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Artificial Intelligence (AI)-Based
Systems Biology Approaches in
Multi-Omics Data Analysis of Cancer
Nupur Biswas* and Saikat Chakrabarti*

Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, Kolkata, India

Cancer is the manifestation of abnormalities of different physiological processes
involving genes, DNAs, RNAs, proteins, and other biomolecules whose profiles are
reflected in different omics data types. As these bio-entities are very much correlated,
integrative analysis of different types of omics data, multi-omics data, is required to
understanding the disease from the tumorigenesis to the disease progression. Artificial
intelligence (AI), specifically machine learning algorithms, has the ability to make decisive
interpretation of “big”-sized complex data and, hence, appears as the most effective tool
for the analysis and understanding of multi-omics data for patient-specific observations.
In this review, we have discussed about the recent outcomes of employing AI in multi-
omics data analysis of different types of cancer. Based on the research trends and
significance in patient treatment, we have primarily focused on the AI-based analysis for
determining cancer subtypes, disease prognosis, and therapeutic targets. We have also
discussed about AI analysis of some non-canonical types of omics data as they have
the capability of playing the determiner role in cancer patient care. Additionally, we have
briefly discussed about the data repositories because of their pivotal role in multi-omics
data storing, processing, and analysis.

Keywords: artificial intelligence (AI), multi-omics analyses, cancer, machine learning, precision medicine

INTRODUCTION

Cancer is a complex heterogeneous disease (1). It is a consequence of malfunction and alteration
of different biological entities, namely, genes, proteins, mRNAs, miRNAs, metabolites, etc., at
a global scale. The human body contains almost ∼20,000 proteins (2), 20,000–22,000 protein-
coding genes (3), ∼30,000 mRNAs (4), 2300 miRNAs (5), and 114,100 metabolites (6), respectively.
Comprehensive analyses of these large numbers of bio-entities create several types of biological
“omics” data. Cutting-edge technologies have made possible global profiling of a large number
of genes (genomics and epigenomics), proteins (proteomics and phospho-proteomics), RNAs
(RNA transcriptomics), miRNAs (miRNA transcriptomics), and metabolites (metabolomics) from
the same individuals. Classical pathological diagnosis, which includes histopathology images
and several types of blood tests, are essential for primary diagnosis and defining cancer stages.
However, the pathological data has limitation of inferring any molecular basis of the disease.
On the other hand, analysis of any single type of omics data is mostly limited to identifying
the variation or at most correlation between one or two types of bio-entities. Its outcome is
limited to reactive processes rather than causative phenomena (7). However, the aforementioned
bio-entities are very much interrelated, acknowledging the central dogma of molecular biology (8).
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For example, an upregulated mRNA may or may not enhance its
target protein expression. This protein, if it is an enzyme, will
influence its associated metabolites. miRNAs also play a major
role in this kind of scenario due to their inhibitory role by
silencing or degrading mRNAs. So, the regulatory mechanisms
are distributed across different types of bio-entities or, in another
way, in different layers. Hence, studying only mRNAs, miRNAs,
or proteins is not sufficient to understanding the complex disease
etiology in which multiple bio-entities become dysfunctional.
Interconnectivity and interdependence of various bio-entities
demand a holistic approach utilizing a far more exhaustive
and comprehensive application and integration of multi-omics
data. Multi-omics analysis provides the path of information flow
from one omics data to other omics data (9). Because of the
involvement of a large number of entities, these omics data
appear as “big” data in the biological context. The heterogeneous
nature of cancer makes this data highly divergent from patient
to patient. It demands profiling of multi-omics data at an
individual level, subsequent analysis, and interpretation for the
understanding of underlying biological phenomena and leads to
the development of the field of “precision medicine” (10–12).

The aforementioned omics data can be considered as
“primary” types of omics data as they are the direct outcome
of several bio-entities. Apart from these “primary” types of
omics data, there exist few other omics data, which are of non-
canonical types, such as immunomics, microbiome data, and
multiplex family history data, which belong to this category.
These non-canonical data are integration of primary omics data
and other non-omics biological information. This integration
is a challenging work because of the heterogeneity, size, and
complex relationship between the data (13). There is immense
scope of using AI to build constructive models for analysis of
non-canonical data.

Multiple databases like TCGA (14) and ICGA (15) are
growing fast to accommodate multi-omics data. Rapid analysis
of this massive amount of data is beyond human capability.
Small sample size and large dimension of omics data limit the
applicability of many conventional statistical methods. On the
other hand, artificial intelligence (AI), a rapidly evolving branch
of computer science, offers advanced analytical methods with
predictive capabilities. The analysis and interpretation of multi-
omics data demand the successful collaboration of biologists
with computer scientists. Machine learning (ML) is a branch of
AI. ML deals with computer programs where programs learn
automatically from their earlier experience. The program initially
performs some tasks, measures performance, gains experience,
and then learns from experience; it performs remaining tasks
to provide better performance (16). ML algorithms are initially
trained using almost 70–80% of the whole data set, and the
remaining 30–20% of data is used to validate the model followed
by the algorithm. Then, the “trained” model is used to perform
on new data. As ML algorithms learn from their experience,
depending on the types of feedbacks available from earlier
experiences, there are three types of learning, unsupervised,
reinforcement, and supervised learning (17). In unsupervised
or descriptive learning, the program learns patterns in input
data without any explicit feedback from the learning. The usual

