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 Background: Cardioembolic stroke (CES), which causes 20% cause of all ischemic strokes, is associated with high mortality. 
Previous studies suggest that pathways play a critical role in the identification and pathogenesis of diseases. 
We aimed to develop an integrated approach that is able to construct individual networks of pathway cross-
talk to quantify differences between patients with CES and controls.

 Material/Methods: One biological data set E-GEOD-58294 was used, including 23 normal controls and 59 CES samples. We used 
individualized pathway aberrance score (iPAS) to assess pathway statistics of 589 Ingenuity Pathways Analysis 
(IPA) pathways. Random Forest (RF) classification was implemented to calculate the AUC of every network. 
These procedures were tested by Monte Carlo Cross-Validation for 50 bootstraps.

 Results: A total of 28 networks with AUC >0.9 were found between CES and controls. Among them, 3 networks with 
AUC=1.0 had the best performance for classification in 50 bootstraps. The 3 pathway networks were able to sig-
nificantly identify CES versus controls, which showed as biomarkers in the regulation and development of CES.

 Conclusions: This novel approach could identify 3 networks able to accurately classify CES and normal samples in individu-
als. This integrated application needs to be validated in other diseases.
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Background

Cardioembolic stroke (CES), which causes 20% of all ischemic 
strokes each year, leads to severe neurological deficits [1,2]. 
CES is associated with high mortality and is a common cause 
of its atrial fibrillation (AF), which has an increasing inci-
dence with age [3–5]. Panagiota et al. [6] proposed that AF 
is an important and treatable cause of recurrent stroke and 
needs to be ruled-out by thorough evaluation before the di-
agnosis of cryptogenic stroke is assigned. CES is largely pre-
ventable through control of major primary cardioembolic risk 
factors, such as hyperlipidemia and high blood pressure [7]. 
Giralt et al. [8] offered evidence of significant genetic involve-
ment in ischemic stroke.

In recent years, gene expression profiling of human disease 
tissues has provided insights into molecular mechanisms and 
eventually led to the identification of novel therapeutic tar-
gets [9]. Currently available high-throughput microarray ex-
periments were developed to analyze genetic expression 
patterns with differentially expressed genes (DEG) and dys-
regulated pathways. Canonical reports claimed that gene ex-
pression patterns can identify biomarkers of ischemic stroke, 
which highlighted the relevance of the innate immune system 
through DEG [10] and signaling pathways [11–13]. However, 
most methods did not consider regulatory cross-talk among 
pathways, and treated pathways as independent mechanisms.

Although it is intuitive that interacting pathways could influ-
ence each other, the presence of this frame and available tech-
nique have not been completely studied yet. Antonio et al. [14] 
developed an integrated approach to identify functional miR-
NAs regulating pathway cross-talk in breast cancer with pairs 
of pathways. Differential protein-protein interaction networks 
were constructed in CES with Akaike information criterion 
(AIC) method [7].

To the best of our knowledge, there are few studies that con-
structed pathway networks correctly to discriminate controls 
versus CES. In this work we develop an integrated approach that 
is able to construct individual networks comprising pathways 
cross-talk to quantify differences between CES and controls. 
We used the individualized pathway aberrance score (iPAS) to 
assess pathway statistics of every Ingenuity Pathways Analysis 
(IPA) pathway [15]. Random Forest (RF) classification was im-
plemented to calculate the AUC of every network. These pro-
cedures were tested by Monte Carlo Cross-Validation (MCCV) 
for 50 bootstraps. Then we obtained the best network as an 
individual differential network. Our results may be useful in 
more integratively and accurately distinguishing CES from 
normal samples. The novel approach may be the basis of in-
dividual medical treatment in CES, serving as therapy target-
ing markers.

Material and Methods

Step 1: Datasets

One biological dataset, E-GEOD-58294, was derived from the 
Gene Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo/) [16]. There were 23 normal controls and 59 
CES samples in total. The platform was A-AFFY-44 – Affymetrix 
GeneChip Human Genome U133 Plus 2.0, which was used to 
read the gene chip [17]%h0. The Linear Models for Microarray 
Data (LIMMA) was then used to preprocess data. After quan-
tile data normalization performed by robust multi-array aver-
age (RMA) [18], 20 544 genes were obtained.

Step 2: Pathway enrichment analysis

In order to identify a group of pathways significantly enriched in 
CES with respect to controls, we collected 589 biological path-
ways including 5169 genes from the IPA tool (http://www.in-
genuity.com/). After genes of expression profile were enriched 
in IPA pathways, we focused on 4929 genes. Fisher Exact test 
was performed between 4929 genes and genes of every IPA 
pathway. Then we obtained pathways enriched with P<0.01. 
Raw P-values were adjusted by false-discovery rate (FDR) pro-
cedure for multiple testing corrections [19].

