
McKenzie [2], when using a spoiler, change 
in depth of a specific isodose line is expected 
to be equal to tissue equivalent thickness of 
the spoiler. Our results confirmed this sug-
gestion for PMMA approximately, but not for 
chromium. This is because the thickness of 0.3 
mm for chromium was selected to produce the 
same angular spread but not the same energy 
loss [15].  

Moreover, uniformity index was reduced 
due to penumbra broadening for both spoilers. 
This is due to movement of high value iso-
doses toward the field interior while the low 
value isodoses remain unchanged [2]. Thus, 
Pm increased and led to a decrease in uniformi-
ty index. Therefore, when using a spoiler, field 
size should be larger. Uniformity index is used 
to calculate the width of uniform section of a 
field. For example, for the spoilers evaluated 
in this research, each 10×10 cm2 field covered 
a 7.7 cm uniform width (0.77×10 cm2) com-
pared to 9.3 cm width (0.93×10 cm2) for the 
open field.  

Finally, surface percent dose increased be-
cause of increase in electron angular spread. 
When using a spoiler, electron angle of scatter 
at the surface increases. Therefore, fluence at 
the surface increases by 1/cosθ, where θ is the 
angle of scatter, while fluence at the depth of 
maximum remains unchanged [1], hence in-
creasing the percent surface dose with respect 
to dose at dmax. 

Conclusion
Using both spoilers resulted in larger penum-

bra width at the surface, increase in the surface 
percent dose and reduction in the therapeutic 
range. Dose homogeneity at the junction of 
abutting electron fields was improved. How-
ever the uniformity index was reduced. The 
results of this research can be used to optimize 
dose distribution in electron beam treatment 
using abutting fields. The framework devel-

oped and implemented in this research can be 
used to optimize dose distribution in electron 
beam treatment using abutting fields.
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