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Abstract

In many beef and some dairy production systems, crossbreeding is used to take advan-

tage of breed complementarity and heterosis. Admixed animals are frequently identified

by their coat color and body conformation phenotypes, however, without pedigree informa-

tion it is not possible to identify the expected breed composition of an admixed animal and

in the presence of selection, the actual composition may differ from expectation. As the

roles of DNA and genotype data become more pervasive in animal agriculture, a system-

atic method for estimating the breed composition (the proportions of an animal’s genome

originating from ancestral pure breeds) has utility for a variety of downstream analyses

including the estimation of genomic breeding values for crossbred animals, the estimation

of quantitative trait locus effects, and heterosis and heterosis retention in advanced gener-

ation composite animals. Currently, there is no automated or semi-automated ancestry

estimation platform for cattle and the objective of this study was to evaluate the utility of

extant public software for ancestry estimation and determine the effects of reference popu-

lation size and composition and number of utilized single nucleotide polymorphism loci on

ancestry estimation. We also sought to develop an analysis pipeline that would simplify

this process for members of the livestock genomics research community. We developed

and tested a tool, “CRUMBLER”, to estimate the global ancestry of cattle using ADMIX-

TURE and SNPweights based on a defined reference panel. CRUMBLER, was developed

and evaluated in cattle, but is a species agnostic pipeline that facilitates the streamlined

estimation of breed composition for individuals with potentially complex ancestries using

publicly available global ancestry software and a specified reference population SNP data-

set. We developed the reference panel from a large cattle genotype data set and breed

association pedigree information using iterative analyses to identify purebred individuals

that were representative of each breed. We also evaluated the numbers of markers neces-

sary for breed composition estimation and simulated genotypes for advanced generation

composite animals to evaluate the precision of the developed tool. The developed CRUM-

BLER pipeline extracts a specified subset of genotypes that is common to all current com-

mercially available genotyping platforms, processes these into the file formats required for

PLOS ONE | https://doi.org/10.1371/journal.pone.0221471 August 26, 2019 1 / 31

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Crum TE, Schnabel RD, Decker JE,

Regitano LCA, Taylor JF (2019) CRUMBLER: A tool

for the prediction of ancestry in cattle. PLoS ONE

14(8): e0221471. https://doi.org/10.1371/journal.

pone.0221471

Editor: Raluca Mateescu, University of Florida,

UNITED STATES

Received: March 18, 2019

Accepted: August 7, 2019

Published: August 26, 2019

Copyright: © 2019 Crum et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Allele frequency data

are provided with CRUMBLER. Project Name:

CRUMBLER; Project Home Page: https://github.

com/tamarcrum/CRUMBLER; Programming

Language: Python; Other Requirements: PLINK,

EIGENSOFT, and SNPweights License: GNU GPL.

Funding: JT and RS appreciate the support of NIH-

USDA Dual Purpose with Dual Benefit Program

grant number NIH 1R01HD084353. JT and RS are

supported by USDA-NIFA grants 2013-68004-

20364, 2015-67015-23183, 2016-67015-24923

and 2017-67015-26760. The funders had no role in

http://orcid.org/0000-0003-2326-0078
http://orcid.org/0000-0001-5685-7343
https://doi.org/10.1371/journal.pone.0221471
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221471&domain=pdf&date_stamp=2019-08-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221471&domain=pdf&date_stamp=2019-08-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221471&domain=pdf&date_stamp=2019-08-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221471&domain=pdf&date_stamp=2019-08-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221471&domain=pdf&date_stamp=2019-08-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221471&domain=pdf&date_stamp=2019-08-26
https://doi.org/10.1371/journal.pone.0221471
https://doi.org/10.1371/journal.pone.0221471
http://creativecommons.org/licenses/by/4.0/
https://github.com/tamarcrum/CRUMBLER
https://github.com/tamarcrum/CRUMBLER


the analysis software, and predicts admixture proportions using the specified reference

population allele frequencies.

Introduction

Estimation of the breed composition of individuals with complex ancestries has utility for esti-

mating breed direct and heterosis effects as well as for the estimation of the additive genetic

merit of these individuals. It also has value for identifying the breed composition of training

populations used for genomic selection and hence the identification of target breeds in which

the developed prediction equations may have some relevance. Visual classification of cattle

based on breed characteristics suffers from similar problems as the self-identification of eth-

nicity in humans [1], as most visible breed characteristics are determined by alleles at relatively

few loci. For example, recent extensive crossing with Angus cattle in the U.S. produces a black

hided animal which masks all other solid coat colors found in other breeds and requires only a

single dominant allele at the MC1R locus. As a consequence, black-hided cattle have a “cryptic”

population structure [1,2] and the visual classification of black-hided animals for branded beef

programs can result in the marketing of animals with vastly different Angus genome content.

In the U.S. and many other countries, the breed of an animal is associated with its being

registered with a breed association which requires that both parents of the animal be identified

and also registered with the association. For the previous 50 years, parentage has been vali-

dated by each breed association using blood or, more recently, DNA typing. Many breed asso-

ciations have closed herdbooks which means, in theory, that the pedigrees of all animals can be

traced back to the animals that founded the breed’s herdbook. Other breed associations have

open herdbooks, which means that crossbred animals can be registered with the breed if they

have been graded up by crossbreeding to purebred status with the expectation that a certain

percentage of their genome (e.g., 15/16ths) originates from the respective breed based upon

pedigree records and parentage validation. Pedigree errors that occurred prior to, or that were

not identified following the implementation of blood typing and DNA testing, lead to admixed

animals being incorrectly classified as fullblood and incorrectly identified admixture propor-

tions in purebred animals. The effects of recombination, random assortment of chromosomes

into gametes and selection can also lead to considerable variation in the extent of identity by

descent between relatives separated by more than a single meiosis and can also lead to admix-

ture proportions that differ substantially from expectation based on pedigree.

Crossbreeding is extensively used in commercial beef production and in other livestock

species production systems to capitalize on the effects of breed complementarity and heterosis

resulting in herds of females that may have very complex ancestries that frequently use full-

blood or purebred bulls sourced from registered breeders. Changes in the decision as to which

breed of bull to use can result in large changes in admixture proportions of replacement cows

and marketed steers between years and large differences can occur between herds for the same

reason. When commercially sourced animals are used to generate resource populations to

study the genomics of economically important traits such as feed conversion efficiency [3,4] or

bovine respiratory disease [5], the presence of extensive admixture in the phenotyped and gen-

otyped animals may impact the genome wide association analysis (GWAA) [3,4] and leads to

the training of genomic prediction models in populations for which the breed composition is

not understood. As a consequence, the utility of these models in other industry populations,

including the registered breeds in which the majority of genetic improvement is generated is

also not understood.
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As the number of genotyped beef animals has increased, the need to classify the breed com-

position of these animals has necessitated the development of a precise and accurate method

for estimating breed composition in cattle based on single nucleotide polymorphism (SNP)

data. Iterative ancestry estimation analyses performed using different software input parame-

ters may identify those that cause output sensitivity and can lead to an interpretation of popu-

lation structure that is close to the truth [6]. We developed the CRUMBLER analysis pipeline

to streamline the genomic estimation of breed composition of crossbred cattle using high-den-

sity SNP genotype data, publicly available software, and a reference panel containing genotypes

for members of cattle breeds that are numerically important in North America. The CRUM-

BLER pipeline is species agnostic and could be adapted for breed composition estimation in

other species. CRUMBLER and the reference panel data are available on GitHub (https://

github.com/tamarcrum/CRUMBLER). This pipeline tool is released under the GNU General

Public License.