goal is to find interesting patterns in the data without any
labeled examples or prior information of the desired output
for each input. As unsupervised learning does not require any
manual effort for labeling the data, it is more widely applicable
to address problems aimed to find clusters (18). On the other
hand, in case of supervised learning, the program learns the
mapping of input data in output from some example labeled set
of input–output pairs. Depending on the nature of the output
variables, supervised learning algorithms deal with two types
of problems. The problem is called classification if the output
is categorical, and the problem is called regression when the
output is real-valued (18). There is another type of learning
called reinforcement learning, which is in between supervised
and unsupervised learning because here the program learns
from reinforcement (17). In this case, the program learns from
the gain or loss in the output result through trial-and-error
interactions with a dynamic environment (19, 20). Among these
three categories, reinforcement learning is relatively less used
for multi-omics data analysis. Developing the methodologies is
an active area of research (21–25). Pan-cancer analysis is also
being done. Broadly, there are three types of integrations of
multi-omics data, namely, model based, concatenation based,
and transformation based (26).

In this review, we are trying to discuss the methodologies and
outcomes of AI on the analysis of multi-omics data, specific to
cancers. The following section discusses about few methodologies
of ML algorithms, which are frequently used for multi-omics
data analysis. Based on our observations on the ongoing research
works, this review is broadly concentrated on three types of
works, which is illustrated in Figure 1. First, we will discuss
on findings of AI on the classification of healthy controls and
cancer patients as well as on finding out subtypes of different
types of cancer. Second, we will emphasize on outcomes of
AI on cancer prognosis. Third, we will present the AI-based
efforts on identification of novel therapeutic targets. In the fourth
section, we discuss about few other types of associated data
whose inclusion is expected to give more fruitful outcomes. In
this section, we have also discussed about data repositories. In
the fifth section, we briefly discuss about precision medicine
approaches. Finally, we discuss the future challenges and provide
our conclusions. We have also enlisted and summarized the
major techniques and algorithms used for this purpose along
with their specialties and outcomes in Table 1. However, in this
review, we have excluded the impact and analysis of radiomics
data. Radiomics data deals with the analysis of different types
of radiological images of tumor sites, and hence, it is not a
direct outcome of the aforementioned bio-entities, although the
inclusion of radiomics with the multi-omics analysis is going to
be a powerful tool for identifying distinct cellular subtypes in a
given type of cancer (27, 28). Radiomics analyses utilize various
kinds of diagnostic image data for better prediction of cancer
diagnostics and prognostics, clinical outcome, and survival.
Image analysis, ML, and AI have been successfully used in
radiomics analysis. Hence, we believe that the nature of radiomics
analysis including image analysis, image processing, types of
images, and integration of image analysis along with molecular
and clinical data demand an extended review work separately.
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FIGURE 1 | Artificial intelligence (AI)-based analysis of multi-omics data. Different types of omics data are integrated and analyzed by AI algorithms to extract
patient-specific information.

MAJOR AI-BASED METHODOLOGIES

The supervised learning-based support vector machine (SVM)
algorithm is one of the widely used approaches for the analysis of
multi-omics data. SVM creates a linear hyperplane, maintaining
the largest possible distance between different classes of example
data points. While being trained for a given task, ML algorithms
also find out relevant features for better performance of a task.
SVM-based methods are broadly used for finding subtypes in
cancer as well as for extracting essential features (biomolecules)
that play as a marker. The major goal of the classification is
the reclassification of cancer based on molecular features rather
than tissue type (29–31). Random forest (RF) algorithms are
also frequently used. As the name suggests, the RF algorithm is
composed of many decision trees. Each tree is grown using a
training set and a random vector and works as a classifier. Each
tree votes for the most popular class, and the most voted class
is chosen (32). Apart from supervised learning-based SVM and
RF algorithms, unsupervised learning methods like autoencoders
are also used to reduce the “big” size of multi-omics data.
Autoencoders consist of an encoder and a decoder. The encoder
extracts features from large input data, and the decoder tries
to construct an output very similar to the input using only
the extracted features. In this way, it excludes the redundant
data (18).

AI IN CANCER CLASSIFICATION AND
SUBTYPE DETERMINATION

The outcome of treatments to cancer patients having similar
pathological features differs greatly. For providing better
treatment, patients having similar symptoms need to be further
categorized. This categorization could be related to the nature

