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Background: Based on the assumption that systemic metabolic disorders affect

cognitive function, we have developed a deep neural network (DNN) model that can

estimate cognitive function based on basic blood test data that do not contain dementia-

specific biomarkers. In this study, we used the same DNNmodel to assess whether basic

blood data can be used to estimate cerebral atrophy.

Methods: We used data from 1,310 subjects (58.32 ± 12.91years old) enrolled in the

Brain Doc Bank. The average Mini Mental State Examination score was 28.6 ± 1.9. The

degree of cerebral atrophy was determined using the MRI-based index (GM-BHQ). First,

we evaluated the correlations between the subjects’ age, blood data, and GM-BHQ.

Next, we developed DNN models to assess the GM-BHQ: one used subjects’ age and

blood data, while the other used only blood data for input items.

Results: There was a negative correlation between age and GM-BHQ scores (r = -

0.71). The subjects’ age was positively correlated with blood urea nitrogen (BUN) (r =

0.40), alkaline phosphatase (ALP) (r = 0.22), glucose (GLU) (r = 0.22), and negative

correlations with red blood cell counts (RBC) (r = −0.29) and platelet counts (PLT) (r =

−0.26). GM-BHQ correlated with BUN (r = −0.30), GLU (r = −0.26), PLT (r = 0.26), and

ALP (r = 0.22). The GM-BHQ estimated by the DNN model with subject age exhibited

a positive correlation with the ground truth GM-BHQ (r = 0.70). Furthermore, even if the

DNN model without subject age was used, the estimated GM-BHQ showed a significant

positive correlation with ground truth GM-BHQ (r = 0.58). Age was the most important

variable for estimating GM-BHQ.

Discussion: Aging had the greatest effect on cerebral atrophy. Aging also affects various

organs, such as the kidney, and causes changes in systemicmetabolic status, whichmay

contribute to cerebral atrophy and cognitive impairment. The DNN model may serve as a

new screening test for dementia using basic blood tests for health examinations. Finally,

the blood data reflect systemic metabolic disorders in each subject—this method may

thus contribute to personalized care.

Keywords: Alzheimer’s disease, artificial intelligence, deep learning, dementia, cerebral atrophy, screening test,

MRI DL-based estimation of cerebral atrophy
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INTRODUCTION

For effective treatment and prevention of dementia, it is
important to develop an objective, accurate, and inexpensive
screening test for early diagnosis of cognitive impairment.
Recently, we have developed a screening test for cognitive
impairment using basic blood test data for health examinations
(1, 2). The screening test was based on the relationship between
cognitive function and systemic metabolic disorders in the
elderly. That is, lifestyle-related diseases can result in vascular
cognitive impairment (VCI) due to atherosclerosis. VCI plays
an important role not only in vascular dementia, but also in
the development of dementia in the elderly with Alzheimer’s
disease (AD) (3–5). In addition, malnutrition (6), anemia (7),
diabetes mellitus (8), liver dysfunction (9), and renal dysfunction
(10) can cause cognitive impairment and increase the risk
of dementia. Importantly, these systemic metabolic disorders,
including lifestyle-related disorders, can be detected by basic
blood tests for health examinations that do not contain dementia-
specific biomarkers.

.We used deep learning, which is the most evolved subset of
machine learning, to analyze the complex nonlinear relationship
between systemic metabolic disorders and cognitive function.
In conventional machine learning, feature extraction during
learning is manually determined; however, the DNN can
determine it automatically. Therefore, DNN allows for the
analysis of complex nonlinear relationships and automatically
extracts features from the data if there is a sufficient amount
of data (11). DNNs have been used across various fields in the
life sciences, such as medical imaging, electronic health records,
robotic-assisted surgery, and genomics (12–14).

We used a feedforward deep neural network (DNN) with
multiple hidden layers to assess cognitive function based on basic
blood test data and subject age. The DNN model was trained
in elderly people with advanced arteriosclerosis and various
cognitive functions. We evaluated the estimation accuracy of the
DNN model using a leave-one-out cross-validation and found a
significant correlation between the ground truth and predicted
MMSE scores (r = 0.85, p < 0.001). It should be emphasized
that the DNN model can assess cognitive function with high
accuracy using only blood data. In addition, the estimation
accuracy of the DNN model was validated in subjects who were
not included in the training of the DNN model (r = 0.66, p
< 0.001). Moreover, the binary classification based on MMSE
scores (cut-off value of 23/24) showed a high estimation accuracy
(75%) and specificity (87%). These results suggest that the DNN
model allows us to estimate cognitive dysfunction with high
accuracy using basic blood test data, which does not include
dementia-related biomarkers such as amyloid β.