Materials and methods

Genotype data

From among the numerically most important cattle breeds in North America, in terms of their

annual numbers of animal registrations, a list was compiled to define the target breeds for ref-

erence panel development. Composite breeds, such as Brangus and Braford, were not included

in this list due to lack of available genotype data, but the progenitor Angus, Hereford and

Brahman breeds were included. Breeds such as N’Dama, representing African taurine, and

Nelore and Brahman, representing Bos taurus indicus cattle, were included. We also initially

included breeds that were likely to be involved in early crossbreeding of cattle in the U.S.

(Texas Longhorn).

From the 170,544 cattle with high-density SNP genotypes stored within the University of

Missouri Animal Genomics genotype database, we extracted genotypes for 48,776 animals

identified as being registered with one of the numerically important U.S. Breed Associations

or belonging to other world breeds. Pedigree data were also obtained for these animals from

each of the Breed Associations, where available (Table 1). These individuals had been geno-

typed using at least one of 9 different genotyping platforms currently used internationally to

genotype cattle including the GeneSeek (Lincoln, NE) GGP-90KT, GGP-F250, GGP-HDV3,

GGP-LDV1, GGP-LDV3, and GGP-LDV4 assays, the Illumina (San Diego, CA) BovineHD

and BovineSNP50 assays, and the Zoetis (Kalamazoo, MI) i50K assay. The numbers of variants

queried by each assay and the number of individuals genotyped using each platform are

shown in Table 2.

Marker set determination

To maximize the utility of the developed breed assignment tool, we identified the intersection

set of SNP markers located on the bovine assays for which we had available genotype data

(Table 2). To retain as many SNP markers as possible for subsequent analysis, we identified

the intersection of markers present on the GGP-90KT, GGP-F250, GGP-HDV3, GGP-LDV3,

GGP-LDV4, BovineHD, BovineSNP50 and i50K assays. However, during the process of iden-

tifying the animals that would define the breed reference panel, only 16 individuals had been

genotyped using the GGP-LDV4 (n = 2) and GGP-LDV3 (n = 14) assays and no animals had

been genotyped using the GGP-LDV1 assay. This intersection set included 6,799 SNP markers

(BC7K). The intersection of the markers representing 5 assays (GGP-90KT, GGP-F250,

GGP-HDV3, BovineHD, and BovineSNP50) was 13,291 markers (BC13K). By removing only

the 16 individuals from the breed reference panel that had been genotyped on the GGP-LDV3
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Table 1. Genotype data for 48,776 registered individuals from 20 breeds were used to establish the reference population.

Breed No. Registered

Individuals

No. FullBlood

Individualsa
No. Individuals Assigned to

Breedb
Sampled

Individualsc
No. Individuals After Pedigree and

SNPweightsd

Angus 5552 5552 485 200 200

Hereford 969 969 348 200 200

Limousin 2734 321 367 200 200

Charolais 1542 1489 1542 200 200

Simmental 15858 337 1583 200 196

Japanese Black 97 97 97 97 94

Braunvieh 148 69 148 148 69

Gelbvieh 12835 51 6000 200 51

Romagnola 37 37 37 37 37

Salers 68 68 0 0 0

Texas

Longhorn

45 45 45 0 0

Shorthorn 291 178 166 166 178

Red Angus 1377 1377 124 124 124

Holstein 5816 5816 5816 200 197

Jersey 119 119 119 119 118

Brown Swiss 92 92 92 92 90

Guernsey 30 30 30 30 30

N’Dama 98 98 59 59 59

Brahman 127 127 86 86 50

Nelore 941 941 708 200 50

Total 48776 17813 17852 2558 2143

aNumber of registered animals determined by pedigree analysis to be fullblood for breed associations with open herdbooks.
bNumber of registered animals assigned to their identified breed with P�0.97 by fastSTRUCTURE in preliminary analyses and retained for subsequent analyses.
cA random sample of 200 individuals was obtained for breeds with >200 individuals after fastSTRUCTURE analysis and all individuals were sampled for breeds with

�200 per breed and the data were again analyzed by fastSTRUCTURE with K = 19 after removal of the Salers.
dAnimals that were determined to not be fullblood by pedigree analysis and animals assigned with P�0.60 by SNPweights to their breed of registry were removed.

https://doi.org/10.1371/journal.pone.0221471.t001

Table 2. The number of variants queried by each assay and the number of individuals from the 20 reference

breeds genotyped using each assay.

Assay No. of Variants No. of Registered Individuals

BovineSNP50 58336 20485

BovineHD 777962 2303

GGP-F250 227234 3068

GGP-90KT 76999 4407

GGP-LDV3 26504 6065

GGP-HDV3 139977 3630

GGP-LDV4 30105 8653

GGP-LDV1 8762 165

Zoetis i50K 59825 0

ICBF IDBv3 53450 0

BOVGv1 47843 0

Total 48776

https://doi.org/10.1371/journal.pone.0221471.t002
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and GGP-LDV4 assays, we were able to compare ancestry predictions using two marker set

densities (BC13K and BC7K).

Pipeline

The developed CRUMBLER pipeline integrates the tools and the computational efficiency of

publicly available software, PLINK [7,8], EIGENSOFT [9,10] and SNPweights [11] to generate

ancestry estimates (Fig 1). The pipeline integrates the often cumbersome processes of data

reformatting and sequentially processing the data using analytical tools to generate ancestry

proportions for targeted individuals based on a curated breed reference panel.

PLINK

PLINK PED formatted genotypes are required as input to the pipeline. PLINK (v1.90b3.31)

was used for data filtering and formatting. Genotypes can arise from any of the common

bovine genotyping platforms (Table 2), provided that a PLINK compatible MAP file is pro-

vided for each assay and data produced using only a single genotyping assay is included in

each PED file. The pipeline utilizes the PLINK marker filtering tool (—extract) to extract the

user-specified marker subset for ancestry analysis. For analyses of animals genotyped on differ-

ent genotyping platforms, the marker list representing the intersection of the platforms can be

provided to extract the markers that are common to all assays. The pipeline allows multiple

input genotype files and uses the PLINK merge genotype files tool (—merge) to combine geno-

types into a single file for downstream analysis.