Step 3: Pathway-level statistics

A total of 23 accumulated normal samples (ANS) were used to 
identify IPA pathways as reference. Individual normal sample 
gene expression was standardized with the mean and stan-
dard deviation (SD). For genes of every CES sample,
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as quantile normalization was performed [20].

Average Z equation was recently proved to be a biologically 
valid modification of pathway analysis methods for iPAS [15]. 
Z=(z1, z2,…, zn) represents the expression state of a pathway 
where zi denotes the standardized expression value of i-th gene 
and the number of genes existing in the pathway is n. Gene 
statistics of each gene from every CES sample: 
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zi represents the standardized gene level statistics of 1-i gene 
and the number of genes existing in the pathway is n. Z val-
ues of every pathway in CES samples were gathered after 
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significance testing. Differentially expressed pathways were 
selected with Z<0.05.

Step 4: Pathway pairs

The discriminating score (DS) was computed to quantify path-
way cross-talk in each sample for the pair of pathways x and y. 
DS was defined as

DS=
|(M��M�)|
S��S�

,  (4)

where Mx and Sx represent mean and standard deviation of 
expression levels of genes in a pathway x and My and Sy in a 
pathway y [14]. DS score indicates the relationships between 
pairs of pathway, with a larger value indicating relatively high-
er difference of activity between pathways.

DS of normal samples was standardized using the mean and 
SD as reference. Z values of every pathway pair in CES sam-
ples were gathered after significance testing. Differentially ex-
pressed pathway pairs were selected with Z<0.25.

Step 5: Construction of network

Z values of differentially expressed pathways and pathway pairs 
were used to construct individual networks with Cytoscape 
version 3.2.0. The main network was constructed by selecting 
the number of edges >5.

Step 6: Random Forest (RF) classification

Random Forest (RF) classification was implemented using 
the R-package. Parameters were adopted with mtry=Ö2 and 
ntree=500. Classification was applied on DS of pathway pairs 
in the main network. The AUC of the main network was cal-
culated by 10-fold cross-validation method.

Step 7: Selection of the best network

We developed MCCV to circulate step 3–6 of the proposed 
methodology. It randomly selected expression data in propor-
tion 6:4 to form the training and testing set [14]. Then the pro-
cess was repeated in 50 bootstraps, randomly generating new 
training and test partitions each time. Each bootstrap achieved 
an individual network, main network, and their AUC values. 
The number of main networks appearing in the 50 bootstraps 
was counted by ranking all networks with their AUC values.

Results

In the present study we developed an integrated approach 
that was sufficient to construct individual networks comprising 

pathways cross-talk to quantify differences between CES and 
controls. We used iPAS to evaluate pathway statistics of each 
IPA pathway [15]. RF classification was implemented to calcu-
late AUC of every network, which was tested by MCCV for 50 
bootstraps. Then we obtained the best network as an individ-
ual differential network.

Figure 1 shows the results for each bootstrap of MCCV. We 
obtained a heatmap in which pink squares indicate pathway 
pairs for classification in the training dataset for that bootstrap 
(the frequency >6). There were 4 pairs of pathways in 46 boot-
straps: Cholesterol Biosynthesis I and Cholesterol Biosynthesis 
II, Cholesterol Biosynthesis I and Cholesterol Biosynthesis III, 
Cholesterol Biosynthesis II and Cholesterol Biosynthesis III, 
Uracil Degradation II and Thymine Degradation.

Individual networks were ordered with respect to their AUC and 
28 networks with AUC >0.9 were found between CES and con-
trols. Among them, 3 networks with AUC=1.0 had the best per-
formance for classification of CES and normal samples for all 50 
bootstraps. As shown in Figure 2, the best individual networks 
were in 4, 10, and 23 bootstraps. Therefore, the 3 pathway net-
works were able to significantly identify CES versus controls, 
which showed as biomarkers in the regulation and develop-
ment of CES. Then we found there were 22 pairs of pathways 
that commonly appeared in 3 networks (Table 1), which re-
vealed that the pathway pairs were important in regulating CES.

Discussions

Given the substantial difference in the activities of main net-
works between CES and controls, we examined its effectiveness 
in classifying CES and normal samples based on their profiles.

In the best 3 networks, we focused on pathways that had 
multi-cross-talk with others. The MSP-RON Signaling Pathway 
had the most cross-talk, which played an important interac-
tion role in the best networks. A previous study has reported 
that MSP-RON Signaling is important for the invasive growth 
of many types of cancers and appeared to have potential as 
a therapeutic target [21].

