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Cardioembolic stroke (CES), which causes 20% cause of all ischemic strokes, is associated with high mortality.
Previous studies suggest that pathways play a critical role in the identification and pathogenesis of diseases.
We aimed to develop an integrated approach that is able to construct individual networks of pathway cross-
talk to quantify differences between patients with CES and controls.

One biological data set E-GEOD-58294 was used, including 23 normal controls and 59 CES samples. We used
individualized pathway aberrance score (iPAS) to assess pathway statistics of 589 Ingenuity Pathways Analysis
(IPA) pathways. Random Forest (RF) classification was implemented to calculate the AUC of every network.
These procedures were tested by Monte Carlo Cross-Validation for 50 bootstraps.

A total of 28 networks with AUC >0.9 were found between CES and controls. Among them, 3 networks with
AUC=1.0 had the best performance for classification in 50 bootstraps. The 3 pathway networks were able to sig-
nificantly identify CES versus controls, which showed as biomarkers in the regulation and development of CES.
This novel approach could identify 3 networks able to accurately classify CES and normal samples in individu-
als. This integrated application needs to be validated in other diseases.
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Background

LABORATORY TECHNIQUES

Material and Methods

Cardioembolic stroke (CES), which causes 20% of all ischemic
strokes each year, leads to severe neurological deficits [1,2].
CES is associated with high mortality and is a common cause
of its atrial fibrillation (AF), which has an increasing inci-
dence with age [3-5]. Panagiota et al. [6] proposed that AF
is an important and treatable cause of recurrent stroke and
needs to be ruled-out by thorough evaluation before the di-
agnosis of cryptogenic stroke is assigned. CES is largely pre-
ventable through control of major primary cardioembolic risk
factors, such as hyperlipidemia and high blood pressure [7].
Giralt et al. [8] offered evidence of significant genetic involve-
ment in ischemic stroke.

In recent years, gene expression profiling of human disease
tissues has provided insights into molecular mechanisms and
eventually led to the identification of novel therapeutic tar-
gets [9]. Currently available high-throughput microarray ex-
periments were developed to analyze genetic expression
patterns with differentially expressed genes (DEG) and dys-
regulated pathways. Canonical reports claimed that gene ex-
pression patterns can identify biomarkers of ischemic stroke,
which highlighted the relevance of the innate immune system
through DEG [10] and signaling pathways [11-13]. However,
most methods did not consider regulatory cross-talk among
pathways, and treated pathways as independent mechanisms.

Although it is intuitive that interacting pathways could influ-
ence each other, the presence of this frame and available tech-
nique have not been completely studied yet. Antonio et al. [14]
developed an integrated approach to identify functional miR-
NAs regulating pathway cross-talk in breast cancer with pairs
of pathways. Differential protein-protein interaction networks
were constructed in CES with Akaike information criterion
(AIC) method [7].

To the best of our knowledge, there are few studies that con-
structed pathway networks correctly to discriminate controls
versus CES. In this work we develop an integrated approach that
is able to construct individual networks comprising pathways
cross-talk to quantify differences between CES and controls.
We used the individualized pathway aberrance score (iPAS) to
assess pathway statistics of every Ingenuity Pathways Analysis
(IPA) pathway [15]. Random Forest (RF) classification was im-
plemented to calculate the AUC of every network. These pro-
cedures were tested by Monte Carlo Cross-Validation (MCCV)
for 50 bootstraps. Then we obtained the best network as an
individual differential network. Our results may be useful in
more integratively and accurately distinguishing CES from
normal samples. The novel approach may be the basis of in-
dividual medical treatment in CES, serving as therapy target-
ing markers.

Step 1: Datasets

One biological dataset, E-GEOD-58294, was derived from the
Gene Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo/) [16]. There were 23 normal controls and 59
CES samples in total. The platform was A-AFFY-44 — Affymetrix
GeneChip Human Genome U133 Plus 2.0, which was used to
read the gene chip [17]%h0. The Linear Models for Microarray
Data (LIMMA) was then used to preprocess data. After quan-
tile data normalization performed by robust multi-array aver-
age (RMA) [18], 20 544 genes were obtained.

Step 2: Pathway enrichment analysis

In order to identify a group of pathways significantly enriched in
CES with respect to controls, we collected 589 biological path-
ways including 5169 genes from the IPA tool (http://www.in-
genuity.com/). After genes of expression profile were enriched
in IPA pathways, we focused on 4929 genes. Fisher Exact test
was performed between 4929 genes and genes of every IPA
pathway. Then we obtained pathways enriched with P<0.01.
Raw P-values were adjusted by false-discovery rate (FDR) pro-
cedure for multiple testing corrections [19].