EIGENSOFT

The EIGENSOFT convertf package is used to convert all genotypes from PLINK PED format

into EIGENSTRAT format which is required by the SNPweights software. To process the

reference panel data, principal component analysis using EIGENSOFT smartpca is used to

generate the eigenvalues and eigenvectors that are required to calculate SNP weights using

SNPweights. However, the smartpca package included in EIGENSOFT versions beyond 5.0.2

is not compatible with SNPweights. SNPweights requires an input variable, “trace”, to be

located in the log file output from the smartpca analysis. For versions of EIGENSOFT beyond

Fig 1. Flow diagram of the breed composition pipeline.

https://doi.org/10.1371/journal.pone.0221471.g001
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5.0.2, the source code can be edited to ensure that the log file output is compatible with the

SNPweights software (S1 File).

SNPweights

SNPweights implements an ancestry inference model based on genome-wide SNP weights

computed using genotype data for an external panel of reference individuals. The SNP weights

file only needs to be recalculated if the reference panel is changed. EIGENSTRAT formatted

target animal genotypes are input into SNPweights, along with the precomputed reference

panel SNP weights. The SNP weights are then applied to the target individuals to estimate

their ancestry proportions [11].

Reference panel development

The definition of a set of reference individuals that define the genotype frequencies at each

SNP variant for each reference breed is technically demanding, but vitally important to the

process of defining ancestry. This process assumes that selection has not operated to change

gene frequencies between target and reference population animals, and that each population is

sufficiently large that drift has not impacted allele frequencies. It also assumes that migration

between different countries does not influence population allele frequencies when registered

animals are imported or exported. FastSTRUCTURE [12] analysis and iterations of animal fil-

tering using SNPweights was performed using the genotypes of candidate reference panel indi-

viduals to remove individuals with significant evidence of admixture from the reference breed

panel. An overview of the processes and iterations of filtering conducted in the development

of this reference panel set is shown in S1 Fig and Table 1.

FastSTRUCTURE analysis to identify candidate reference panel individuals

Genotype data for 48,776 registered individuals produced by one of 8 different genotyping

assays were available for fastSTRUCTURE analysis (Table 1) [12]. We initially performed

focused fastSTRUCTURE analyses using small numbers of reference breeds including Angus

and Simmental; Angus and Gelbvieh; Angus and Limousin; Angus and Red Angus; Red

Angus, Hereford, Shorthorn and Salers; Red Angus, Hereford and Shorthorn; and N’Dama,

Nelore and Brahman (S2–S8 Figs). Individuals possessing an ancestry assignment of at least

97% to their designated breed were retained for subsequent analysis (S2 File and Table 1). Fol-

lowing filtering based on fastSTRUCTURE breed assignment, 17,852 individuals representing

19 of the original breeds remained for further analysis (S2 File and S2–S8 Figs). All of the Salers

animals were removed in this filtering analysis which is consistent with previous work that

found that Salers and Limousin were very similar [4]. Variation in reference population sam-

ple sizes has been shown to substantially influence the estimation of the number of ancestral

populations (K) in ancestry analyses [6,13,14]. To minimize this effect and produce similar

sample sizes for each of the reference breeds, we randomly sampled 200 individuals from

each reference breed for which at least 200 individuals remained after filtering on an ancestry

assignment of at least 97%, otherwise all remaining individuals were included for the breed

(Table 1). Following fastSTRUCTURE analysis using K = 19 after removal of Salers and using

the BC7K marker set, Texas Longhorn was also removed from the reference panel breed list

due to the inability to distinguish Texas Longhorn as a distinct population (Fig 2). Further,

due to the known common ancestry [15] and similarity between Nelore and Brahman (Fig 2),

the breeds were combined to represent Bos taurus indicus.
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SNPweights analyses to refine and validate reference panel members

Random sampling of reference breed individuals was performed to create sample sets contain-

ing�n individuals per breed, for n = 50, 100, 150 and 200 individuals (Fig 3A and 3B and S9

and S10 Figs). Sampling was performed such that if a reference breed had�n candidates then

n individuals were randomly sampled, otherwise, all available individuals were sampled. An

analysis was performed using the BC7K marker set, SNPweights was used to assign reference

breed ancestries to the same sample of individuals that was used to produce the SNP weights

self-assignment for each of the four samples of individuals (Fig 3A and 3B and S9 and S10

Figs). In the self-assignment analyses conducted using the reference breed sample sets of�100

individuals per breed and�50 individuals per breed, 7 individuals were removed due to their

estimated breed ancestry being�60% to their registry breed (Holstein n = 3, Jersey n = 1, Japa-

nese Black n = 3) (Fig 3A and 3B).

Fig 2. FastSTRUCTURE results for a random sample of�200 individuals per breed from the pool of 17,852 potential reference individuals at

K = 19. Breed identification is shown below each colored block and each animal is represented as a vertical line within the block (JBlack = Japanese

Black, Rom = Romagnola, TXL = Texas Longhorn). Blocks are segregated by thick black vertical line to indicate the end of one breed and start of

another.

https://doi.org/10.1371/journal.pone.0221471.g002
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Breeds with open herdbooks

For the Gelbvieh, Limousin, Shorthorn, Simmental, and Braunvieh breeds that have open U.S.

herdbook registries, fullblood or 100% ancestry individuals were identified based on pedigree

data obtained from the respective breed associations (Table 1). The term “fullblood” is used to

identify cattle for which every ancestor is registered in the herdbook and can be traced back to

the breed founders. The term “purebred” refers to animals that have been graded up via cross-

breeding to purebred status. Charolais also has an open herdbook registry in the U.S., however,

Fig 3. SNPweights self-assignment analysis results for reference panel sample sets. Reference panel sets consisting

of: (A)�100 individuals per breed, or (B)�50 individuals per breed. Seven individuals were filtered for�60%

ancestry to their breed of registry (Holstein n = 3, Jersey n = 1, Japanese Black n = 3).

https://doi.org/10.1371/journal.pone.0221471.g003
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access to Full French imported Charolais breed members was limited. As a result, all Charolais

individuals identified as purebred in the association registry were retained for downstream

analysis, however, these individuals could contain up to 1/32 introgression from another

breed. A random sample of 200 individuals was taken for each breed with more than 200

identified fullblood individuals, otherwise all animals were sampled. Individuals previously

included in the candidate reference panel following preliminary fastSTRUCTURE filtering for

the open herd book breeds were removed and replaced with the fullblood individuals.

Additional reference panel filtering using SNPweights

After filtering animals identified to not be fullblood based on their pedigree information, we

randomly sampled�50 individuals per reference breed and utilized SNPweights to estimate

weights for each sample and also to estimate breed ancestries for members of the same sample

that was used to generate the SNP weights. Based on these analyses, we created 5 overlapping

reference breed sets, each containing individuals with�90%,�85%,�80%,�75%, or�70%

ancestry assignment to their registry breeds (Table 3).

