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1  | INTRODUC TION

The theory of sex allocation, which concerns the trade-off between 
female vs male reproductive effort, has been described as the ‘jewel 
in the crown of evolutionary ecology’ (West & Herre,  2002), and 
it provides among the best evidence of the precision of Darwinian 
adaptation in the natural world (West, 2009). Perhaps its most pro-
ductive application has been to scenarios in which mating groups 

comprise genetic relatives, such that wasteful competition among 
males induces parents to decrease their investment into sons. 
Hamilton (1967) derived an unbeatable sex allocation strategy for 
such ‘local mate competition’ (LMC) under a diplo-diploid mode of 
inheritance. This showed that a mother who is one of n unrelated 
females contributing offspring to a mating group should make a pro-
portional investment of (n–1)/(2n) into sons, such that she should in-
vest nearly all of her reproductive effort into daughters (producing 
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Abstract
Hamilton's theory of local mate competition (LMC) describes how competition be-
tween male relatives for mating opportunities favours a female-biased parental 
investment. LMC theory has been extended in many ways to explore a range of ge-
netic and life-history influences on sex allocation strategies, including showing that 
increasing genetic homogeneity within mating groups should favour greater female 
bias. However, there has been no quantitative theoretical prediction as to how fe-
males should facultatively adjust their sex allocation in response to co-foundress 
number and kinship. This shortfall has been highlighted recently by the finding that 
sex ratios produced by sub-social parasitoid wasps in the family Bethylidae are af-
fected by the number of co-foundresses and by whether these are sisters or unre-
lated females. Here we close this gap in LMC theory by taking an inclusive-fitness 
approach to derive explicit theoretical predictions for this scenario. We find that, in 
line with the recent empirical results, females should adopt a more female-biased sex 
allocation when their co-foundresses are less numerous and are their sisters. Our 
model appears to predict somewhat more female bias than is observed empirically; 
we discuss a number of possible model extensions that would improve realism and 
that would be expected to result in a closer quantitative fit with experimental data.
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just enough sons to fertilize them) if she is the only mother present, 
and make a nearly equal investment into daughters and sons if she 
is one of very many females contributing offspring to the mating 
group, recovering Fisher’s (1930) classic result for large, panmictic 
populations.

Hamilton’s (1967) analysis has subsequently been extended in 
a number of ways (reviewed by West, 2009), including to allow for 
a haplo-diploid mode of inheritance (Hamilton,  1979) and kinship 
among co-foundresses (Bulmer,  1986; Courteau & Lessard,  2000; 
Frank,  1985, 1986a, b, 1998; Gardner et  al.,  2009; Rodrigues & 
Gardner, 2015; Taylor, 1988; Taylor & Crespi, 1994). A very general 
result has been provided by Frank (1985, 1986a) who showed that 
the unbeatable sex allocation under LMC is given by the product 
of three terms: ½, reflecting the rarer-sex effect of Fisher (1930); R, 
capturing any asymmetry in the inclusive-fitness valuation of a son 
vs a daughter (such that R < 1 if daughters are valued more, R > 1 if 
sons are valued more and R = 1 if both are valued equally); and Pd(a)t, 
representing Wright’s (1969) coefficient of panmixia, and hence, the 
degree to which mating groups are genetically heterogeneous. Frank 
(1985) has highlighted that the coefficient of panmixia may vary be-
tween groups and hence that females might be favoured to adjust 
their sex allocation according to their local assessment of both num-
ber and kinship of co-foundresses, though no explicit, quantitative 
results have so far been derived for this particular scenario.

This gap in the theoretical development of LMC has recently 
been highlighted by an empirical study of sex allocation in Goniozus 
wasps (Abdi et al., 2020); this found that collective brood sex ratios 
are affected by both the number of foundresses and kinship among 
co-foundresses. Briefly, Goniozus species are haplo-diploid parasit-
oids which have long been known to exhibit female-biased sex ra-
tios and comply broadly with both the assumptions and predictions 
of LMC theory (Green et al., 1982; Hamilton, 1967, 1979; Hardy & 
Cook, 1995; Hardy et al., 1999; Khidr et al., 2013). Due to aggressive 
resource competition between females and subsequent brood care 
(sub-social reproduction), the number of foundresses contributing 
offspring to a mating group is thought to be typically just one. Yet 
adult females are able to discriminate kinship and may tolerate each 
other's presence when relatedness is higher and also when host re-
sources are less limiting (Abdi et al., 2020; Lizé et al., 2012). When 
experimentally induced to reproduce in multi-foundress groups, the 
sex ratios of broods produced by sibling females were similar to sex 
ratios produced by single foundresses (proportion of offspring that 
were male ≈ 0.10) whereas nonsibling foundresses produced sex ra-
tios were much higher (≈ 0.40; Abdi et al., 2020).