Dementia is linked to cerebral atrophy and cognitive
impairment. It has been reported that both cognitive impairment
and cerebral atrophy are linked to systemic metabolic disorders.
For example, chronic kidney disease (CKD) has been reported to
be associated with cerebral atrophy (15–18). In addition, diabetes
mellitus (19) and malnutrition (20) can also result in cerebral
atrophy. Importantly, these systemic disorders can be detected
by basic blood test data, such as urea nitrogen, albumin, and

blood glucose levels. In the previous study, we analyzed the
relation between cerebral atrophy and basic blood test data in
40 subjects, using a voxel-based specific regional analysis system
for Alzheimer’s disease (VSRAD) (21). This preliminary study
demonstrated that total protein, A/G ratio, and Cl significantly
correlated with the variables on VSRAD (1). These results point
to the possibility of estimating cerebral atrophy based on basic
blood test data using the DNNmodel.

In this study, we evaluated whether the DNN model makes
it possible to estimate cerebral atrophy based on basic blood
test data. Similar to the DNN model for estimating cognitive
function, the input data used were subject age and basic blood
test data. As the output of the DNN model, we used the MRI-
based brain health quotient (BHQ), which measures the amount
of gray matter (GM-BHQ) and the proportion of white matter
anisotropy (22), which was used as an indicator of cerebral
atrophy in this study. The DNN model was trained using brain
docking data. We found a high estimation accuracy of the DNN
model using repeated five-Fold cross-validation. Moreover, even
if only blood data were input without including age in the input
data, the estimation accuracy was high.

SUBJECTS AND METHODS

Subjects
We used data from 1,310 subjects enrolled in Brain Doc Bank
(BHQ Co., Ltd., Saitama, Japan); 780 male cases, 530 female
cases; 58.32 ± 12.91 years (mean age ± SD). All the data were
anonymized. The cognitive function of the subjects was assessed
using the Japanese version of the Mini-Mental State Examination
(MMSE) (23). The average MMSE score was 28.6± 1.9 (mean±

SD). Figure 1A shows the distribution of the MMSE scores in all
subjects. Most subjects had MMSE scores within a normal range
(28-30). In addition, 95.0% of subjects had an education level
above high school graduation; 63.8% of the total had an education
level above college graduation.

Blood Test
All subjects underwent a basic blood test, including a complete
blood count and a basic metabolic panel. The blood test results
are presented in Table 1. The blood test data were placed in
the input layer of the DNN model. Table 2 represents the mean
values and ranges of blood test data.

Magnetic Resonance Imaging
MRI was performed using a 3T MR system (Signa EXCITE 3T;
GE Healthcare, Wankesha, WI, USA) with an 8-channel brain
phased-array coil. Original T1 images were obtained using a
three-dimensional fast-spoiled gradient-recalled acquisition in
the steady state. The acquisition parameters were as follows:
repetition time, 10ms; echo time, 4.1ms; inversion time, 700ms;
flip angle, 10; field-of-view, 24 cm; section thickness, 1.2mm; and
resolution, 0.9× 0.9× 1.2mm. The SPM12 software (Institute of
Neurology, London, UK) was used for image processing of the
brain volume (24). The 3D-T1WI in native space was spatially
normalized, segmented into gray matter (GM), white matter
(WM), and cerebrospinal fluid images, and modulated using
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FIGURE 1 | Distributions of GM-BHQ and MMSE scores. The vertical axis reflects the number of cases, while the horizontal axis indicates the GM-BHQ (A) and

MMSE scores (B), respectively.

TABLE 1 | Blood test items for the estimation of GM-BHQ.