and abundance of bio-entities for individual patients. With
the use of AI, researchers have tried to find subtypes in
different types of cancers based on the cluster of different
genes, mRNAs, and miRNAs. The advantage of multi-omics
integration over single omics data in the context of cancer
subtype determination was illustrated using mRNA expression,
miRNA expression, and DNA methylation data for three types
of cancers, namely, breast cancer, glioblastoma, and ovarian
cancer. The stacked autoencoder was used to each omics
data. The extracted representations were integrated in another
autoencoder. Finally, the complex representation was used in the
deep flexible neural forest network model for subclassification
of cancers (33). Application of supervised and unsupervised
learning on RNA transcriptomics, miRNA transcriptomics, and
DNA methylation data of hepatocellular carcinoma (HCC) has
identified two subgroups of patients with significant survival
differences (34). Extending this study to multiple types of cohorts
of varying ethnicity have identified 10 consensus driver genes,
significantly associated with patients’ survival (35). It also shows
consensus driver mutations, and their copy-number variations
are associated mostly with mRNA transcriptome and less with
miRNA trasncriptome (35). ML-based multi-omics analysis has
been applied to identify probable breast cancer patients. Analysis
of proteomics and metabolomics data for 24 breast cancer
patients and 61 healthy persons has categorized a healthy group
of people into two subcategories of low-risk and high-risk (36).
Different combinations of auto-encoders have been used to study
the most effective approach of multi-omics data integration in the
context of breast cancer (37). The multiple-kernel framework is
also used to integrate multi-omics datasets and to find closeness
between the subtypes of breast cancer. Kernels are ML methods
where a function called kernel function maps non-linear data
sets into a higher-dimensional space to make the data linearly
separable and hence can be classified (38). By linearly combining
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TABLE 1 | Features of recent methodologies and techniques used for AI based systems biology approaches in multi-omics data analysis of cancer.

Methodology Techniques Characteristics Specialty Cancer types Omics data Outcome Performance References

Unsupervised
and supervised

Stacked
autoencoder
and hierarchical
integration
deep flexible
neural forest
network
(HI-DFN Forest)

Autoencoders are used to
integrate multi-omics data.
HI-DFN Forest is used for
classification

Considers intrinsic
statistical properties and
learns high-level
representations of each
omics data. HI-DFNForest
model is suitable for
small-scale data.

Breast, glioblastoma,
ovarian cancer

mRNA expression,
miRNA expression,
methylation

Classify cancer
subtypes

Accuracy: 0.885
(glioblastoma
multiforme)

(33)

Supervised and
unsupervised

Deep-learning,
autoencoder

Autoencoder was used to
reduce data and then SVM
to find sub-groups.

Predicts survival subgroups
and aggregates genes
belonging to similar
pathways.

Hepatocellular
carcinoma

mRNA expression,
miRNA expression,
methylation

Predict survival
subgroups

Concordance index:
0.68

(34, 35)

Unsupervised Combinations
of
autoencoders

Data integration based on
four types of variational
autoencoders (VAE)

All VAE architectures
perform well. Learned
representations coupled
with SVMs provides best
prediction.

Breast cancer mRNA expression,
CNV data

Focused on data
integration approaches

Accuracy: 0.858 (37)

Kernel
framework

Multiple kernel
learning

Combine several kernels to
one meta-kernel in an
unsupervised framework.

Identifies cancer subtypes
and provides relationships
between them

Breast cancer mRNA expression,
miRNA expression,
methylation

Proposed generic
approach of data
integration

Average cluster purity:
0.70

(39)

Unsupervised Autoencoder multi-modal sparse
denoising autoencoder
framework coupled with
sparse non-negative matrix
factorization

Illustrate impact of
individual omics feature on
pathway score.

Colorectal cancer, lung
squamous cell
carcinoma,
glioblastoma multiforme
and breast cancer

mRNA expression,
miRNA expression,
methylation, CNV

Cluster patients and
provide feature
pathways for patient
clusters

Consensus silhouette
index: 0.98 (colorectal
cancer)

(42)

Supervised and
unsupervised

Random forest,
SCVM

Combined use of random
forest and SVM

Classifies normal and
cancer samples across
different tissue types and
hence useful for diagnosis

9 types of cancers Pan-cancer mRNA
expression,

Classification and
identifies biomarkers

Accuracy: 97.89%
(non-specific tissue
type)

(43)

Unsupervised Autoencoder Three types of integration
approaches used. Feature
combinations with highest
average predictive
accuracy was used.

Auto-encoder based
classification

Neuroblastoma mRNA expression,
CNV

Prognosis sub-group p-value from
Kaplan-Meier curves for
overall survival: 2.8e-8

(44)

Supervised and
unsupervised

Integrative
network fusion
network and
deep learning

Random forest was trained
by two types of integrated
omics data. Classifier was
used based on intersection
of two training processes.

Two approaches followed
for data integration,
juxtaposed and integration
by similarity network fusion.

Neuroblastoma mRNA expression,
CNV

Prognosis sub-group p-value for
Kaplan-Meier plot:
5.7e-4

(45)

(Continued)
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TABLE 1 | Continued

Methodology Techniques Characteristics Specialty Cancer types Omics data Outcome Performance References

Supervised and
unsupervised

SVM, and
random forest

Initial supervised
analysis was followed
by systems biology
approach and random
forest based analysis

Multi-omics data was
integrated in multiple
steps with removal of
redundant features.