Here we close the theory gap by deriving explicit theoretical 
predictions for scenarios in which a female may facultatively adjust 
her sex allocation according to the number of her co-foundresses 
and whether they are her sisters or are unrelated females. We take 
an inclusive-fitness approach (Hamilton, 1964), showing that the fe-
male's unbeatable sex ratio depends not only on these two factors, 
but also on the average degree of inbredness across the whole popu-
lation. We provide solutions for both diplo-diploid and haplo-diploid 
modes of genetic inheritance and find an improved fit between sex 

ratio predictions for haplo-diploidy and the Goniozus sex ratios ob-
served by Abdi et al.  (2020). Despite this improvement, our model 
does appear to predict somewhat more female bias than is observed 
empirically. Accordingly, we discuss a number of possible model ex-
tensions—including partial male dispersal and local resource com-
petition—that would further improve realism and that would be 
expected to result in a closer quantitative fit with the experimental 
data.

2  | MODEL AND RESULTS

We consider a foundress group in which there are n females each 
making an equal contribution of offspring to a mating group, with 
each female by default adopting a sex allocation strategy z such that 
she contributes Nz sons and N(1–z) daughters, where N is a large 
number. Their offspring then mate at random among each other, with 
each female mating once and each male potentially mating a large 
number of times. Following mating, the males die, and the mated 
females disperse to form new foundress groups with other females 
drawn at random from the entire population. We assume that these 
new foundress groups almost always comprise unrelated females, 
but we do allow for a nonzero probability that co-foundresses are 
sisters in order to investigate how females are favoured to behave 
in such circumstances.

To determine unbeatable sex allocation behaviour, we focus at-
tention on one of the n foundresses and consider the inclusive-fit-
ness consequences of her adopting an alternative sex allocation 
strategy z + δ, such that she instead contributes N(z + δ) sons and 
N(1–z–δ) daughters to the mating group (full details are given in Box 
1).

First, we consider a diplo-diploid (D) mode of inheritance. Here, 
we find that the unbeatable sex allocation for a female whose group 
comprises herself and n−1 unrelated (U) other females is given by.

which is exactly the result given by Hamilton (1967). This result is illus-
trated by the upper surface in Figure 1a. Note that Equation (1) holds 
irrespective of whether the number of foundresses is constant or vari-
able across groups and depends only on the number of foundresses 
present in the female's own group (see Box 1 for details). In contrast, 
we find that the unbeatable sex allocation for a female whose group 
comprises herself and n-1 of her sisters (S) is given by.

where f describes the ‘inbredness’ of females, that is the average 
consanguinity of their parents (Bulmer,  1994; Frank,  1985, 1986a). 
This result is illustrated by the lower surface in Figure  1a. The sex 
allocation predicted for sister groups (Equation 2) is a constant frac-
tion (1−f)/(2(1 + 3f)) of that predicted for nonsister groups (Equation 

(1)z∗
D,U

=
n−1

2n

(2)z∗
D,S

=
(n−1) (1− f)

4n (1+3f)



1808  |     GARDNER and HARDY

Box 1 Inclusive-fitness derivation

General

The focal female produces Nd = N(1–z–δ) daughters and Ns = N(z + δ) sons, and the n–1 other females in her foundress group collec-
tively produce Nf = (n−1)N(1–z) daughters and Nm = (n−1)Nz sons. Accordingly, the total inclusive-fitness (Hamilton, 1964) value the 
focal female places upon the mating group is.

where pd is her consanguinity (i.e. probability of identity by descent; Bulmer, 1994) to her daughters, ps is her consanguinity to her sons, 
pf is her consanguinity to the daughters of her co-foundresses, pm is her consanguinity to the sons of her co-foundresses, vf is the re-
productive value (Bulmer, 1994; Fisher, 1930; Hamilton, 1972) of a mated female's eggs and vm is the reproductive value of the sperm 
that fertilize a mated female's eggs. The inclusive-fitness effect of a small deviation δ in the focal female's sex allocation strategy is ∆H = 
(∂H/∂δ|δ=0)δ and, accordingly, the unbeatable sex allocation strategy (Hamilton, 1967) satisfies ∆H|z=z* = 0, which yields.