Complete blood count General biochemical examination

WBC TP TG

RBC ALB HDL-Chol

Hb A/G ratio LDL-Chol

Ht AST BUN

MCV ALT Cr

PLT r-GTP UA

T-BIL GLU

ALP HbA1c

T-Chol

WBC, white blood cell; RBC, red blood cell; Hb, hemoglobin; Ht, hematocrit; MCV,

mean corpuscular volume; PLT, platelet; TP, total protein; ALB, albumin; AST, aspartate

aminotransferase; ALT, alanine aminotransferase; r-GTP, γ-glutamyl transpeptidase; T-BIL,

total bilirubin; ALP, alkaline phosphatase; T-Chol, total cholesterol; TG, triglyceride; HDL-

Chol, high-density lipoprotein cholesterol; LDL-C , low-density lipoprotein cholesterol;

BUN, blood urea nitrogen; Cr, creatinine; UA, uric acid; GLU, glucose.

the Diffeomorphic Anatomical Registration through Exponential
Lie Algebra (DARTEL) toolbox in SPM12. To preserve the GM
volumes within each voxel, we modulated the images using the
Jacobian determinants derived from spatial normalization. The
resulting modulated GM images were smoothed using an 8-mm
full-width at half-maximum Gaussian kernel.

To assess the degree of cerebral atrophy, we converted the
GM volumes calculated by SPM12 to the brain healthcare
quotient (BHQ) (22), which is similar to the intelligence quotient
(IQ) score. The mean value was defined as BHQ 100, and
standard deviation was defined as 15 BHQ points in 144 healthy
participants (48.4 ± 8.1 years). Approximately 68% of the
population is between BHQ 85 and BHQ 115, and 95% of the

TABLE 2 | Mean values and ranges of blood test data.

Variable Mean ± SD Min Max

WBC (103/µl) 54.90 ± 14.70 20.50 169.30

RBC (104/µl) 466.58 ± 41.51 274.00 600.00

Hb (g/dl) 14.52 ± 1.41 8.00 19.00

Ht (%) 42.74 ± 3.70 28.10 54.60

HCV(fl) 0.75 ± 10.03 0.00 251.90

PLT (104/µl) 22.72 ± 5.08 5.40 45.60

TP (g/dl) 7.40 ± 0.40 6.20 10.10

ALB (g/dl) 4.44 ± 0.25 3.40 5.50

A/G ratio 1.53 ± 0.23 0.50 4.60

AST (IU/L) 24.14 ± 10.80 9.00 251.00

ALT (IU/L) 23.58 ± 15.63 3.00 215.00

γGTP (IU/L) 42.02 ± 47.90 7.00 768.00

ALP (U/L) 210.23 ± 60.34 57.00 508.00

T-BIL (mg/dl) 0.80 ± 0.33 0.20 3.50

T-Chol (mg/dl) 211.04 ± 34.03 24.00 325.00

TG (mg/dl) 111.37 ± 68.46 28.00 626.00

HDL-Chol (mg/dl) 64.44 ± 16.49 30.00 155.00

LDL-Chol (mg/dl) 121.15 ± 30.98 39.00 236.00

BUN (mg/dl) 14.64 ± 3.86 6.50 55.10

Cr (mg/dl) 0.76 ± 0.19 0.36 3.24

UA (mg/dl) 5.35 ± 1.31 1.80 10.20

GLU (mg/dl) 101.11 ± 18.07 79.00 249.00

HbA1c (%) 5.50 ± 0.61 3.70 10.90

WBC, white blood cell; RBC, red blood cell; Hb, hemoglobin; Ht, hematocrit; MCV,

mean corpuscular volume; PLT, platelet; TP, total protein; ALB, albumin; AST, aspartate

aminotransferase; ALT, alanine aminotransferase; r-GTP, γ-glutamyl transpeptidase; T-BIL,

total bilirubin; ALP, alkaline phosphatase; T-Chol, total cholesterol; TG, triglyceride; HDL-

Chol, high-density lipoprotein cholesterol; LDL-Chol, low-density lipoprotein cholesterol;

BUN, blood urea nitrogen; Cr, creatinine; UA, uric acid; GLU, glucose; HbA1c,

Hemoglobin A1c.
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FIGURE 2 | Structure of the deep neural network for data analysis. The input vectors included age, sex, and blood test data. The output vector was regressed to

estimate GM-BHQ. The hidden layer contained no backward connections from the downstream layers.

population is between BHQ 70 and BHQ 130. We calculated the
BHQ of the GM, hippocampus, and parahippocampus. The GM
BHQ is calculated by averaging the standard deviations of each
brain region based on the automated anatomical labeling (AAL)
atlas (22, 25).