Colorectal cancer mRNA expression,
miRNA expression,
CNV, metabolomics

Identifies markers,
pathways associated
with cancer relapse

p-value from
Kaplan-Meier curves for
overall survival: 5.7e-4

(46)

Multi-view
learning

Min-
Redundancy
and
Max-Relevance
(MRMR)

Finds features having
maximum relevance in
feature selection and
minimum redundancy
with already selected
features

Two stage feature
selection framework

Ovarian cancer mRNA expression,
methylation, CNV

Identifies biomarkers for
predicting survival.

Area under curve
(AUC): 0.7 for random
forest classifier

(47)

Neural network Deep learning
based neural
network

Instead of gene
expression data,
eigengene modules of
gene co-expression
analysis were used as
features.

Associates feature
genes with metadata
like age

Breast cancer mRNA expression,
miRNA expression,
methylation, CNV and
other metadata

Survival prediction Mean concordance
index: 0.6813

(48)

LASSO and
neural network

Deep learning
framework and
lasso

Use group LASSO and
deep neural network for
data integration and
then Cox model for
survival prediction

Different features from
same gene are grouped
together

Pan-cancer mRNA expression,
CNV, SNP

Survival prediction Concordance index:
0.8

(49)

Kernel method Kernel
alignment
assessment of
omic similarity
matrix

Omic similarity matrix
was constructed for
each omics data and
similarity between them
was measured.

Considers involvement
of large number of
biomarkers in disease
prognosis

Pan-cancer mRNA expression,
miRNA expression,
methylation, CNV, SNP

Variation in prognosis
assessment across
cancer types

Concordance index
>0.68 (sample
size = 900)

(50)

Kernel based
and feature-
selection
based

Bayesian
efficient multiple
kernel learning
(BEMKL) model

Kernalized regression
which works on
similarities between cell
lines

Reduces number of
model parameters to
match number of
samples, not feature
numbers. Extract
non-linear relations
between features and
drug response.

Breast cancer cell lines mRNA expression,
CNV, methylation, SNP,
proteomic

Drug-response
prediction

False discovery rate:
2.5e-5

(51, 52, 57)

(Continued)

Frontiers
in

O
ncology

|w
w

w
.frontiersin.org

5
O

ctober
2020

|Volum
e

10
|A

rticle
588221

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-588221
O

ctober8,2020
Tim

e:18:47
#

6

B
isw

as
and

C
hakrabarti

A
I-B

ased
C

ancer
M

ulti-O
m

ics
D

ata
A

nalysis

TABLE 1 | Continued

Methodology Techniques Characteristics Specialty Cancer types Omics data Outcome Performance References

Deep neural
network,
transfer
learning

Multi-Omics
Late Integration
(MOLI)

Creates feature space for
each omics data. Learned
features are integrated by
concatenation and used for
prediction of drug
response. Use transfer
learning by using responses
of all drugs for same target
while training.

Considers unique
distribution for each omics
data.

Pan-cancer mRNA expression,
CNV, SNP

Predicts drug response Accuracy: 0.8 for drug
cetuximab

(53)

Supervised SVM and
leave-one-out
cross-validation
(LOOCV)

Finds features from each
omics data and then
identifies marker
candidates based on
miRNA and mRNA
interactions

Analyzed integrated mRNA
and miRNA expression
data considering their
interactions

Pancreatic ductal
carcinoma

MRNA expression,
miRNA expression

Identify mRNA and
miRNA markers.
Predicts miRNA
expression level

AUC: 0.925 for miR-21
as multi-marker

(54)

Supervised idTRAX Finds target kinases from
the compound data of all
genes

Identifies kinases as
effective targets of drugs

Breast cancer Genomic and
transcriptomic

Cell-model selective
anti-cancer drug target

Spearman correlation
∼0.1

(55)

Supervised Capsule
network based
modeling
(CapsNetMMD)

Multi-omics data is
integrated to form feature
matrix and converted to
capsule layers by
convolution.

Supervised classification is
done based on known
breast cancer genes

Breast cancer mRNA expression,
methylation, CNV

Therapeutic target
genes of breast cancer

p-value: 3.6e-141 (rank
cut-off: 20%)

(56)

Supervised Random forest
and different
classifiers

Features were extracted
based on shrunken
centroid and random forest
based algorithm. Different
classifiers were used.

Considers methylation
patterns. Distinguishes
early and late stages of
cancer.

Papillary renal cell
carcinoma

mRNA expression,
methylation

Finds driver genes Accuracy: 84.6% for
random forest

(58)

Semi-
supervised

PLATYPUS After training on labeled
data, it co-trains with
unlabeled data considering
the messing data.

Important features are
linked to drug sensitivity

Pan-cancer cell lines mRNA expression,
CNV, SNP

Predicts drug response AUC: 0.9 (59)
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multiple kernels, different breast cancer subtypes such as, Basal,
LumA, LumB, and Her2 were differentiated along with their
relations (39). Long non-coding RNAs were also identified, many
of which were earlier not known in cancer. The expression
of these RNAs determines survival probability (40). Machine
learning-based multi-omics analysis of pan-cancer data shows
the existence of clusters within different types of cancers (41).
Using “feature” genes, patient clusters were further correlated
with “feature” pathways. Using autoencoders, PathME provides
patient-specific pathway scores for disease subtype identification
(42). Employing the supervised learning algorithm and RF over
nine tissue types, Mohammed et al. have shown successful
classification between normal and cancer tissues when tissue type
is specified as well as non-specified. They further identified genes
as potential biomarkers and critical pathways for different tissue
types (43).