The right-hand side of equation (B1.2) is equivalent to the expression ½ R Pd(a)t derived by Frank (1985; see also Hamilton, 1979, 
Frank, 1986a), using a different, lengthier and less-accessible approach, where the ½ term captures the rarer-sex effect, the R = (2 
ps vm)/(pd vf + ps vm) term is a coefficient of inheritance asymmetry between the sexes and the Pd(a)t = ((n−1)/n)(ps–pm)/ps term is an 
index of panmixia as assessed by the focal female conditional upon the information she has available to her—potentially including 
number and relatedness of co-foundresses. Note that, as pm is the only determinant of z* that is affected if a female conditions her 
sex allocation upon whether her co-foundresses are or are not her sisters, and since z* is linear in pm, it is evident that kin discrimina-
tion is not expected to affect the overall sex ratio of the population compared with a scenario in which females cannot discriminate 
kin (cf. Faria & Gardner, 2020). Nor would any ability to detect variation in genetic relatedness among sisters affect the average sex 
allocation employed in response to sister co-foundresses (cf. Faria & Gardner, 2020). Moreover, as n is the only determinant of z* that 
is affected if a female conditions her sex allocation upon the number of her co-foundresses, and since z* is a concave function of n, 
it is evident that such conditionality is expected to reduce the overall sex ratio of the population compared with a scenario in which 
females cannot adjust their sex allocation in response to co-foundress number (cf. Faria & Gardner, 2020).

Diplo-diploidy

Under diplo-diploidy, pd = ps = (1 + 3f)/4, where f is the consanguinity of the focal female's parents and hence describes her ‘inbred-
ness’ (Frank, 1985, 1986a), and vf = vm (Bulmer, 1994; Fisher, 1930). Accordingly, if the focal female is unrelated to her co-foun-
dresses, such that pm = 0, then her unbeatable sex allocation strategy is given by Equation (1) of the main text.
If instead the focal female's co-foundresses are her sisters, then pm = (1 + 7f)/8 and her unbeatable sex allocation strategy is given 
by Equation (2) of the main text. Note that this equation depends on the focal female's inbredness, which depends on the frequency 
of sib-matings (and hence the size of foundress groups) among her ancestors. If the number of foundresses is n in all foundress 
groups, not just in the focal female's foundress group, then inbredness may be expressed as f = 1/(4n−3), such that the unbeatable 
sex allocation strategy is zD,S* = (n–1)2/(4n2). If the number of foundresses is variable, then f = 1/(4ν–3) and zD,S* = ((n–1)(ν–1))/(4nν), 
where ν is the harmonic mean foundress number (specifically, taken across all females, it is the harmonic mean of the number of 
foundresses in their mothers’ foundress groups; cf. Frank, 1985).

Haplo-diploidy

Under haplo-diploidy, pd = (1 + 3f)/4, ps = (1 + f)/2 and vf = 2vm (Bulmer, 1994; Hamilton, 1972). Accordingly, if the focal female is 
unrelated to her co-foundresses, such that pm = 0, then her unbeatable sex allocation strategy is given by Equation (3) of the main 
text. If the number of foundresses contributing to different mating groups is constant, then f = 1/(4n-3) and zH,U* = ((n–1)(2n – 1))/
(n(4n–1)). If the number of foundresses is variable, then f = 1/(4ν–3) and zH,U* = ((n–1)(2ν–1))/(n(4ν–1)).
Finally, if the focal female's co-foundresses are her sisters, then pm = (3 + 5f)/8 and her unbeatable sex allocation strategy is given by 
Equation (4) of the main text. If the number of foundresses contributing to different mating groups is constant, then f = 1/(4n−3) and 
zH,S* = (n–1)2/(2n(4n–1)), and if the number of foundresses is variable, then f = 1/(4ν–3) and zH,S* = ((n–1)(ν–1))/(2n(4ν–1)).