In this study, we used the mean value of gray matter BHQ
(GM-BHQ). Figure 1A shows the distribution of BM-BHQ
in all the subjects. The average GM-BHQ was 92.13 ± 9.40
(57.39∼123.17 range). Note that the distribution of GM-BHQ
is relatively widespread, in contrast to the distribution of MMSE
scores (Figure 1B).

Deep Neural Network Model
We employed a DNNmodel to estimate the GM-BHQ using age,
sex, and basic blood test data. The DNNmodel was implemented
on the Tensorflow 2 platform (Tensorflow 2020) for data analysis
(26). The DNN for regression was modeled in Tensorflow 2 as a
fully-connected feedforward neural network, which has 126,073
trainable parameters in total. It is noteworthy that an activation
function called the scaled exponential linear unit (SELU) was
chosen with the ADAM optimizer for the best accuracy in
this problem domain. The combination of batch normalization,
dropout, and L2 regularization as regularization algorithms was
applied during the training phase to avoid overfitting and acquire
stable DNN models.

Input Layer
The weighted combination α =

∑n
i=1 wixi + b aggregates input

signals xi in each layer to activate an output signal f (α) to the
connected neuron in the next layer. The DNN in this study
included 35 neurons in the input layer (i.e., age, sex, and 33
variables in the blood test items; Figure 2).

Hidden Layers
Each hidden layer was placed with 256 neurons, and the total
number of hidden layers was four based on the results of a
random search of hyper-parameters. The DNN model with 256
neurons and four hidden layers showed the best accuracy for this
regression problem. Each function (f) was used throughout the
network, and bias (b) accounted for the activation threshold of
the neuron. After examining the results from a random search of
hyper-parameters, we chose SELU as it is a nonlinear activation
function with excellent characteristics to help normalize the

input signals. Prior to applying SELU to each hidden layer, the
algorithms for batch normalization and 10% dropout rate were
applied to the input signals.

Output Layer
The output signals (f (α)) in each layer were determined using
a weighted combination of the input signals xi from upstream
of the DNN. In the output layer, a loss function, L

(

W, B
∣

∣ j
)

, was
assessed using themean square error between the estimated value
and the actual MMSE score. The learning process updated the
weights (W) and biases (B) until the loss function, L

(

W, B
∣

∣ j
)

,
was minimized. Note that W is the collection {Wi}1 :N−1, where
Wi denotes the weight matrix connecting layers i and i + 1 for a
network of N layers. Similarly, B is collection

{

bi
}

1 :N−1
, where

bi denotes the column vector of biases for layer i+ 1.

Data Analysis
To elucidate the relationship between systemic metabolic status
and brain atrophy, we analyzed the correlation between blood test
data and GM-BHQ. Next, we examined the difference between
the blood data with GM-BHQ of 100 or more and blood data
with GM-BHQ of <100. We assessed the risk factors for low
GM-BHQ scores under 100 using the logistic regression analysis
model. Finally, we validated the estimation accuracy of the DNN
model using a repeated five-Fold cross-validation.

RESULTS

Pearson Correlations Between GM-BHQ
and Blood Test Data
There was a high negative correlation between the GM-BHQ
and subject age (r = −0.71). Blood data showed the following
correlations with the GM-BHQ: BUN (r = −0.30), GLU (r =
−0.26), PLT (r = 0.26), and ALP (r = 0.22). In addition, age was
positively correlated with BUN (r = 0.40), ALP (r = 0.22), GLU
(r = 0.22), and negatively correlated with RBC (r= −0.29) and
PLT (r= −0.26). There were positive correlations between BUN
and Cr (r= 0.31), Cr, and RBC (r= 0.27). Table 3 summarizes
the correlations (showing a correlation coefficient of 2 or greater)
between the GM-BHQ, subject age, and blood data. Figure 3
shows the scatter plots of GM-BHQ, subject age, and blood data.
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There was a weak but significant positive correlation between
the GM-BHQ and MMSE scores (r = 0.23, p < 0.001). Figure 4
shows the scatter plot of GM-BHQ and MMSE scores. There was
no significant correlation between MMSE score and blood data
(p > 0.05).