Step 3: Pathway-level statistics

A total of 23 accumulated normal samples (ANS) were used to
identify IPA pathways as reference. Individual normal sample
gene expression was standardized with the mean and stan-
dard deviation (SD). For genes of every CES sample,

. 1 n . 1 n .
projeai= (=Y qkj,....— D qkj ) (1)
n n j=1

=1
as quantile normalization was performed [20].

Average Z equation was recently proved to be a biologically
valid modification of pathway analysis methods for iPAS [15].
Z=(z, z,,.., Z,) represents the expression state of a pathway
where z, denotes the standardized expression value of i-th gene
and the number of genes existing in the pathway is n. Gene
statistics of each gene from every CES sample:

s = g —mean(g, ) Q)
stdev(g,ans)

Each IPA pathway statistics:

pAs =2 G)
n

z, represents the standardized gene level statistics of 1-i gene

and the number of genes existing in the pathway is n. Z val-

ues of every pathway in CES samples were gathered after
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significance testing. Differentially expressed pathways were
selected with Z<0.05.

Step 4: Pathway pairs

The discriminating score (DS) was computed to quantify path-
way cross-talk in each sample for the pair of pathways x and y.
DS was defined as

_I(My=My)|

DS Sx+Sy

@
where M_and S_represent mean and standard deviation of
expression levels of genes in a pathway x and M and S in a
pathway y [14]. DS score indicates the relationships between
pairs of pathway, with a larger value indicating relatively high-
er difference of activity between pathways.

DS of normal samples was standardized using the mean and
SD as reference. Z values of every pathway pair in CES sam-
ples were gathered after significance testing. Differentially ex-
pressed pathway pairs were selected with Z<0.25.

Step 5: Construction of network

Z values of differentially expressed pathways and pathway pairs
were used to construct individual networks with Cytoscape
version 3.2.0. The main network was constructed by selecting
the number of edges >5.

Step 6: Random Forest (RF) classification

Random Forest (RF) classification was implemented using
the R-package. Parameters were adopted with mtry=v2 and
ntree=500. Classification was applied on DS of pathway pairs
in the main network. The AUC of the main network was cal-
culated by 10-fold cross-validation method.

Step 7: Selection of the best network

We developed MCCV to circulate step 3-6 of the proposed
methodology. It randomly selected expression data in propor-
tion 6:4 to form the training and testing set [14]. Then the pro-
cess was repeated in 50 bootstraps, randomly generating new
training and test partitions each time. Each bootstrap achieved
an individual network, main network, and their AUC values.
The number of main networks appearing in the 50 bootstraps
was counted by ranking all networks with their AUC values.

Results

In the present study we developed an integrated approach
that was sufficient to construct individual networks comprising
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pathways cross-talk to quantify differences between CES and
controls. We used iPAS to evaluate pathway statistics of each
IPA pathway [15]. RF classification was implemented to calcu-
late AUC of every network, which was tested by MCCV for 50
bootstraps. Then we obtained the best network as an individ-
ual differential network.

Figure 1 shows the results for each bootstrap of MCCV. We
obtained a heatmap in which pink squares indicate pathway
pairs for classification in the training dataset for that bootstrap
(the frequency >6). There were 4 pairs of pathways in 46 boot-
straps: Cholesterol Biosynthesis | and Cholesterol Biosynthesis
I, Cholesterol Biosynthesis | and Cholesterol Biosynthesis IlI,
Cholesterol Biosynthesis Il and Cholesterol Biosynthesis I,
Uracil Degradation Il and Thymine Degradation.

Individual networks were ordered with respect to their AUC and
28 networks with AUC 0.9 were found between CES and con-
trols. Among them, 3 networks with AUC=1.0 had the best per-
formance for classification of CES and normal samples for all 50
bootstraps. As shown in Figure 2, the best individual networks
were in 4, 10, and 23 bootstraps. Therefore, the 3 pathway net-
works were able to significantly identify CES versus controls,
which showed as biomarkers in the regulation and develop-
ment of CES. Then we found there were 22 pairs of pathways
that commonly appeared in 3 networks (Table 1), which re-
vealed that the pathway pairs were important in regulating CES.

Discussions

Given the substantial difference in the activities of main net-
works between CES and controls, we examined its effectiveness
in classifying CES and normal samples based on their profiles.

In the best 3 networks, we focused on pathways that had
multi-cross-talk with others. The MSP-RON Signaling Pathway
had the most cross-talk, which played an important interac-
tion role in the best networks. A previous study has reported
that MSP-RON Signaling is important for the invasive growth
of many types of cancers and appeared to have potential as
a therapeutic target [21].