(B1.1)
H=Ndpdvf+Nfpfvf+

(

Nd+Nf

) Ns

Ns+Nm

psvm+
(

Nd+Nf

) Nm

Ns+Nm

pmvm

(B1.2)z∗ =
(n−1)

(

ps−pm
)

vm

n
(

pdvf+psvm
) .
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1), independently of the number of co-foundresses present, and this 
fraction decreases from ½ to 0 as the degree of inbredness increases 
from 0 to 1, meaning that the proportional allocation to sons in sister 
groups is never more than half of what it is in equal-sized nonsister 
groups. Note that a female's inbredness is liable to depend on the sizes 
of groups encountered by her ancestors, such that (unlike for nonsister 
diplo-diploid groups) it is likely that sex allocation behaviour predicted 
for sister groups will depend not only on the local number of found-
resses but also the on the distribution of group sizes across the popula-
tion. In the special case of all groups having the same size, Equation (2) 
reduces to zD,S* = (n – 1)2/(4n2) (see Box 1 for details).

Second, we consider a haplo-diploid (H) mode of inheritance. 
Here, we find that the unbeatable sex allocation for a female whose 
group comprises herself and n−1 unrelated other females is given 
by.

as is illustrated by the upper surface in Figure 1b. Note that, in con-
trast with the corresponding result given for diplo-diploidy (Equation 
1), the sex allocation exhibited by nonsister groups in haplo-diploid 
populations (Equation 3) is dependent upon the degree of inbredness 
and hence is likely to depend on the distribution of group sizes across 
the population and not just the size of the focal female's group. In the 
special case of all groups having the same size, Equation (3) reduces to 
zH,U* = ((n–1)(2n–1))/(n(4n–1)), as given by Hamilton (1979; see Box 1 
for details). More generally, the sex allocation predicted for haplo-dip-
loid nonsister groups (Equation 3) is a constant fraction (1 + f)/(1 + 2f) 
of that predicted for diplo-diploid nonsister groups (Equation 1), inde-
pendently of the number of co-foundresses present, and this fraction 
decreases from 1 to 2/3 as the degree of inbredness increases from 
0 to 1, meaning that it is almost always lower than the corresponding 
result for diplo-diploid inheritance.

In contrast, we find that the unbeatable sex allocation for a fe-
male whose group comprises herself and n-1 of her sisters is given by.

as is illustrated by the lower surface in Figure 1b. This too is de-
pendent upon the degree of inbredness and hence upon the dis-
tribution of group sizes across the whole population. In the special 
case of all groups having the same size, Equation (4) reduces to 
zH,S* = (n–1)2/(2n(4n–1)). More generally, the sex allocation pre-
dicted for sister groups under haplo-diploidy (Equation 4) is a con-
stant fraction (1−f )/(4(1 + f )) of that predicted for nonsister groups 
under haplo-diploidy (Equation 3), and this fraction decreases 
from ¼ to 0 as the degree of inbredness increases from 0 to 1, 
meaning that it is always lower than the corresponding result for 
nonsister groups.

2.1 | Comparison of theory and observations

Here we compare model predictions for the haplo-diploid mode of 
inheritance with sex ratios observed in Goniozus. Abdi et al. (2020) 
provide data on the sexual composition of 123 broods of offspring 
produced by Goniozus nephantidis (Muesebeck) females held in 
foundress groups of size ranging from 1 to 8 and with multi-foun-
dress groups consisting of sister females or nonsister females. The 
results of null hypothesis significance testing using weighted logis-
tic analysis and the associated equations for the estimated minimal 
adequate models are presented in Abdi et al. (2020), who also dis-
cussed the inclusion or exclusion of a large brood with an outly-
ing sex ratio which was especially influential due to the use of an 
intrinsically weighted analysis. Here we include the outlier but use 
unweighted logistic analysis to de-emphasize the influence of large 
broods. We obtain the following maximum likelihood estimates of 
the two empirical relationships between sex ratio, z, and foundress 
number, n:

Regression for single foundresses and multiple nonsister 
foundresses:

Regression for single foundresses and multiple sister foundresses:

(3)z∗
H,U

=
(n−1) (1+ f)

2n (1+2f)
,

(4)z∗
H,S

=
(n−1) (1− f)

8n (1+2f)
,

(5)z =1∕ (1+(1∕ (exp (0.084n−1.132))))

(6)z=1∕ (1+(1∕ (exp (0.071n−2.072))))

F I G U R E  1   Predicted sex ratios in 
groups of sister or nonsister foundresses, 
according to foundress number and 
inbredness. Panel (a) shows optima for 
diplo-diploid inheritance, and panel 
(b) shows optima for haplo-diploid 
inheritance

Foundress number (n)
Inbredness (f)

S
ex

 r
at

io
 (

z*
)

0.0

0.5

1

10
0.0

1.0

Foundress number (n)
Inbredness (f)