Simulated genotypes

Using the phased BC7K genotypes for the final reference population of 803 individuals (3

Nelore genotyped with the BovineHD assay were removed because they were determined to

cause problems for the phasing software), we simulated genotypes for 803 individuals each

generation (N = 1, 3, 5 and 10) by randomly sampling two individuals as parents from genera-

tion N-1 and using a Poisson distribution to sample at random a single recombinant chromo-

some from each parent. The number of recombination events for each sampled chromosome

was sampled from a Poisson distribution with mean equal to chromosome length in Mb/100

(i.e. 1.58 Morgans for chromosome 1). Simulated genotypes were produced for individuals 1

Table 3. Number of individuals for each reference breed assigned to their breed of registration by minimum ancestry threshold.

Breed Assignment Probability

Breed �90% �85% �80% �75% �70%

Angus 51 136 184 199 200

Hereford 58 136 184 200 200

Limousin 93 127 144 162 173

Charolais 52 92 119 132 147

Simmental 21 43 81 103 121

Japanese Black 52 73 78 83 86

Braunvieh 37 57 63 65 68

Gelbvieh 23 31 39 43 43

Romagnola 10 25 32 36 37

Shorthorn 34 98 159 170 177

Red Angus 48 88 110 120 123

Holstein 39 119 172 193 196

Jersey 52 77 91 108 116

Brown Swiss 38 64 73 82 86

Guernsey 12 22 29 30 30

N’Dama 27 45 59 59 59

Brahman 15 40 50 50 50

Nelore 32 50 50 50 50

Total 694 1323 1717 1885 1962

https://doi.org/10.1371/journal.pone.0221471.t003
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generation removed from the fullblood/purebred reference population animals (i.e., 50%

breed A and 50% breed B), 3, 5, and 10, generations, respectively, to evaluate the ability of

CRUMBLER to detect large through to small admixture proportions in animals with increas-

ing numbers of breeds represented in their ancestry. Breed composition estimates for these

animals were obtained by tracing the breed of origin of every allele present in each generation

N animal. For each marker, we attributed the genomic fragment from the center points of the

intervals on each side of each marker to the breed of origin of the two alleles at each marker

and summed these across all loci. Finally, we normalized these sums by dividing by the autoso-

mal genome size using UMD3.1 coordinates.

Results and discussion

The concept of breed and breed membership is man-made and does not inherently exist in

nature. Moreover, the formation of breeds of cattle is very recent, as cattle domestication

began about 10,000 years ago but the formation of herdbooks has occurred only during the

last 200–250 years [16]. Nevertheless, the effects of drift and human selection over the last 200

years have caused sufficient divergence among breeds that breed differences are identifiable

at the molecular level. Such signals are essential for breed ancestry analyses to be effective in

modern admixed animals. Previous work on assigning breed composition in admixed cattle

utilized 50K genotype data and a reference panel of 16 breeds, with the basis for reference

panel inclusion being breed association registration [17]. However, the continual evolution of

genotyping assays has led to content changes resulting in only a relatively small proportion of

markers in common among assays. Consequently, there is a need to evaluate whether these

markers are sufficient for breed content estimation, leading to their conservation in the design

of future assays. Furthermore the development of an analytical pipeline based on these markers

would simplify analysis for end-users and the use of a single reference panel would allow the

direct comparison of results between applications.

Reference panel development

Previously developed cattle reference panels have relied on pedigree accuracy and breed asso-

ciation registration for their definition [17]. Conversely, we used an iterative approach for ref-

erence population curation that was able to validate the accuracy of the pedigree information

used to identify candidates. FastSTRUCTURE analyses performed using the candidate individ-

uals for each of the initial 19 reference breeds suggested population subdivision in both the

Hereford and Simmental (Fig 2). Pedigree analysis for the Herefords within each subpopula-

tion indicated that the subpopulations comprised animals from the highly inbred USDA Miles

City Line 1 Hereford population (L1) and other individuals representing broader U.S. Here-

ford pedigrees. Since the founding of the L1 Herefords, the migration of germplasm has been

unidirectional from L1 into the broader U.S. industry, as the L1 population has been closed

since its founding [18]. L1 Herefords do not segregate for recessive dwarfism, which has been

a threat to Hereford breeders since the 1950s, and this has led to L1 cattle becoming popular in

the process of purging herds of the defect [19]. In 2008, the average proportion of U.S. regis-

tered Herefords influenced by L1 genetics was 81% [18].

The detected subpopulation division within the Simmental breed (Fig 2) represents the dif-

ferentiation between purebred and fullblood animals. For example, progeny of a popular full-

blood Simmental sire are present in both subpopulations, however, in one subpopulation the

family members are all fullblood and in the other they are all purebred or percentage Simmen-

tal animals. This result supports the need to identify fullblood animals as reference panel breed

representatives for breeds with open herdbooks.
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Reference population sample size

By randomly sampling individuals from the candidate reference breed set and using

SNPweights to assign these individuals to reference populations, we found that reference panel

breed sample sizes of�50 or�100 individuals appeared to capture the diversity within each

breed and appropriately determined the ancestry of the tested individuals (Fig 3A and 3B). For

each breed, the percent ancestry predicted for the tested reference samples was, on average,

3.86% higher when the SNP weights were estimated using�50 individuals per breed than

when�100 individuals per breed were used (Table 4). This reflects the increased homogeneity

of individuals within each breed and a greater genetic distance between individuals from dif-

ferent breeds as smaller samples of individuals from each breed are used to define the reference

panel. Further, due to limitations in the number of genotyped individuals for some breeds

(Table 1), as the sample size was increased globally, imbalances were created between the refer-

ence panel breed sample sizes which impacted breed composition estimation (S9 and S10

Figs). It has previously been shown that the power to detect population structure improves as

the reference population sample sizes become more similar [6,14].

Marker density

After the replacement of reference breed individuals with those identified to be fullblood

based on pedigree analysis for the open herdbook Gelbvieh, Simmental, Limousin, Braunvieh,

Shorthorn, and Charolais breeds, additional self-assignment analyses were conducted to evalu-

ate the effects of marker set size on ancestry prediction. Breed reference panels were again con-

structed by randomly sampling�50 individuals per breed and SNP weights were calculated

using both the BC13K markers and BC7K markers. The estimated SNP weights were then

used to self-assign ancestry to members of the reference panel animals representing the refer-

ence breed set. The ancestry predictions for the reference breed individuals using either the

BC7K (Fig 4A and S11 Fig) or BC13K (Fig 4B and S12 Fig) marker sets indicate that use of the

Table 4. Ancestry proportion statistics for the self-assignment of reference panel members from samples of�50 or�100 individuals from the candidate reference

breed individuals.