Logistic Regression Analysis to Assess the
Risk of Low GM-BHQ
We assessed the risk factors for low GM-BHQ under 100 by
means of the logistic regression analysis model. As age increases,
the risk of lowGM-BHQ increases, with an odds ratio of 1.15 (p<

0.001). Increased blood albumin, LDL-C, and Fibrinogen reduce
the risk of low GM-BHQ, with odds ratios of 0.17 (p< 0.01), 0.99
(p < 0.05), and 0.99 (p < 0.001), respectively. Increased Alp, Ht,
and BUN increase the risk of low GM-BHQ, with odds ratios of
1.01 (p < 0.05), 1.16 (p < 0.01), and 1.12 (p < 0.05), respectively.

TABLE 3 | Correlations between the GM-BHQ, subject age and the blood data.

GMBHQ Age BUN Alp GLU PLT

GMBHQ 1 0.71*** −0.30* −0.22* −0.26* 0.26*

Age −0.71*** 1 0.40* 0.22* 0.22* −0.26*

BUN −0.30* 0.40** 1 0.03 0.12 −0.19

ALP −0.22* 0.22* 0.03 1 0.16 −0.01

GLU −0.26* 0.22* 0.12 0.16 1 −0.07

PLT 0.26* −0.26* −0.19 −0.01 −0.07 1

*0.2 < r ≤ 0.4, **0.4 < r ≤ 0.7, ***0.7 < r < 1.0.

ALP, alkaline phosphatase; BUN, blood urea nitrogen; GLU, glucose; PLT, platelet.

DNN-Based Estimation of GM-BHQ Using
Basic Blood Test Data
To confirm the accuracy of the DNN model, we compared
the ground truth GM-BHQ with those estimated by the DNN
model using repeated five-Fold cross-validation. The estimated

FIGURE 4 | Scatter plot of GM-BHQ and MMSE scores. The vertical axis

indicates the GM-BHQ, and the horizontal axis indicates MMSE scores.

FIGURE 3 | Scatter plots of GM-BHQ, subject age, and blood data. The vertical axis indicates the GM-BHQ, and the horizontal axis indicates subjects age (A), BUN

(B), PLT (C), ALP (D), and GLU (E), respectively.
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GM-BHQ exhibited a strong positive correlation with the ground
truth GM-BHQ (r= 0.70, p < 0.001, Figure 5A).

Since the subjects’ age exhibited the highest correlation
coefficient, the GM-BHQ estimated by the DNN model might
be strongly influenced by the subjects’ age. Therefore, in order
to evaluate the degree of influence of the subject’s age on the
DNN estimation, we compared the ground truth GM-BHQ to the
estimated GM-BHQ using a second DNN trained without the age
parameter (Figure 5B). The correlation coefficient of the GM-
BHQ estimated by the secondDNNmodel without age compared
with the ground truth GM-BHQ decreased slightly from 0.74
to 0.54. However, the correlation was still statistically significant
(p < 0.001).

Variable Importance in the DNN Estimation
Finally, we assessed the variable importance of the input
data in the DNN estimation of the GM-BHQ. The variable
importance was calculated using the permutation importance,
which measures the increase in the prediction error, i.e., mean
square error, when a single feature value is randomly shuffled.
This procedure breaks the relationship between the feature
and the target, thus the increase in the prediction error is
indicative of how much the model depends on the feature (27).
We compared the variable importance with and without the
subject age. When the age of the subject was included in the
DNN model, the subjects’ age was the highest in the variable
importance, followed by the blood data items. Table 4 shows
the top 10 relative importance and absolute importance values.
Following the subjects age, blood test items related to anemia (Ht,
RBC), diabetes (HbA1c, GLU), and renal function (Cr) revealed
relatively high Variable Importance (A). Although the order of
variable importance changed, blood test items related to anemia
(RBC), diabetes (GLU), and renal function (Cr) showed relatively
high variable importance, even without the subjects’ age (B).

DISCUSSION

The present study demonstrated that the DNN model could
estimate the GM-BHQ (i.e., an index of cerebral atrophy) with
high accuracy based on basic blood data that did not contain
biomarkers specific to dementia, such as amyloid beta. It is not
yet clear why the DNN model can estimate cerebral atrophy
based on basic blood data. This issue is discussed from the
following perspectives.