S
ex

 r
at

io
 (

z*
)

0.0

0.5

1

10
0.0

1.0

(a) Diplo-diploidy (b) Haplo-diploidy

non-sisters non-sisters

sisters sisters



1810  |     GARDNER and HARDY

We explored likely values of f (the average inbredness of G. 
nephantidis) by calculating the sums of squared differences between 
the observed sex ratio of each brood and the sex ratio predicted by 
Equations 3 and 4 for the given number of foundresses and found-
ress kinship, across the range of candidate values of f (0 to 1): the 
best-fit value of f was zero. Using f = 0, the sex ratios predicted to 
be produced (Equations 3 and 4) are plotted against n, along with the 
estimated regressions (Equations 5 and 6) and observed brood sex 
ratio data for G. nephantidis, in Figure 2.

We evaluated how well the data fit the model predictions by cal-
culating the sum of squared departures from the observed mean sex 
ratio (SST) and the sums of squared departures (SSE) from the model 
for haplo-diploids (Equations 3 and 4), using data from all replicates, 
for a range of values of f. For f = 0, the proportion of variation ex-
plained by the model ((SST-SSE)/SST) was 0.0894. The model pro-
vided a better fit to the data than did the overall mean for f ≤ 0.35 
and for larger values it was worse. As LMC models give notoriously 
unrealistic predictions for the single foundress case (see below), we 
also calculated these values with single foundress replicates ex-
cluded. The proportion of variation explained was 0.1167 and the 
model provided a better fit than the mean sex ratio for f ≤ 0.5.

Next, we compared the variation explained by Hamilton’s (1979) 
LMC model for haplo-diploids (zH,U* = ((n–1)(2n–1))/(n(4n–1))) against 
the observed mean and found that this model fits the data worse than 
does the overall mean sex ratio, whether or not single foundress rep-
licates are included. Finally, we calculated the proportion of variation 

explained by our model for haplo-diploids (Equations 3 and 4, f = 0, 
Figure 2) compared to Hamilton’s (1979) model (shown plotted along 
with the same data in fig. 10 of Abdi et al., 2020): across all replicates 
23.2% of the variation was explained by including co-foundress and 
for multiple-foundress replicates only this value was 24.44%. We 
conclude that the inclusion of facultative adjustment according to 
whether co-foundresses are sisters or are unrelated females leads to 
a better match between predicted and observed sex ratios.

3  | DISCUSSION

We have derived explicit theoretical predictions for sex allocation 
when females are able to adjust their behaviour according to num-
ber and kinship of co-foundresses, for both diplo-diploid and haplo-
diploid modes of genetic inheritance. We have shown that females 
are expected to decrease their allocation of reproductive resources 
to sons in the presence of both fewer and more closely related co-
foundresses, with the extent of sex ratio bias being dependent upon 
female inbredness (and hence upon the distribution of group sizes 
across the population) in all cases except for the classic diplo-dip-
loid, nonsister-group scenario considered by Hamilton (1967). These 
results are in agreement with the more general qualitative predic-
tions of LMC theory (Frank, 1985) and are here rendered in explicit 
quantitative form for the first time, enabling direct comparison with 
empirical data.

F I G U R E  2   Goniozus nephantidis 
sex ratios: observed and predicted for 
the haplo-diploid mode of inheritance. 
Note that, for the sake of illustration, 
the prediction lines assume a degree of 
inbredness f = 0, as this is the best-fitting 
value, but is likely unrealistic given the life 
history of G. nephantidis (see Discussion 
for more details)
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Our predictions are in line with the experimental data of 
Abdi et al.  (2020) who varied foundress number and relatedness 
in Goniozus nephantidis. Sex ratios of G. nephantidis appear to be 
more affected by co-foundress relatedness than those of other 
studied insects and mites: Shuker et al. (2004) report a meta-anal-
ysis across 7 studies, with all effect sizes, r, being < 0.3 while, from 
logistic ANOVA statistics given in Abdi et al. (2020), for G. nephan-
tidis r  =  0.438. This is most likely associated with the ability of 
adult Goniozus females to discriminate kinship (Abdi et al., 2020; 
Lizé et al., 2012) which appears lacking in some studied parasitoids 
(Shuker et al., 2004).