Breed Min % (�50) Avg % (�50) Max % (�50) Min % (�100) Avg % (�100) Max % (�100)

Angus 86.22 90.40 95.54 78.49 87.05 94.13

Hereford 79.75 90.08 95.05 73.41 87.39 96.81

Limousin 69.52 88.53 98.16 18.36 86.40 98.81

Charolais 78.14 90.19 99.82 48.93 77.46 93.96

Simmental 81.06 90.37 97.66 61.36 73.05 88.11

Japanese Black 81.44 90.00 97.07 24.51 86.50 98.95

Braunvieh 71.59 89.46 98.61 65.46 88.36 98.70

Gelbvieh 73.03 76.27 81.63 60.92 74.59 80.33

Romagnola 75.05 87.18 96.66 74.79 85.99 95.12

Shorthorn 84.42 88.69 94.54 70.71 85.27 96.35

Red Angus 79.00 89.60 96.33 68.07 86.83 97.38

Holstein 85.82 90.30 97.51 62.95 86.97 97.81

Jersey 78.55 89.28 95.93 61.23 86.54 97.18

Brown Swiss 80.10 89.22 96.40 61.68 86.02 98.42

Guernsey 79.53 89.19 95.85 77.40 88.31 94.36

N’Dama 80.67 89.25 96.90 78.91 87.78 95.67

Bos taurus indicus 87.83 91.91 97.75 81.43 89.79 97.60

https://doi.org/10.1371/journal.pone.0221471.t004
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BC13K marker set did not significantly impact the ancestry predictions. Consequently, the use

of the 6,799 markers common to the 8 commercially available genotyping platforms appears

to be sufficient to assign breed ancestry for the majority of animals produced in the U.S. The

CRUMBLER pipeline can accommodate samples genotyped using alternative assays, however,

Fig 4. SNPweights self-assignment of ancestry for candidate reference breed individuals following evaluation of

open herdbook breeds using: (A) the BC7K, or (B) the BC13K marker panels. Reference breed panels were

constructed by random sampling�50 individuals per breed and SNP weights were estimated using the BC7K and

BC13K marker sets.

https://doi.org/10.1371/journal.pone.0221471.g004
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the produced breed composition estimates will be based on the intersection of markers on the

assay and the BC7K marker set.

Assignment thresholds

We next examined the effects of reference breed homogeneity on ancestry assignment by

identifying reference panel members that had been assigned to their breed of registry using

SNPweights with probabilities of ancestry of�90%,�85%,�80%,�75%, and�70%, respec-

tively (Table 3). From these individuals, reference breed panels were obtained by randomly

sampling�50 individuals per breed, until each individual was represented in at least one sam-

ple set. SNP weights were then estimated using the BC7K marker set and ancestry was assigned

for these individuals using SNPweights (Figs 5 and 6 and S13–S15 Figs). Limiting the reference

breed panel members to those individuals with�90% ancestry assigned to their breed of regis-

try produced a reference panel that did not represent the extent of diversity within each of the

breeds (Fig 5). On the other hand, using an ancestry assignment of�85% clearly captured

greater diversity within each breed (Fig 6) and maximized the self-assignment of ancestry to

the breed of registration (Table 5).

Fig 5. Reference breed panel constructed by the random sampling of�50 individuals per breed from individuals with�90% ancestry was self-

assigned to reference breed ancestry using the BC7K marker set.

https://doi.org/10.1371/journal.pone.0221471.g005
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Reference panel definition

To examine whether the specific individuals represented in the reference panel sample influ-

enced the self-assignment of ancestry to the sampled individuals, a second sample of�50 dis-

tinct individuals per breed was obtained from the individuals with�85% assignment to their

breed of registration and analyzed with SNPweights (Fig 7). Fig 7 indicates that the ability to

predict ancestry was not influenced by the specific individuals sampled from the set of animals

with�85% ancestry to their breed of registration.

Additionally, Figs 6 and 7 suggest that the use of a reference breed panel constructed by the

random sampling of�50 individuals per breed from individuals with�85% self-assigned

ancestry to their breed of registration maintained sufficient within-breed diversity to accu-

rately estimate the ancestry of target individuals. However, these figures also reveal small

amounts of apparent introgression from other reference panel breeds within each of the

breeds. This does not appear to be an issue of marker resolution since the analyses performed

with the BC7K and BC13K marker sets generated similar results (Fig 4). We conclude that

these apparent introgressions are either due to a lack of power to discriminate among breeds

Fig 6. Reference breed panel constructed by the random sampling of�50 individuals per breed from individuals with�85% ancestry was self-

assigned to reference breed ancestry using the BC7K marker set.

https://doi.org/10.1371/journal.pone.0221471.g006
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Table 5. Average predicted ancestry and variance in predicted ancestry for candidate reference breed individuals when filtered on minimum predicted ancestry.

Breed Avg % (70%) Var (70%) Avg % (75%) Var (75%) Avg % (80%) Var (80%) Avg % (85%) Var (85%) Avg % (90%) Var (90%)

Angus 86.50 0.21 87.95 0.19 87.33 0.22 88.86 0.13 72.34 0.97

Hereford 86.99 0.22 87.09 0.23 87.48 0.19 88.25 0.13 84.62 0.43

Limousin 86.77 0.55 89.03 0.44 87.92 0.38 88.48 0.43 80.62 1.19

Charolais 80.18 2.16 85.03 1.77 86.28 0.99 88.56 0.52 81.54 0.76

Simmental 72.73 0.89 78.45 0.58 83.81 0.36 89.65 0.15 87.82 0.50

Japanese Black 87.85 0.52 88.04 0.39 88.46 0.27 88.74 0.21 80.06 0.61

Braunvieh 87.01 0.37 87.84 0.36 87.33 0.38 88.71 0.21 80.47 1.24

Gelbvieh 86.68 0.41 87.10 0.43 87.52 0.34 88.43 0.34 83.31 1.25

Romagnola 86.16 0.33 86.37 0.32 87.16 0.32 86.22 0.29 86.38 1.16

Shorthorn 85.97 0.26 87.03 0.22 86.80 0.14 87.38 0.07 83.00 0.70

Red Angus 86.41 0.53 87.08 0.48 87.40 0.35 87.46 0.23 23.37 0.66

Holstein 86.44 0.27 87.82 0.21 87.54 0.13 88.77 0.12 79.71 0.61

Jersey 87.01 0.46 86.93 0.44 87.86 0.24 87.98 0.27 80.52 0.71

Brown Swiss 86.22 0.47 86.73 0.51 88.24 0.26 88.11 0.20 82.23 0.70

Guernsey 86.46 0.23 87.64 0.19 87.50 0.25 88.02 0.51 80.43 2.36

N’Dama 87.76 0.19 87.91 0.21 87.89 0.15 89.25 0.17 86.40 0.52

Bos taurus indicus 87.68 0.07 88.24 0.09 87.55 0.11 88.53 0.09 84.89 0.38

Average 85.58 0.48 86.84 0.41 87.30 0.30 88.32 0.24 78.69 0.87

https://doi.org/10.1371/journal.pone.0221471.t005

Fig 7. Reference breed panel constructed by the independent random sampling of a second sample of�50

individuals per breed from individuals with�85% ancestry after eliminating individuals represented in the first

sample was self-assigned to reference breed ancestry using the BC7K marker set.

https://doi.org/10.1371/journal.pone.0221471.g007
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using the common markers designed onto commercial genotyping platforms, or represent the

presence of common ancestry among the breeds prior to the formation of breed herdbooks

~200 years ago. Molecular evidence for this shared ancestry exists, for example, Hereford and

Angus cattle share the Celtic polled allele [20] and the segmental duplication responsible for

the white anterior, ventral and dorsal coat color pattern occurs only in Hereford and Simmen-

tal cattle and their crosses [21]. These data clearly indicate that crossbreeding was widespread

prior to the formal conceptualization of breeds.