Effects of Aging on Brain and Systemic
Metabolic Function
There was a strong negative correlation between age and GM-
BHQ scores. In the DNN model, the subjects’ age was the most
important variable in estimating the GM-BHQ. These results
are consistent with those of previous studies demonstrating that
aging plays the most important role in cerebral atrophy (28, 29).
In addition, our recent studies have shown that there is a strong
negative correlation between subjects’ age and cognitive function,
as represented by the MMSE score (1). Moreover, age was the
most important variable in the DNN model for estimating the

MMSE score (1). These studies show that aging plays the most
important role in both cerebral atrophy and cognitive decline.

The subjects’ age was also correlated with blood data that
reflected systemic metabolic function. For example, there is a
negative correlation between age and RBC, reflecting age-related
anemia (30). There is a negative correlation between the subjects’
age and PLT, which is consistent with the age-related decline in
platelets (31). In addition, there is a positive correlation between
age and BUN, which is consistent with reports of age-related
decline in renal function (32). There is also a positive correlation
between the subjects’ age and GLU, which reflects age-related
impairment of glucose tolerance (33). Finally, there was a positive
correlation between the age of the subjects and ALP, which
reflects hepatic dysfunction (34). It should be noted that the
higher the AST, γGTP, and ALP, the lower the GM-BHQ. These
results indicate that aging can affect not only the brain but also
the systemic metabolic status.

Relationship Between Systemic Metabolic
Function and Cerebral Atrophy
There were significant correlations between GM-BHQ and blood
parameters, including BUN. In addition, BUN and Cr were
highly important variables in the DNN model for estimating
GM-BHQ. These results suggest a close relationship between
the kidney and the brain. Recent studies have demonstrated
that chronic kidney disease (CKD) can be a risk factor for
cognitive impairment and brain atrophy (15–17). In addition,
mental disorders such as depression and anxiety disorders are
common in patients with CKD. This relationship between the
kidney and the brain is termed the kidney-brain axis (17, 18). The
pathophysiological mechanisms of the kidney-brain axis have
been proposed. First, uremic toxins released as a result of CKD
directly contribute to brain damage and consequent cognitive
decline. Second, CKD-induced hemodynamic changes, anemia,
and sleep disorders may contribute to the kidney-brain axis.
Finally, inflammatory molecules and reactive oxygen species,
which are shared by kidney and brain tissue injuries, may also
contribute to kidney-brain interactions, resulting in cognitive
impairment in CKD patients.

GLU was negatively correlated with GM-BHQ and was a
highly important variable in the DNN model for estimating the
GM-BHQ. These results are consistent with those of a study
on cerebral atrophy in patients with diabetes (35, 36). Lifestyle-
related diseases, including diabetes mellitus, play a role in the
development of dementia by activating chronic inflammatory
processes associated with oxidative stress. These changes lead
to small vessel diseases, resulting in a reduction in CBF (37–
39). In addition, lifestyle-related diseases can also result in
arteriosclerosis of large vessels, leading to a decrease in CBF.
The decrease of CBF could lead to vascular cognitive impairment
(VCI), which plays an important role in cognitive impairment in
elderly people (3–5). Importantly, vascular pathology contributes
not only to vascular dementia, but also to Alzheimer’s disease, a
neurodegenerative disease (40). The reduction of CBF associated
with lifestyle-related diseases can result not only in cognitive
impairment but also cerebral atrophy.
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TABLE 4 | Variable importance in the DNN estimation for estimation of GM-BHQ with (A) and without (B) subject’s age.