While the development of theory we present has been stimu-
lated by the observed sex ratios of G. nephantidis and its predic-
tions match the fitted regressions quite closely, there are several 
differences between the assumptions of the model and the life 
history of Goniozus that can affect sex ratio. First, the model as-
sumes that local mating groups are sizable, with each foundress 
contributing a large number, N, of offspring. Goniozus brood sizes 
more typically take small integer values which constrains the val-
ues of possible brood sex ratios: for the single foundress case, the 
optimal sex ratio is 1/N if daughters are to be able to mate locally 
(Green et al., 1982) and this especially likely accounts for dispari-
ties at n = 1 in Figure 2.

Second, the model implicitly assumes that the sexual composi-
tion of offspring groups is the same at the time of sex allocation and 
the time at offspring mating. Goniozus broods normally experience 
some developmental mortality that can alter the sexual composition 
of broods: this can both select for less biased primary sex ratios than 
would be predicted in the absence of mortality and also can obscure 
patterns of sex allocation (Green et al., 1982; Khidr et al., 2013). In 
the experiment reported by Abdi et  al.  (2020), offspring mortal-
ity was unusually high due to the sustained confinement of multi-
ple-foundresses and it remains possible that the brood sex ratios 
observed do not accurately reflect sex allocation decisions made by 
foundresses.

Third, the model assumes strictly local mating with males dying 
and only mated females dispersing. In Goniozus, males are winged 
and are observed, in laboratory trials, to disperse from natal broods 
(Hardy et  al.,  1999); if nonlocal mating occurs in nature this would 
select for less female-biased sex ratios than are predicted by models 
assuming strict LMC (Nunney & Luck, 1988; West, 2009). This effect 
is likely masked in Figure 2 on account of the degree of inbredness 
(f) being treated as a free parameter whose value may be adjusted to 
improve the goodness of fit, with the best fit obtained when females 
are considered to be completely outbred (f = 0). The life history of 
Goniozus suggests that some degree of inbredness (f > 0) is expected, 
which would select for a more female-biased sex ratio, and therefore 
compensate for the discrepancy between prediction and observation 
in the opposite direction arising as a consequence of partial LMC. A 
more direct estimate of inbredness using molecular markers would be 
a useful goal for future investigation of the Goniozus mating system. 
Relatedly, the model assumes almost complete dispersal of females 
following mating and hence negligible competition among related 

females for reproductive resources. Incorporating limited dispersal 
of females would be expected to reduce the extent of female bias in 
sex allocation for both sister and nonsister groups (cf. Bulmer, 1986, 
Frank, 1986b, Taylor, 1988).

A further assumption of the present theoretical model is that fe-
males are able to recognize each other as sisters vs nonsisters per 
se, although the model is agnostic as to whether this involves en-
vironmental or genetic kin recognition (Grafen, 1990). A possibility 
is that females are able to recognize co-foundresses who eclosed 
from the same host, without being able to discriminate between 
those that are actually sisters vs nonsisters (including both more 
distantly related kin and nonkin co-foundresses) or that both types 
of recognition may be used (Lizé et al., 2012, have shown that kin 
discrimination in one species of Goniozus utilizes genetically based 
and familiarity-based mechanisms). Discrimination based only on fa-
miliarity was considered by Taylor and Crespi (1994) in an analysis of 
how females are expected to adjust their sex allocation in response 
to their own dispersal status and that of their co-foundresses; this 
instantiated Frank’s (1985) qualitative prediction that closer kinship 
should result in a more female-biased sex ratio, though without 
allowing for the possibility of foundress number variation within 
populations. On account of familiar females being, on average, less 
related than confirmed sisters, we would expect adjustment of sex 
ratios in response to familiarity per se to lead to less female bias than 
is predicted by the present model.

Finally, a limitation of the present analysis is that it has, following 
the experimental design of Abdi et al. (2020), focused on the com-
parison between sister vs nonsister foundress groups and has not 
explored sex allocation behaviour within groups containing mixtures 
of sisters and nonsisters (possible for n > 2). Mixed groups present 
a particular mathematical challenge in that they allow for (though 
do not in all cases necessitate) individuals within a group finding 
themselves in different circumstances and hence being favoured 
to exhibit different sex allocation behaviours. When each female's 
strategy is conditional upon not only her own circumstances but also 
the circumstances of her co-foundresses, strategies are required to 
be solved simultaneously rather than individually. A similar complex-
ity would arise in the presence of partial LMC, whereby the mating 
success of eclosing males depends upon sex allocation strategies 
employed globally as well as locally. Such scenarios provide an inter-
esting avenue for future theoretical attention.
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