Reference panel validation

To evaluate the ability of the selected reference breed panel to identify breed composition, an

analysis was conducted for all 170,544 samples in the database (Figs 6 and 7). We extracted

animals with pedigree information including fullblood and purebred animals registered with

open herdbook breed associations and 2,243 crossbred animals with varying degrees of admix-

ture. Considering the amount of available data, the number of pedigreed admixed animals was

very limited and the purebred animals all had similar expected admixture proportions. Conse-

quently, we next simulated genotypes for animals by assuming the random mating of members

of the reference breed panel for 1, 3, 5 and 10 generations assuming non-overlapping genera-

tions to generate generations of animals with different numbers of breeds and breed propor-

tions represented in their genomes.

Registered fullblood animals

For the Gelbvieh, Limousin, Shorthorn, Simmental, and Braunvieh breeds that have open

herdbook registries, fullblood or 100% ancestry individuals were identified based on pedigree

data obtained from the respective breed associations (Table 1). CRUMBLER estimates were

obtained for these fullblood individuals and the distribution of estimates by breed are in Fig 8.

For all breeds except Charolais, >50% of the individuals had CRUMBLER estimated percent-

ages of�80% to their respective breeds. Average percentage estimates for fullblood Gelbvieh,

Limousin, Shorthorn, Simmental, and Braunvieh individuals were 76%, 78%, 83%, 79%, and

85%, respectively (Fig 8B). However, the number of genotyped imported Full French Charolais

animals was limited and so we also analyzed all purebred Charolais individuals which could

contain up to 1/32nd of their genome introgressed from another breed. The average Charolais

breed assignment was 72% and the distribution of estimates was more variable than for the

fullblood animals from the other breeds (Fig 8B).

Pedigreed crossbred animals

Based on pedigree, 2,005 individuals were identified as being primarily Hereford but with

varying degrees of Red Angus, Salers, Angus or unknown other breed influence. The analysis

results agreed with the pedigree data (Fig 9A and 9B) To investigate the correlations between

pedigree and CRUMBLER estimated breed proportions, we removed proportions for breeds

that were less than 3% and normalized the remaining values. CRUMBLER estimates were then

correlated with the pedigree predicted estimates of the proportion of Hereford in these indi-

viduals (Fig 9C). CRUMBLER tended to underestimate the Hereford proportion as the pedi-

gree estimated Hereford proportion tended to 100%.

The remaining 238 crossbred individuals were commercial, advanced generation animals

with an expected 50% Angus and 50% Simmental ancestry based on pedigree data. Results of

the CRUMBLER analysis again support the pedigree data (Fig 10). The presence of Red Angus

ancestry in these animals reveals the inability of the analysis to fully differentiate between
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Angus and Red Angus, which only diverged in the U.S. in 1954, and also the influence of Red

Angus in the U.S. Simmental breed (S16 Fig).

Simulated genotypes

Genomes were simulated using the phased genotypes for 803 individuals from the reference

breed panel to contain varying breed numbers and admixture proportions after 1, 3, 5, and 10

Fig 8. SNPweight ancestry assignments for 2,2408 registered fullblood animals from open herd book breeds. (A)

Distribution by breed of SNPweights ancestry assignment results for 2,408 registered fullblood animals from open herd

book breeds. (B) Pictorial representation of CRUMBLER estimates for 2,408 registered fullblood animals from open

herd book breeds.

https://doi.org/10.1371/journal.pone.0221471.g008
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Fig 9. SNPweights results for 2,005 crossbred Hereford individuals. (A) SNPweights ancestry results for 2,005

crossbred Hereford individuals with a-priori breed composition estimates determined by pedigree. (B) Breed

assignment reference breed key. (C) Hereford SNPweights estimated proportions using CRUMBLER are plotted

against the pedigree estimates. Data point color indicates the breed for which SNPweights assigned the highest

proportion for each individual.

https://doi.org/10.1371/journal.pone.0221471.g009
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Fig 10. SNPweights results for 238 crossbred individuals. (A) SNPweights ancestry results for 238 crossbred individuals with a-priori
breed composition estimates of 50% Angus and 50% Simmental based on a reference panel with�50 individuals per breed sampled

from individuals with�85% assignment to their breed of registry. (B) Breed assignment for the crossbred individuals can be determined

using this reference breed key.

https://doi.org/10.1371/journal.pone.0221471.g010
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generations of random mating with nonoverlapping generations. In generation 1, the admixed

individuals were F1 individuals with a 50:50 autosomal genome composition unless both

parents were randomly sampled from the same breed. CRUMBLER estimates of breed

composition using the simulated genotypes were strongly correlated with the simulated com-

positions, especially for generations 1 and 3 (Fig 11). As the number of generations increased,

the number of breeds represented in the simulated genomes tended to increase and the pro-

portion of the genome originating from any one breed tended to decrease and the correlation

between the simulated proportions and CRUMBLER estimates also decreased. Nevertheless,

by generation 10 44% of animals had their genome proportions estimated with a correlation of

at least 70%. In the U.S. commercial crossbreeding does not usually involve the use of more

than 3–4 breeds of cattle and while the number of generations of crossbreeding may very well

be 10 or perhaps more, many generations will involve the mating of animals with similar

genome ancestries and the proportions for each breed will be much greater than present in the

generation 10 animals in Fig 11. Consequently, the achieved accuracies are likely to be closer

to the generation 3 or 5 results where 99% and 68% of animals, respectively, had their genome

proportions estimated with a correlation of greater than 80%.