A B

Relative importance Absolute importance Relative importance Absolute importance

Age 1 3.18 ± 0.49 RBC 1 0.40 ± 0.20

Ht 0.04 0.14 ± 0.12 GLU 0.59 0.23 ± 0.14

HbA1c 0.03 0.08 ± 0.08 BUN 0.59 0.23 ± 0.15

GLU 0.03 0.08 ± 0.08 Ht 0.57 0.23 ± 0.13

RBC 0.03 0.08 ± 0.09 PLT 0.56 0.22 ± 0.14

Cr 0.02 0.08 ± 0.09 Alp 0.49 0.19 ± 0.13

γGTP 0.02 0.05 ± 0.07 GOT 0.41 0.16 ± 0.12

PLT 0.01 0.04 ± 0.09 A/G ratio 0.32 0.13 ± 0.12

UA 0.01 0.03 ± 0.07 GPT 0.25 0.10 ± 0.11

A/G ratio 0.01 0.03 ± 0.07 TG 0.20 0.08 ±.09

Although RBC and Ht did not correlate with GM-BHQ,
both blood items were highly important variables in the DNN
model for assessing GM-BHQ. In addition, our previous study
demonstrated that RBC and Ht correlated with MMSE scores
and were important variables in the DNN model for estimating
MMSE scores (1). These observations suggest that anemia
plays a role in both cerebral atrophy and cognitive function.
Moreover, The ALB and the A/G ratio were highly important
variables in the DNNmodel for estimating GM-BHQ. Our recent
study demonstrated that albumin and the A/G ratio exhibited
significant positive correlations with MMSE scores, and also
contributed to the estimation ofMMSE scores by the DNNmodel
(1). These results suggest that nutritional status plays a role in
cerebral atrophy and cognitive function.

The correlation coefficient between GM-BHQ estimated from
age and blood data, and ground truth GM-BHQ was 0.74. On
the other hand, the correlation coefficient between GM-BHQ
estimated from blood data alone and ground truth GM-BHQwas
0.54. This indicates that GM-BHQ could be estimated with high
accuracy using only blood data, although the estimation accuracy
was slightly lower than when using age and blood data. When
GM-BHQ was estimated only from blood test data, the blood test
items with high variable importance were BUN, PLT, GLU, and
ALP. Interestingly, these blood test items were consistent with
blood test items that were significantly correlated with subject
age. This suggests that the estimation of GM-BHQ by the DNN
model without age may also be affected by aging.

Roles of Aging and Systemic Metabolic
Disorders in Cerebral Atrophy
In light of the above findings, we hypothesized that aging and
systemic metabolic disorders affect cerebral atrophy (Figure 6).
Aging affects the brain directly through extrinsic factors such
as lifestyle and intrinsic genetic factors. In parallel, aging also
affects the internal organs, resulting in various systemicmetabolic
disorders. Systemicmetabolic disorders associated with aging can
affect the brain. For example, the kidney affects the brain by the
kidney-brain axis. Uremic toxins released as a result of CKD
directly contribute to brain damage and consequent cognitive

decline. In addition, anemia and undernutrition may reduce
oxygen metabolism and energy metabolism in the brain.

The effects of aging on the brain may be much higher than
the effects of systemic metabolic disorders. This is because the
DNN model for estimating cerebral atrophy shows that aging
is far more important than blood data items. In Figure 6, this
is represented by the thicker arrow connecting aging and the
brain than the arrow connecting the metabolic disorders and the
brain. It should be noted, however, that cerebral atrophy can be
estimated from blood data even if age is removed from the input
data of the DNNmodel may support a close relationship between
the visceral organs and the brain.

Subclinical Cerebral Atrophy in Normal
Middle-Aged People
Importantly, these effects of systemic metabolic disorders in the
brain have been observed in a number of pathological conditions.
However, the subjects in this study were brain dock examinees.
They have no obvious neurological abnormalities and live a
normal daily life. In fact, the average MMSE score was 28.6
± 1.9, indicating normal cognitive function. In addition, the
systemic metabolic disorders in the subjects in this study were
normal or relatively mild. For example, the average values of
BUN and Cr in GM-BHQ cases of 100 or less were 15.44 ±

4.03 and 0.77 ± 0.28, respectively, which were not associated
with uremia. Similarly, other blood parameters involved in
the degree of cerebral atrophy, such as ALP, GPT, γGTP, and
GLU, did not significantly exceed normal values. Therefore, this
study suggests that subclinical systemic metabolic disorders are
associated with cerebral atrophy. Cohort studies are warranted to
further elucidate whether such subjects will develop dementia in
the future.

Advantages of DNN-Based Screening Test
for Cognitive Impairment
The DNN model developed in this study may have a number
of benefits for screening tests for cognitive impairment. First,
unlike subjective tests such as MMSE, we can perform an
objective screening test for cognitive impairment because the
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FIGURE 5 | Scatter plots of ground truth and estimated GM-BHQ by the DNN model with age (A) and without age (B). The vertical axis indicates the estimated

GM-BHQ and the horizontal axis indicates the ground truth GM-BHQ.