AI IN CANCER PROGNOSIS

Early detection and prediction of prognosis are essential
requirements for limiting tumor growth by providing proper
clinical care to cancer patients. As disease prognosis differs
across patients having the same cancer, AI has been used
to find subcohorts within the patient cohorts based on the
prognosis and survival data. Apart from finding subtypes,
AI has identified biomarkers, which determine recurrence of
cancer. AI has been applied to determine prognosis in high-risk
neuroblastoma patients. Using overlapped gene expression and
copy number alteration, data in unsupervised learning algorithm
autoencoder identified relevant features which were used for
clustering into two subgroups (44). In another study, as a part
of neuroblastoma data integration challenge, Francescatto et al.
have used the integrative network fusion framework along with
the ML classifier to extract features which can discriminate
between different outcomes of patients (45). In the case of
colorectal cancer, cancer is prone to relapse for 20% of patients
who were cured by surgery. One study has been conducted to
obtain biomarkers for relapse. Using gene expressions, miRNA
expressions, copy number variation data, and metabolomics
data in a rigorous cross-validation approach of SVM and
recursive feature elimination combined with random forest-
based integrative analysis (RF-ACE) have identified markers for
each type of data separately (46). Apart from supervised SVM,
researchers have used the minimum redundancy and maximum
relevance (MRMR) method to extract significant features for
predicting the survival of ovarian cancer patients. The MRMR
method iteratively selects multi-omics-derived features, which
are maximally relevant for survival prediction and minimally
redundant with the existing set of features (47). Deep learning-
based neural networks also found its applicability in breast cancer
survival prognosis. To avoid overfitting effects because of the
large dimensionality of omics data, survival analysis algorithm
SALMON works on eigengene matrices of co-expression network
modules. To increase robustness, it integrates classic cancer
biomarkers along with multi-omics data and identifies important
feature genes and cytobands (48). Survival analysis is done using

the deep learning framework with the hazard model and lasso
regularization model for different types of cancer. The lasso
model keeps only the relevant features. Information from the
same gene across different types of omics data is grouped together
and used for deep learning-based analysis which performed
better (49). The kernel-based ML method quantified prognostic
values of genomic, epigenomic, and transcriptomic data for 14
cancer types. The omics similarity matrix was constructed for
each omics data using the kernel functions. Analysis over 3382
samples showed that the result is very much dependent on cancer
type. For example, mRNA transcriptomic data shows the best
prognostic value in lower-grade glioma. Inclusion of clinical
variables provides significantly better prognostic value (50).

AI IN IDENTIFICATION OF THERAPEUTIC
TARGETS

One of the basic requirements of precision oncology is predicting
drug responses for a patient cohort. The benefits of ML
methods have been tested for drug response modeling and
prediction following both kernel-based and feature selection-
based approaches (51). In a competitive challenge, DREAM7,
responses of 28 drugs in growth inhibition of 53 breast
cancer cell lines were ranked using different algorithms. Among
them, the Bayesian multitask multiple-kernel learning method
performed best (52). Deep neural network-based analysis has
been employed for drug response prediction. MOLI, a multi-
omics late integration method based on deep neural network,
integrates somatic mutation, copy number aberration, and
gene expression data to predict drug response behavior. In
this method, features are extracted from different omics data
separately and then integrated and optimized to train for
predicting response of a specific drug. MOLI is also used
for pan-drug data, data on drugs with the same target (53).
SVM and leave-one-out cross-validation (LOOCV) model have
been used to predict important features in RNA and miRNA
transcriptomics data for 104 pancreatic ductal adenocarcinoma
tissues and 17 normal tissues. These features (selected RNAs
and miRNAs) combined with miRNA target expression data
were further used to identify effective diagnostic markers which
were validated in other independent datasets and biologically
interpreted by pathway analysis of the corresponding target
genes (54). Machine learning-based analysis has also been
applied to identify cell-model-selective anticancer drug targets
for breast cancer (55). The feature genes extracted from multi-
omics data of breast cancer by capsule network-based modeling
were compared with known cancer genes, and novel genes
were extracted (56). Pan-cancer analysis of nine cancers has
revealed that proteomics data combined with gene expression,
miRNA expressions, and genomics performs better in predicting
the sensitivity of chemotherapeutics and molecularly targeted
compounds. This study was conducted over 58 cell lines
across nine cancers using the Bayesian Efficient Multiple Kernel
Learning (BEMKL) model (57). It validates the superiority
of multi-omics data analysis across cancer types. Correlating
methylated genes with their expression data in papillary renal
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cell carcinoma shows that hypomethylated genes are associated
with immune function. Several tumor-suppressor genes appeared
hypermethylated. Differentially methylated genes distinguished
normal and cancer samples but failed to distinguish tumor
samples based on the tumor stages. Feature selection methods
based on RF and other methods were used to extract marker
genes as well as to distinguish early and late stages of cancer (58).
ML framework PLATYPUS extracts most informative features
from different omics data and allows these features to vote on
predicted patient outcome on drug responses. Many of these
features are well-known targets of the drugs whose response were
predicted (59).