Pathway analysis has become the first choice for extracting 
and explaining the underlying pathology for high-throughput 
molecular measurements [22]. Personalized identification of 
altered pathway pairs is important for understanding disease 
mechanisms and for the future application of custom thera-
peutic decisions. Existing pathway analysis methods are not 
suitable for identifying the pathway aberrance that may occur 
in an individual sample [15]. Therefore, we employed the iPAS 
to analyze the personalized identification of networks, taking 
advantage of a vast number of normal samples.
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Figure 1.  Heatmap of pathway pairs in each bootstrap. Bootstraps were clustered with the abscissa and pairs of pathways were 
clustered with the ordinate.
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Figure 2.  The best individual differential networks repeated 50 bootstraps. (A) The individual network in 10 bootstraps. (B) The 
individual network in 10 bootstraps. (C) The individual network in 23 bootstraps.
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No. Pairs of pathways AUC of 10 bootstrap

1
Toll-like receptor signaling
Glycogen biosynthesis II (from UDP-D-glucose)

0.286

2
IL-10 signaling
Glycogen biosynthesis II (from UDP-D-glucose) 

0.281

3
D-myo-inositol hexakisphosphate biosynthesis II (Mammalian)
D-myo-inositol (134)-trisphosphate biosynthesisi

0.262

4
IL-10 signaling
Toll-like receptor signaling 

0.261

5
IL-10 signaling
MSP-RON signaling pathway 

0.260

6
MSP-RON signaling pathway
IL-22 signaling 

0.259

7
MSP-RON signaling pathway
Role of JAK family kinases in IL-6-type cytokine signaling 

0.256

8
p38 MAPK signaling
Role of pattern recognition receptors in recognition of bacteria and viruses

0.255

9
Superpathway of D-myo-inositol (145)-trisphosphate metabolism
D-myo-inositol (134)-trisphosphate biosynthesisi

0.253

10
MSP-RON signaling pathway
Toll-like receptor signaling 

0.253

11
Adenine and adenosine salvage III
Purine ribonucleosides degradation to ribose-1-phosphate 

0.252

12
ErbB signaling
Amyloid processing 

0.251

13
Cholesterol biosynthesis I
Cholesterol biosynthesis II (via 2425 dihydrolanosterol) 

0.243

14
Cholesterol biosynthesis I
Cholesterol biosynthesis III (via desmosterol) 

0.243

15
Cholesterol biosynthesis II (via 2425-dihydrolanosterol)
Cholesterol biosynthesis III (via desmosterol) 

0.243

16
Uracil degradation II (reductive)
Thymine degradation 

0.243

17
Thyronamine and iodothyronamine metabolism
Thyroid hormone metabolism I (via deiodination) 

0.243

18
Tetrahydrobiopterin biosynthesis I
Tetrahydrobiopterin biosynthesis II 

0.243

19
Glutamate degradation II
Aspartate biosynthesis 

0.243

20
Alanine degradation III
Alanine biosynthesis II

0.243

21
Glutamate biosynthesis II
Glutamate degradation X 

0.243

22
4-hydroxybenzoate biosynthesis
4-hydroxyphenylpyruvate biosynthesis 

0.243

Table 1. Common pairs of pathways in best three networks.
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A key innovation of the method is iPAS using ANS in CES. 
Ahn et al. [15] proved that the Average Z equation can effi-
ciently reveal noticeable aberrance in expression profiles and 
clinical significance, which sufficed to confirm the best aver-
aged validation rate and distinguish a known survival-relevant 
pathway statistically. Furthermore, ANS data is expected to be 
available in more fields of medicine along with rapid advances 
in high-throughput databases. DS obtained lightly more im-
provement than the Euclidean distance as a metric to quanti-
fy pathway cross-talk [14].

In recent years, different validation technologies have been 
generally used to evaluate performance of pathways and net-
works in medical regression analysis [14,23]. The MCCV pays 
attention to a notable part of the sample at a time during net-
work building and validation with multi-repeats. Compared 
with conventional validation tests for capturing the best pre-
dictor variables, MCCV showed superior performance, resulting 
from a form of cross-validation based on vast combinations 
of data sets [24]. Interestingly, MCCV has not been utilized in 

individual networks comprising pathways cross-talk in CES 
patients. In this study we developed an integrated approach 
to quantify differences between CES and controls with the 
MCCV test, which suggests that MCCV worked better, based 
on strong predictive ability. Screened networks were efficient 
in distinguishing differences among individual CES samples, 
and can provide broader carcinogenic insight in personalized 
medicine [25]. The final purpose of our approach was to de-
tect the best network able to discriminate CES versus controls. 
We found that the 3 best networks were similar and had 22 
common pairs of pathways. We tended to select network 10 
to differentiate CES disease from normal samples, with the 
fewest pairs of pathways (Figure 2B).

Conclusions

Our novel approach identified 3 networks able to accurately 
classify CES and normal samples in individuals. We propose the 
integrated method should be further validated in more diseases.
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