FIGURE 6 | Mechanism by which aging and systemic metabolic disorders affect cerebral atrophy. The thickness of the arrow indicates the strength of the influence.

The thicker line of age than the line of metabolic disorders including anemia indicates that age has a stronger influence on metabolic atrophy than the metabolic

disorder line.

DNN model requires basic blood test data and the subjects’ age
for input data. Second, because only data values of blood tests
are used for the DNN model, this method can be used as an
inexpensive mass screening test for dementia. Third, it is possible
to use smartphones for the personal risk assessment of cognitive
impairment by entering blood data values into the smartphone.
Finally, these advantages may contribute to the early diagnosis
of MCI and dementia. Finally, given that blood data reflect

systemic metabolic disorders in each subject, this method may
be effective in preventing dementia through personalized lifestyle
care. Personalized care not only enhances the effectiveness of
interventions, but also enhances lifestyle incentives.

The Finnish Geriatric Intervention Study to Prevent Cognitive
Impairment and Disability (FINGER) has shown that multi-
domain lifestyle interventions reduce the risk of dementia,
thereby stopping the global increase in dementia patients (41).

Frontiers in Neurology | www.frontiersin.org 8 May 2022 | Volume 13 | Article 869915

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Sakatani et al. DL-Based Estimation of Cerebral Atrophy

Based on the FINGER study, World-Wide FINGERS (WW-
FINGERS) launched a global network of multi-domain lifestyle
intervention trials in 2017 to reduce and prevent the risk of
dementia (42). The method of this study, which assesses the risk
of dementia from basic blood data using machine learning, is
based on the role of systemicmetabolic disorders such as lifestyle-
related diseases in the onset of dementia, similar to FINGER.
Using this method, it may be possible to reduce the risk of
dementia more effectively.

Limitations of the Present Study
First, nearly all subjects in this study had normal cognitive
function, since this study was conducted on brain dock
examinees. Therefore, we did not estimate cerebral atrophy in
patients with poor cognitive function. To resolve this problem,
it is necessary to use cases with cognitive impairment to train
the DNN model. Second, the brain dock data used in this study
was a one-time test. Therefore, the chronological changes in the
relationship between blood test data and cerebral atrophy are
unknown. Therefore, it is necessary to conduct a prospective
cohort study. Third, in this study, we used a DNN model
developed to estimate the MMSE score (1), and changed the
output layer of the DNN model from MMSE to GM-BHQ.
By inputting medical history, treatment history, and other key
elements into the input layer of the DNN model, it may
be possible to improve the estimation accuracy of cerebral
atrophy. To establish the present method as a mass screening
test for dementia, further studies are warranted to resolve
these limitations.

Summary
In this study, in order to shed light on the relationship
between age, systemic metabolic status, and cerebral atrophy,
we examined the correlation between subjects’ age, basic blood
data, and GM-BHQ. Then, we assessed whether basic blood data
can help estimate GM-BHQ by employing a DNN model that
estimates cognitive function using basic blood test data.

A negative correlation between age and GM-BHQ scores was
identified (r=−0.71). The subjects’ age was positively correlated
with BUN (r = 0.40), ALP (r = 0.22), and GLU (r = 0.22),
and negative correlations with red blood cell counts (RBC) (r=
−0.29) and PLT (r= −0.26). GM-BHQ correlated with BUN

(r=−0.30), GLU (r = −0.26), PLT (r = 0.26), and ALP (r =
0.22). The GM-BHQ estimated by the DNN model with subject
age exhibited a positive correlation with the ground truth GM-
BHQ (r= 0.70, p < 0.001). Furthermore, even if the DNNmodel
without subject age was used, the estimated GM-BHQ showed
a significant positive correlation with ground truth GM-BHQ (r
= 0.58, p < 0.001). Age was the most important variable for
assessing GM-BHQ. Other important variables included RBC,
Ht, HbA1c, GLU, and creatinine levels.

Aging had the greatest effect on cerebral atrophy. Aging
also affects various organs, such as the kidney, and causes
changes in systemic metabolic status, which may contribute to
cerebral atrophy and cognitive impairment. The DNN model
may become a new screening test for dementia using basic blood
tests for health examinations. Finally, blood data reflect systemic
metabolic disorders in each subject – this method may thus
contribute to personalized lifestyle care.
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