AI AND SECONDARY OMICS DATA

Apart from primary types of omics data, which include
transcriptomics, genomics, proteomics, and metabolomics, few
other types of data are also becoming important. Here we
will briefly discuss the role of immunomics, microbiome data,
multilayer signature biomarkers, and multiplex family history
data along with different data repositories.

Immunomics Data
Immunomics and/or immune profiling provide “omics”
information with various immune cellular types abundant at a
given physiological context. Immunome refers to the set of genes
and proteins that constitute the immune system. Immunomics or
system immunology integrates different multi-omics data (e.g.,
genomics and proteomics) and clinical data with immunology
to view the network of immunome and to understand the
immune function at both single-cell level and population level
(60–63). The immune cells (T cells, B cells, etc.) behave like ML
algorithms. They can identify the antigens depending on their
prior learning (64). As the T cell receptor (TCR) proteins present
in the T cells determine the binding of antigens with the T cells,
immuno-sequencing of TCRs determines the role of T cells in
disease progression. AI can help to translate TCR sequences
to antigens they can recognize. Companies like Microsoft are
focused to get antigen-specific binding data for several diseases
along with ovarian and pancreatic cancers (65). ML algorithms
have an immense scope of application in immune-oncology,
specifically in pattern recognition in histopathological images
and in survival analysis (66). The immune response to cancer
cells varies widely among people. The web server EpiToolKit
offers a platform of different prediction methods for peptide–
major histocompatibility complex (MHC) binding. These
prediction methods often use AI (67). Single-cell expression
profiles of tumor cells and immune cells identify genes and
proteins associated with the tumor-specific immune system
and can be targeted in immune therapy. The expression fold
change of enriched genes and proteins predicts disease prognosis
and determines treatment (68, 69). The multi-omics profile
of the tumor microenvironment (TME) provides insights
on intra-tumor heterogeneity paving the path of precision
immune-oncology (70).

It is now widely established that tumor growth
and dissemination result from a cross talk between

cancer-cell-intrinsic factors and the immune system (71, 72).
Studies have shown that the tumor-infiltrating immune cells of
both myeloid and lymphoid origin exert a dynamic relationship
with the tumor and have a significant impact on the clinical
course of the disease (73). Compelling studies have pointed out
the fact that improved survival of patients with ovarian cancer
positively correlates with the abundance of T cells into the
tumor site (74, 75). It appears that discrete TMEs with disparate
immune parameters could be the underlying cause of differential
prognosis of the disease. Therefore, deeper analysis of the
complexity within the TME is important to gain an insight into
the immune landscape, which could predict the responsiveness
to the immunotherapeutic interventions. Moreover, it is also
important to understand the intricate mechanism(s) leading
to the dysfunctionality of T cells at the tumor site and identify
the potential approach to reinvigorate their effector functions.
Hence, comprehensive characterization of the immune cells
present at the tumor sites followed by subsequent stratification of
the abundance of immunosuppressive population patients can be
largely benefited by AI-based models, which could aim to predict
emergent immune signatures within the cancer patients.

Microbiome Data
The human body acts as the host of swarm of microorganisms.
These microorganisms play a symbiotic role in the well-being
and their unbalance or dysbiosis is correlated with many diseases,
including cancer. Inclusion of microbiome data with multi-omics
data by several computational approaches has exemplified our
understanding of complex host–microbiome interactions leading
to microbiome-targeted drug discovery (76). The launch of the
integrative Human Microbiome Project (iHMP) is a leveraging
step toward that direction (77). As host–microbiome interactions
include exchange of different small molecules, specifically
metabolites and signaling molecules, metabolomics data appear
as most informative (78). Databases are launched to share
information on gut microbes paired with genome sequences
and longitudinal multi-omics data (79). The intersection of
ML with network biology will enrich microbiome research
where many microorganisms still remain understudied (80, 81).
Transfer learning, a branch of ML, provides opportunity to
transfer the learned information from a well-studied species to an
understudied species (82). Shotgun metagenomics data provide
quantitative data and have been used for disease prediction for
colorectal cancer across multiple cohorts (83). It is reported
that the microbiome of breast tissue differs from that of skin
tissue in case of breast cancer patients. The RF algorithm was
able to predict tissue type based on microbiota profile (84).
Random forest along with Bayes net algorithm performs well
to predict colorectal cancer from fecal and gut microbiota (85).
Cancer patients often die of bloodstream infections. ML has
been used to predict risk of bloodstream infections from fecal
microbiome data for patients before initiation of chemotherapy
treatment (86).