Advanced generation composite animals

The ancestry model assumes that neither drift or selection has acted to alter the allele frequen-

cies from those created by the initial admixture proportions. We examined CRUMBLER

Fig 11. SNPweights results using simulated genotypes. Genotypes were simulated for the indicated number of generations of random mating, with

generation 1 (G1) animals being 50:50 proportion except when two parents from the same breed were mated. SNPweights results were obtained using

CRUMBLER pipeline parameters correlations between these estimates and the known simulated breed compositions were produced and the

proportion of individuals within each correlation class is indicated.

https://doi.org/10.1371/journal.pone.0221471.g011
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estimates of breed composition for advanced generation members of the Brangus (n = 11,362),

Beefmaster (n = 3,832) and Santa Gertrudis (n = 2,010) composite breeds where selection

has had the opportunity to change breed composition from expectations at breed formation.

Brangus individuals are expected to be⅝ Angus and⅜ Brahman, Beefmaster individuals ¼
Hereford, ¼ Shorthorn and ½ Brahman, and Santa Gertrudis⅝ Shorthorn and⅜ Brahman,

respectively. These breeds use mating strategies that produce individuals that are expected to

possess these proportions for registration within each of the respective breed’s herdbook. How-

ever, registerable animals are ultimately advanced generation composites and so drift, meiotic

sampling of parental chromosomes and selection are all expected to create individual variation

in these ancestry proportions. CRUMBLER results for these advanced generation composites,

also known as the American breeds, are shown in Fig 12. Table 6 contains the average breed

proportion estimates assigned to each of these breeds by CRUMBLER and their standard devi-

ations across the animals analyzed for each breed. In every instance, CRUMBLER underesti-

mates the expected proportions for each of the American breed populations, however, the

ancestral breeds clearly dominate the assignments (Table 6). Interestingly, on average, CRUM-

BLER estimated proportions of Holstein ancestry for advanced generation Beefmaster and

Brangus animals (Fig 12 and Table 6). These American breeds do not contain any Holstein

introgression and they do not contain ancestry from a “Ghost Population”, a population that is

not present in the reference set, which would lead to a breed assignment to a reference breed

that it most closely resembled [6]. We speculate that this effect is caused by selection creating

a deviation in allele frequencies from those found in the founder breeds which the model

explains by an introgression from a distantly related breed, in this case, Holstein. Stratifying

these genotyped animals according to the number of generations from foundation fullblood

animals and examining the extent of estimated Holstein introgression, which would be

expected to increase with generation number, would enable this to be tested, but we did not

have access to the necessary data. However, this hypothesis is supported by the fact that the

Santa Gertrudis had the least estimated Holstein introgression and the breed has published

estimates of additive genetic merit for many fewer years than the Beefmaster or Brangus.

Admixture

We also tested the ADMIXTURE software [22] for ancestry estimation and integration into

the CRUMBLER pipeline using the same reference breed panel that was developed for use

with SNPweights. ADMIXTURE uses maximum likelihood estimation to fit the same statisti-

cal model as STRUCTURE, however, STRUCTURE does not allow the specification of indi-

viduals of known descent to be used as a reference panel [22]. ADMIXTURE allows a

supervised analysis, in which the user can specify a reference set of individuals, by specifying

the “—supervised” flag and requires an additional file with a “.pop” suffix to specify the geno-

types of the reference population individuals [22]. Unlike SNPweights, the reference popula-

tion individuals’ genotypes must be provided in a genotype file for each analysis.

We first conducted an ADMIXTURE analysis in which we self-assigned ancestry for the

animals in the reference breed set formed with�50 individuals per breed from the individuals

that had�85% assignment to the breed of registration (Fig 13). The results shown in Fig 13

are similar to those in Fig 6 for the same reference panel, albeit with perhaps less evidence of

background introgression. We next conducted an analysis using the reference panel used in

Fig 13 merged with data for the 2,005 high percentage crossbred Herefords animals. The

results shown in Fig 14, reveal a significant change in the ancestry proportions estimated for

the reference panel Guernsey, Gelbvieh and Romagnola individuals between the two analyses

which used exactly the same reference panel, but differed only in the number of individuals for

Predicting the ancestry of cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0221471 August 26, 2019 21 / 31

https://doi.org/10.1371/journal.pone.0221471


Fig 12. SNPweights results for American Breed populations, Brangus, Beefmaster, and Santa Gertrudis. (A) SNPweights ancestry

results using CRUMBLER pipeline for 11,362 Brangus, 3,832 Beefmaster, and 2,010 Santa Gertrudis individuals. (B) Breed assignment

for these advanced generation composite animals can be determined using this reference breed key.

https://doi.org/10.1371/journal.pone.0221471.g012
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which ancestry was to be estimated. This suggests that ADMIXTURE may use the target indi-

viduals to update information provided by the reference panel individuals specified in the “.

pop” file. Consequently, the ADMIXTURE estimated ancestry proportions appear to be con-

text dependent and may vary based on the other individuals included in the analysis.

Moreover, the order in which the target individuals appear in the genotype input file also

appears to affect ADMIXTURE estimates of ancestry proportions for the target individuals.

Fig 15 shows the results of an ADMIXTURE analysis in which the target individuals were

identical to those shown in Fig 14, but for which the order of the reference individuals and the

2,005 Hereford crossbred individuals was reversed in the input files. In Fig 14, the reference

individuals appear before the 2,005 Hereford crossbred individuals in the input file, whereas

in Fig 15, the 2,005 Hereford crossbred individuals appeared before the reference individuals

in the input file. The results reveal a significant change in ancestry proportions for Guernsey

and Gelbvieh, but the Romagnola now appear to be non-admixed. Finally, we performed an

ADMIXTURE analysis for these animals in which the order of animals in the input genotype

file was completely randomized (Fig 16). Following analysis, the individuals were sorted to

generate Fig 16. Again, the ancestry proportions for the Guernsey, Gelbvieh and Romagnola

individuals suggest these breeds to be admixed.

STRUCTURE and ADMIXTURE are widely used for characterizing admixed populations

[6], however, we have not found any reports in the literature that indicate that the software

is sensitive to the input order of individuals. However, we suspect that the majority of users

would have no need or motivation to run the software with permuted data input files. Never-

theless, because of these inconsistencies between results, we chose to not use ADMIXTURE

for ancestry estimation within the CRUMBLER pipeline.

Broader application using additional commercially available assays

To broaden the spectrum of data from different commercially available assays that can be

evaluated, an additional intersection of markers was obtained using 11 commercially

Table 6. Average breed ancestry percentages assigned to American Breed individuals.