Pathway analysis has become the first choice for extracting
and explaining the underlying pathology for high-throughput
molecular measurements [22]. Personalized identification of
altered pathway pairs is important for understanding disease
mechanisms and for the future application of custom thera-
peutic decisions. Existing pathway analysis methods are not
suitable for identifying the pathway aberrance that may occur
in an individual sample [15]. Therefore, we employed the iPAS
to analyze the personalized identification of networks, taking
advantage of a vast number of normal samples.
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Figure 1. Heatmap of pathway pairs in each bootstrap. Bootstraps were clustered with the abscissa and pairs of pathways were
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Figure 2. The best individual differential networks repeated 50 bootstraps. (A) The individual network in 10 bootstraps. (B) The

individual network in 10 bootstraps. (C) The individual network in 23 bootstraps.
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Table 1. Common pairs of pathways in best three networks.

No. Pairs of pathways AUC of 10 bootstrap
1 Toll-like receptor signaling 0.286
Glycogen biosynthesis Il (from UDP-D-glucose) ’
) IL-10 S|gnal.|ng . 0.281
Glycogen biosynthesis Il (from UDP-D-glucose)
D-myo-inositol hexakisphosphate biosynthesis Il (Mammalian)
3 L . . - 0.262
D-myo-inositol (134)-trisphosphate biosynthesisi
IL-10 signaling
4 Toll-like receptor signaling 0.261
IL-10 signaling
> MSP-RON signaling pathway 0.260
6 MSP—RQN S{gnallng pathway 0.259
IL-22 signaling
7 MSP-RON signaling pathway 0.256
Role of JAK family kinases in IL-6-type cytokine signaling ’
8 p38 MAPK signaling 0.255
Role of pattern recognition receptors in recognition of bacteria and viruses ’
9 Superpathway of D-myo-inositol (145)-trisphosphate metabolism 0.253
D-myo-inositol (134)-trisphosphate biosynthesisi ’
10 MSP-.RON 5|gnal|ng pathway 0.253
Toll-like receptor signaling
1 Adenine and adenosine salvage |lI 0.252
Purine ribonucleosides degradation to ribose-1-phosphate ’
12 ErbB s!gnalmg ' 0251
Amyloid processing
13 Cholesterol biosynthesis | 0.243
Cholesterol biosynthesis Il (via 2425 dihydrolanosterol) .
Cholesterol biosynthesis |
14 Cholesterol biosynthesis Il (via desmosterol) 125
15 Cholesterol biosynthesis Il (via 2425-dihydrolanosterol) 0.243
Cholesterol biosynthesis IIl (via desmosterol) :
16 UraC||'degradat|on. Il (reductive) 0.243
Thymine degradation
17 Thyronamine and iodothyronamine metabolism 0.243
Thyroid hormone metabolism | (via deiodination) ’
18 Tetrahydrob{opter!n b!osyntheS{s | 0.243
Tetrahydrobiopterin biosynthesis Il
Glutamate degradation Il
1 .24
? Aspartate biosynthesis 0243
Alanine degradation Il
20 Alanine biosynthesis II 0.243
Glutamate biosynthesis Il
21 Glutamate degradation X 0.243
2 4-hydroxybenzoate biosynthesis 0.243

4-hydroxyphenylpyruvate biosynthesis
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LABORATORY TECHNIQUES

A key innovation of the method is iPAS using ANS in CES.
Ahn et al. [15] proved that the Average Z equation can effi-
ciently reveal noticeable aberrance in expression profiles and
clinical significance, which sufficed to confirm the best aver-
aged validation rate and distinguish a known survival-relevant
pathway statistically. Furthermore, ANS data is expected to be
available in more fields of medicine along with rapid advances
in high-throughput databases. DS obtained lightly more im-
provement than the Euclidean distance as a metric to quanti-
fy pathway cross-talk [14].

In recent years, different validation technologies have been
generally used to evaluate performance of pathways and net-
works in medical regression analysis [14,23]. The MCCV pays
attention to a notable part of the sample at a time during net-
work building and validation with multi-repeats. Compared
with conventional validation tests for capturing the best pre-
dictor variables, MCCV showed superior performance, resulting
from a form of cross-validation based on vast combinations
of data sets [24]. Interestingly, MCCV has not been utilized in
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individual networks comprising pathways cross-talk in CES
patients. In this study we developed an integrated approach
to quantify differences between CES and controls with the
MCCV test, which suggests that MCCV worked better, based
on strong predictive ability. Screened networks were efficient
in distinguishing differences among individual CES samples,
and can provide broader carcinogenic insight in personalized
medicine [25]. The final purpose of our approach was to de-
tect the best network able to discriminate CES versus controls.
We found that the 3 best networks were similar and had 22
common pairs of pathways. We tended to select network 10
to differentiate CES disease from normal samples, with the
fewest pairs of pathways (Figure 2B).

Conclusions

Our novel approach identified 3 networks able to accurately
classify CES and normal samples in individuals. We propose the
integrated method should be further validated in more diseases.
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