Multiplex Family History Data
Although genetic, in general cancer is not a hereditary disease.
However, for some cancers a small fraction of cases appear
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familial (87). For example, hereditary non-polyposis colorectal
cancer (HNPCC) contributes 5–10% of all colorectal cancers
(CRC) (88, 89). It is also reported that families with history of
nasopharyngeal carcinoma (NPC) have a greater risk of salivary,
cervical, and gastric cancers in first-degree relatives of NPC
patients (90). The inclusion of multiplex-family data from Taiwan
shows co-aggregation of NPC within families (91). In a pan-
cancer study, covering 25 most common cancers, the statistical
analysis shows that relative risk of having cancer is high if a parent
or sibling has concordant cancer, if multiple family members
are affected. Also, the risk depends on the type of cancer (92).
In this background, with the ease of multi-omics data profiling,
multi-omics integrative analysis for such multiplex family can
enrich our understanding of the underlying genetic architecture
of cancer predisposition. To analyze this huge and complex
interrelated data, ML algorithms are indispensable.

Multilayer Signature Biomarkers
The comprehensive understanding of cancer progression leading
to development novel diagnostic/prognostic markers and
therapeutic interventions requires integration and utilization
of diverse “omics” strategies at multiple levels. The underlined
concept is that complex patho-physiological mechanisms
can only be fully understood through the study of molecular
interactions among different omics layers. Several studies
have shown the importance of multidimensional approaches
(such as genomics, transcriptomics, proteomics, metabolomics,
immunomics, and metagenomics) to portray the complexity of
cancer–host interactions. Recent technological advances have
permitted high-throughput measurement of the human genome,
epigenome, metabolome, transcriptome, and proteome at the
population level. Each of these studies can offer complementary
analyses of a certain biological function, and hence, integrative
multi-omics analyses are needed to uncover synergistic
interactions. However, because each omics study analyzes a
different molecular layer, integrative analyses using different
omics studies might have closely related biological functions and
thus might directly interact at the network level. Therefore, it
is possible to build network(s) with direct interactions among
multiple molecular layers, characterized by higher network
complexity. In addition, incorporating biological functionality
from different molecular layers, such as RNA, proteome, and
metabolome results, can boost the power of genetic mapping.
Mathematical model-based system biology approaches are
proven to be successful for signaling and metabolic network
analysis. Mathematical models for signaling pathways have been
developed based on logical models, kinetic models, decision tree,
and differential equation-based models. Different omics data of
metabolic gene expressions, protein levels, and metabolomes
in different cancer are integrated to study metabolic regulation
in cancer. However, development of integrative methods that
aim to capture weak yet consistent patterns across data types
which could be statistically associated with diagnostic and/or
prognostics markers of the complex systemic diseases (e.g.,
cancer) is very limited.

A single platform for integrating and mining pan-omics
entities derived from a large-scale cancer patient cohort and

further analyzing them to derive meaningful cross correlation
among multilayer data is due. Consistent patterns across data
types could be statistically associated with diagnostic and/or
prognostic markers of the complex systemic diseases like
cancer. Hence, this kind of platforms and their derived results
should aid researchers all over the country to identify novel
biomarker signatures.

Metabolic reprogramming of tumor cells including their
surrounding stromal environment may be mandatory in order
for tumors to emerge and particularly to evolve into a
more aggressive state. This metabolic switch has been entitled
one of the new “hallmarks of cancer” (93), expanding the
original set of hallmarks (94). Understanding the underlying
mechanisms via integration of various cellular pathways is
expected to help elucidate overall tumor pathogenesis. Despite
the metabolic heterogeneity, certain metabolic patterns tend to
be distinguishable in ovarian tumor in comparison to normal
ovarian tissue. The question as to whether metabolic alterations
in the TME merely represent by-products from oncogenesis
and whether they function as “reactive” mediators of oncogenic
process via altering the state of the tumor surrounding immune
system sentinels will need to be further addressed in detail,
in order to understand that one needs to first investigate
the molecular mechanism by which the impact of signaling
and transcriptional aberration is transgressed to metabolic
reprogramming. To cope with the complexity of interconnected
cellular pathways, efficient systems biological approaches need
be developed. Further investigation is required to establish a
link between distinct metabolomic outcome and immunological
status of the cancer TME. Utilization of multi-omics data
via mathematical modeling-based analysis in principle can
identify cross-pathway links connecting signaling proteins or
transcription factors or miRNAs to metabolic enzymes and
their metabolites using network analysis and mathematical
modeling. These types of cross pathway links were shown to
play important roles in metabolic reprogramming in cancer
scenarios such as glioblastoma multiforme (95). Therefore,
integrative studies aided by multi-omics analysis, mathematical
modeling, and deep learning-AI-based strategies would lead to
the development of a more comprehensive understanding of
cancer metastasis.

Data and Model Resources
Multi-omics data is multi-dimensional in nature and “big” in size.
Storage, hosting, and making the data accessible to researchers
are also a challenging work. The data need to be stored
anonymously maintaining quality. Omics data when publicly
shared by the researcher provides scope for other researchers for
reanalyzing the same data from different perspectives. The use
of omics data is mostly limited to transcriptomics, copy number
variations, and DNA methylations because of their abundance
in different data portals. Repositories like The Cancer Genome
Atlas (TCGA) (14), International Cancer Genome Consortium
(ICGC) (15), Cancer Cell Line Encyclopedia (CCLE) (96),
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) (97), and TARGET (98) store and share different
types of transcriptomics and genomics data. TCGA contains data
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for 67 primary sites for more than 84,000 cases. The Clinical
Proteomic Tumor Analysis Consortium (CPTAC) provides
proteomics data corresponding to TCGA cohorts (99). The
Personal Genome Project-United Kingdom is an open-access
resource of human multi-omics data of several diseases (100).
Database Gene Expression Omnibus (GEO) contains RNA and
miRNA transcriptomics data (101). LinkedOmics contain data
from different types of cancers (102). GliomaDB (103) and
MOBCdb (104) are databases dedicated to glioma and breast
cancer, respectively. The Omics Discovery Index (OmicsDI)
provides a framework for accessing and disseminating omics
datasets (105).