Breed Avg. Ancestry Beefmaster %

(± st. dev)

Avg. Ancestry Brangus %

(± st. dev)

Avg. Ancestry Santa Gertrudis %

(± st. dev)

Angus 3.29 (± 4.27) 32.15 (± 8.96) 4.90 (± 4.48)

Hereford 16.13 (± 2.83) 2.03 (± 2.93) 2.50 (± 4.05)

Limousin 1.40 (± 2.28) 1.73 (± 2.56) 1.29 (± 2.19)

Charolais 6.89 (± 3.97) 2.07 (± 3.79) 5.26 (± 3.42)

Simmental 2.65 (± 3.12) 1.16 (± 2.92) 0.40 (± 1.40)

Japanese Black 0.53 (± 3.46) 0.10 (± 0.63) 0.22 (± 0.89)

Braunvieh 0.63 (± 1.64) 0.33 (±1.29) 0.59 (± 1.63)

Gelbvieh 3.19 (± 3.30) 3.14 (± 3.67) 2.59 (± 3.20)

Romagnola 1.05 (± 1.94) 0.54 (± 1.39) 0.68 (± 1.57)

Shorthorn 15.36 (± 4.72) 5.86 (± 3.42) 37.71 (± 5.46)

Red Angus 3.66 (± 3.57) 13.60 (± 3.95) 1.18 (± 3.46)

Holstein 6.22 (± 6.73) 4.53 (± 4.82) 0.89 (± 2.83)

Jersey 0.73 (± 1.65) 0.52 (± 1.37) 0.26 (± 1.08)

Brown Swiss 1.05 (± 2.14) 1.28 (± 2.26) 0.73 (± 1.81)

Guernsey 1.53 (± 2.20) 0.17 (± 0.81) 1.50 (± 2.14)

N’Dama 0.52 (± 1.35) 0.19 (± 0.87) 0.16 (± 0.76)

Bos taurus indicus 27.32 (± 4.84) 23.09 (± 6.73) 30.50 (± 4.52)

https://doi.org/10.1371/journal.pone.0221471.t006
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available bovine assays including the GGP-90KT, GGP-F250, GGP-HDV3, GGP-LDV3,

GGP-LDV4, BovineHD, BovineSNP50, i50K, Irish Cattle Breeding Federation (Cork, Ire-

land) IDBv3, and GeneSeek (Lincoln, NE) BOVG50v1 assays. The intersection SNP set

included 6,363 SNPs (BC6K). A SNPweights self-assignment analysis using the reference set

of individuals with�85% assignment to their breed of registration was conducted to assess

the effects of the reduction in number of markers used for ancestry assignment. The ancestry

proportions assigned based on the BC6K marker set (Fig 17) did not differ appreciably from

those obtained using the BC7K marker set (Fig 6). This result indicates the utility of CRUM-

BLER and the reference panel breed set across the spectrum of commercially available geno-

typing platforms.

Conclusions

The determination of a set of reference population breeds and individuals that define allele

and genotype frequencies at each variant for each of the breeds is arguably the most important,

yet technically difficult step in the process of ancestry estimation. We employed several

Fig 13. Self-assignment of ancestry for the animals in the reference breed set formed with�50 individuals per breed from the individuals that

had�85% assignment to their breed of registration using ADMIXTURE.

https://doi.org/10.1371/journal.pone.0221471.g013
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iterations of filtering to remove recently admixed individuals and identify a relatively homoge-

neous set of individuals that nevertheless represented the variation that might be expected

among individuals within a breed. Once determined, the reference panel genotype data need

only be processed once to obtain SNP weights removing the need to share genotype data for

reference individuals in subsequent studies [11]. The upfront development of an external refer-

ence breed panel capitalizes on the rich ancestry information available in large available data-

sets, and relatedness, variation in sample sizes and diversity among the target individuals does

not affect the inference of ancestry [11].

In cattle, the visual evaluation of breed characteristics is a poor method for evaluating the

ancestry of individuals. Breed association pedigrees can be used to estimate expected breed

compositions, however, the random assortment of chromosomes into gametes and selection

can lead to ancestry proportions that differ from those expected based upon pedigree. More-

over, the vast majority of commercial beef cattle in the U.S. have no or very limited pedigree

information and since these animals are frequently used for genomic research [3–5], there is a

Fig 14. ADMIXTURE analysis conducted using the same data as shown in Fig 13 (first four rows), merged with an additional 2,005 high

percentage crossbred Hereford target individuals (last row). Here, the 2,005 Hereford crossbred individuals appear after the reference individuals in

the input genotype file.

https://doi.org/10.1371/journal.pone.0221471.g014
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need for a tool that can routinely provide ancestry estimates for downstream use in GWAA or

other genetic studies.

We tested ADMIXTURE and SNPweights and found that results from ADMIXTURE

appear to depend on the ancestry and order of appearance of individuals within the genotype

input file. We therefore developed an analysis pipeline, CRUMBLER, based upon PLINK,

EIGENSOFT and SNPweights to automate the process of ancestry estimation. The developed

bovine pipeline utilizes the 6,799 SNPs present on 8 commercially utilized bovine SNP geno-

typing assays and results using these SNPs are consistent with results obtained when 13,291

SNPs were used. From an available 48,776 genotyped individuals, we also developed a refer-

ence panel of 806 individuals sampled from 17 breeds to have�50 individuals per breed that

had�85% assignment to their breed of registration. This panel appears to allow the robust

estimation of the ancestry of advanced generation admixed animals, however, all breeds share

some common ancestry which predates the recent development of breed association herd-

books [16,23]. The greatest constraint that we faced in the development of the reference panel

was the unequal sample sizes for genotyped registered animals and the sensitivity of ancestry

Fig 15. ADMIXTURE analysis conducted using the same data as shown in Fig 14. Here, the 2,005 Hereford crossbred individuals appear before the

reference individuals in the input genotype file. The first row represents the 2005 Hereford crossbred samples. Rows 2 to 5 show the reference panel

individuals.

https://doi.org/10.1371/journal.pone.0221471.g015
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software to unequal sample sizes. If access could be gained to the very large samples of geno-

typed animals from each of the U.S. breed associations, simply taking a random sample from

each population such that the sample size within each breed was 4-5X the effective population

size (Ne~100 for each breed), we suspect that we would have effectively created representative

samples for the reference panel. Furthermore, our panel of 6,799 SNPs represents the the inter-

section of markers on the commonly used genotyping assays and these SNPs are probably

represented on all assays because they have high call rates and minor allele frequencies in the

majority of breeds. Consequently, these SNPs are probably far from being desirable as ancestry

informative markers. A future research direction would be to identify a relatively small set of

ancestry informative markers available either on currently available genotyping assays or, pref-

erably, from whole genome sequencing projects such as the 1000 Bull Genomes project and

include these ancestry informative markers on future design iterations of bovine genotyping

assays.

CRUMBLER is not limited to application in cattle and with the provision of suitable

reference breed allele frequencies can be applied to other species for ancestry estimation.

Fig 16. ADMIXTURE analysis conducted using the same data as shown in Figs 14 and 15, but with the order of the individuals in the input

genotype file randomized. The animals were sorted following analyses to generate this figure where the first four rows represent the reference panel

individuals, the fifth row shows the 2,005 Hereford crossbred animals.

https://doi.org/10.1371/journal.pone.0221471.g016
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CRUMBLER pipeline scripts and reference panel breed SNP weights are available on GitHub

(https://github.com/tamarcrum/CRUMBLER).
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