PRECISION MEDICINE APPROACHES

The precision medicine initiative, launched in 2015 in
United States, aims to shift from “one-size-fits-all” treatment
to tailored treatment for cancer patients. To cater the need
of right treatment at the right time, precision medicine uses
a more individualized molecular approach and enriches
pharmacogenomics (106). This individualized approach requires
assembly and analysis of the individual’s molecular signatures,
which could be manifested in the form of multiple types of omics
data representing the status of various biomolecules for this
individual. AI and other deep learning tools and techniques can
be utilized to optimize the utilization of patients’ derived multi-
omics data to extract target bio-entities and fit the targets with
drug–target interaction data to extract relevant drugs and doses
in the omics data landscape. Technologies like nanotechnology
are boosting the attempt to targeted drug delivery (107). Software
like G-DOC Plus provides infrastructure to explore and analyze
clinical, multi-omics data at different levels, from individual to a
population as a whole (108). To develop the precision medicine
drugs, clinical trials also need to be reshaped with emphasis on
selecting trial for patient, rather than selecting patients for trial
(109, 110).

FUTURE DIRECTION AND CHALLENGES

Due to the technological advances, collecting “omics” data
is becoming more cost effective and will be more available.
The availability of data is definitely advantageous for the
analysts, as it will provide more opportunities to explore
different perspectives. The use of ML in multi-omics data
analysis is mostly limited to identifying the disease subtypes,
biomarkers, and correlation among them. Multi-omics analysis-
based disease subtype classification has shown its superiority
over the conventional TNM staging method. Although the
result is promising, these attempts need to be leveraged to
dig out the underlying causative phenomena associated with
the particular phenotype. This is definitely a challenging work
because of the diversity in the data. In this review, we have
discussed about the potential biomarkers already identified by
several researchers for different types of cancers. However, these
outcomes are still sparse in nature. It requires more studies

so that this outcome can be translated to the patients. Multi-
omics data analysis is still an under-developed area of research.
It is a promising and fast-growing area of research. It has a
lot of scope of development especially when allied data like
radiomics is included. AI-driven analysis of radiomics data can
overcome limitations of classical pathology. Radiomic features
are promising tools in defining cancer subtypes (28, 111) and may
appear as an alternative or complimenting data to primary omics
data in the context of tumor classification for precision medicine
(112, 113). Several other factors like lifestyle and environmental
effects can be integrated to add a new dimension to the analysis.
It needs a combinative effort from clinicians, biologists, and
computational analysts because ML alone cannot solve the
problem of causal inference (114). The primary specimens
collected by healthcare persons is experimentally analyzed by the
biologists and then computationally analyzed by the analysts.
The extracted information is again sent back to the healthcare
persons after being justified by the biologists. In such workflow,
interdiscipline knowledge need to be shared in a fluent way for
the fruitful outcomes for multi-omics analysis.

CONCLUSION

Starting from Percivall Pott’s observation in 1775 on occurrence
of scrotal cancers among the chimney sweeps due to the exposure
to chimney soot, cancer research has passed a long way (115).
Cancer is still a huge socioeconomical burden. Researchers,
around the globe, over the centuries, have haunted for the cure
of cancer. Several discoveries and inventions have enriched our
understanding of cancer. In this review, we have discussed the
usage and the outcomes from most recent works using ML and/or
AI to analyze multi-omics data of different types of cancers.
The goal of applying AI is transforming data to knowledge
for the benefit of mankind. AI-based technology is proficient
in identifying features in varieties of data as well as relating
the features at an unprecedented speed. The effectiveness of
implementing AI lies in providing better accuracy and speed
in precise diagnosis and hence in clinical decision-making.
We have observed successful implementations of varieties of
algorithms aiming toward precision oncology. Combinations of
supervised and unsupervised algorithms are used. Often essential
features are identified in an unsupervised manner and then
classification is performed by supervised algorithms. Different
types of omics data, individually, provide information on a
particular type of bio-entity. AI is needed for the integrative
approach to provide a holistic view to the understanding of
complex diseases like cancer. Various approaches are followed
for data integration including concatenation of features extracted
from individual omics data. Using AI, researchers have found out
subtypes within different types of cancers along with underlying
pivotal genes, proteins, RNAs, and miRNAs, which appear as
potential therapeutic targets. These pivotal biomarkers further
correlate with biological pathways. AI is also used to predict
disease prognosis and drug response. These clinically relevant
achievements are needed to be more robust for being translated
toward the right treatment for the right patient. Hence, it is
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believed that the rapidly evolving AI-based medical data analysis
is going to aid significantly the treatments in cancer.
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