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Abstract: The isothiourea-catalyzed enantioselective 1,6-conjugate addition of para-nitrophenyl esters
to 2,6-disubstituted para-quinone methides is reported. para-Nitrophenoxide, generated in situ from
initial N-acylation of the isothiourea by the para-nitrophenyl ester, is proposed to facilitate catalyst
turnover in this transformation. A range of para-nitrophenyl ester products can be isolated, or
derivatized in situ by addition of benzylamine to give amides at up to 99% yield. Although low
diastereocontrol is observed, the diastereoisomeric ester products are separable and formed with
high enantiocontrol (up to 94:6 er).

Keywords: isothiourea; ammonium enolate; aryloxide; quinone methide; ester functionalization;
1,6-conjugate addition

1. Introduction

Quinone methides (QMs) are electrophilic compounds composed of a cyclohexadiene
core bearing a carbonyl either ortho or para to an exocyclic alkylidene unit [1,2]. Due to
their electrophilicity [3–6], QMs have been used in a variety of biological and medicinal
processes [1,2,7], are present within natural products and pharmaceuticals [1,2,8–11], and
have been applied as electrophiles in a variety of synthetic reactions [1,2,12–18]. While
ortho-QMs have been used extensively in enantioselective catalysis [19], particularly as
components in formal [4+2] cycloaddition reactions, the use of para-QMs has only recently
received increased attention [19–23]. The majority of enantioselective organocatalytic
methods that involve para-QMs have utilized Brønsted acid [24–33] or hydrogen bond-
ing catalysts [34–38], with only a relatively small number of examples using Lewis base
catalysis [39–51].

C(1)-Ammonium enolate intermediates [52–55], generated by the reaction of a tertiary
amine Lewis base catalyst with a ketene, anhydride or acyl imidazole [56], have found
widespread application for the synthesis of heterocyclic scaffolds in high yield and with
excellent enantiocontrol. Traditionally these approaches have been limited by the require-
ment for the electrophilic reaction partner to contain a latent nucleophilic site to facilitate
catalyst turnover. This conceptual obstacle has resulted in catalysis via C(1)-ammonium
enolates being mostly applied for formal cycloaddition reactions. More recently, aryl esters
have emerged as alternative C(1)-ammonium enolate precursors [55,57,58]. Significantly,
following acylation of the tertiary amine catalyst by the aryl ester, a nucleophilic aryloxide
is liberated, which may be exploited again in the catalytic cycle to facilitate ammonium eno-
late formation and catalyst turnover (Scheme 1a) [55,59]. This strategy offers a potentially
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general solution to allow the expansion of electrophile scope within catalytic processes
using C(1)-ammonium enolate intermediates. In 2014, we applied this concept for the
isothiourea-catalyzed[2,3]-rearrangement of allylic ammonium ylides (Scheme 1b) [60–64].
More recently, this approach has been used by Snaddon (Scheme 1c) [65–72], Hartwig
(Scheme 1d) [73] and Gong [74,75] for co-operative isothiourea/transition metal-catalyzed
α-functionalization of pentafluorophenyl esters. In both cases, an isothiourea-derived C(1)-
ammonium enolate is intercepted by an electrophilic transition metal complex to affect an
allylation or benzylation reaction. We have expanded the scope of electrophiles applicable
within this catalyst turnover strategy to include iminium ions generated under either
photoredox conditions or Brønsted acid catalysis, as well as bis-sulfone Michael acceptors,
and pyridinium salts (Scheme 1e) [76–79]. Recently, Waser also reported an elegant exam-
ple of this turnover strategy for the enantioselective α-chlorination of pentafluorophenyl
esters [80], while Zheng and co-workers reported a related approach using diphenyl
methanol as an external turnover reagent for the fluorination of carboxylic acids [81,82]. A
significant challenge within this area is the identification of electrophilic reaction partners
that react with the catalytically-generated C(1)-ammonium enolate, but are compatible
with the nucleophilic tertiary amine catalyst and aryloxide, which is essential for catalyst
turnover. Building upon this conceptual platform, it was envisaged that para-QMs may be
suitable electrophiles to apply in formal 1,6-conjugate additions.
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2. Results
2.1. Reaction Optimization

Initial studies focused on the isothiourea-catalyzed 1,6-conjugate addition of para-
nitrophenyl (PNP) ester 1 to 2,6-di-tert-butyl para-QM 5 (Table 1). Benzylamine was
added at the end of the reaction to convert the PNP ester product to the corresponding
amide. Based on our previous experience, the amide was expected to be more stable to
chromatographic purification. Using tetramisole HCl 6 (20 mol%) as the catalyst, i-Pr2NEt
as the base and MeCN as the solvent gave a 55:45 ratio of diastereoisomeric amide products
7 and 8 in high yield (82%) and with excellent enantioselectivity (7: 97:3 er; 8: 94:6 er)
(Entry 1). Chromatographic separation of the diastereoisomers was not possible, however,
the enantioenrichment of both 7 and 8 could be reliably determined by chiral stationary
phase (CSP)-HPLC analysis of the mixture. A control reaction in the absence of the catalyst
showed no conversion (Entry 2). The use of six alternative solvents was investigated (PhMe,
CH2Cl2, CHCl3, THF, 1,4-dioxane and DMF), (see the Supporting Information for details)
however, only the use of DMF provided any conversion to the product, indicating that
solvent polarity may be significant for the success of this transformation. A control reaction
in DMF in the absence of the catalyst, however, also led to comparable conversion to the
product, consistent with the operation of a competitive Brønsted base-promoted reaction
(see the Supporting Information for details). Taking MeCN as the optimal solvent, the
use of eight different organic and inorganic bases was investigated (see the Supporting
Information for details). Of those tested, Et3N provided an improved yield of 98%, whilst
maintaining comparable diastereo- and enantioselectivity (Entry 3). The use of alternative
aryl esters was next probed, with pentafluorophenyl ester 2 and bis(trifluoromethyl)phenyl
ester 3 giving amide products 7 and 8 in high yield, but with lower enantioselectivity
than when using PNP ester 1 (Entries 4 and 5). The use of 2,4,6-trichlorophenyl ester
4 resulted in only 31% yield (Entry 6), which is consistent with previous studies in this
field [65,72,76,79], and most likely reflects the increased steric hindrance of the aryloxide
attenuating its nucleophilicity. Finally, using PNP ester 1, the catalyst loading could be
reduced to 5 mol% with only a small drop in stereoselectivity (Entry 7), while heating the
reaction to 40 ◦C provided a slight improvement in yield (Entry 8). The reaction could also
be performed in the absence of a base (Entry 9), however, slightly lower yield was obtained
and therefore, during investigation of the substrate scope, Et3N was routinely used as an
auxiliary base.

2.2. Reaction Scope and Limitations

Due to the low diastereoselectivity observed using 2,6-di-tert-butyl para-QM 5, the
alternative use of 2,6-disubstituted para-QMs were investigated (Scheme 2). 2,6-Dimethyl,
dibromo and diphenyl para-QMs 9–11 bearing a phenyl substituent at the exocyclic olefin
were applied under optimized conditions. In all cases significantly lower conversion
was observed (≤43%), and the amide products 14–16 were difficult to isolate. Based on
analysis of the crude reaction mixture by 1H NMR spectroscopy, the 2,6-dimethyl and
dibromo-substituted analogues 14 and 15 were obtained with marginally improved di-
astereoselectivity (~70:30 dr), indicating that alternative substituents in these positions
could prove beneficial if the products were isolable. Next, variation of the exocyclic
substituent was probed. Incorporation of a methyl group at this position provided no
improvement in dr, but the amide product 17 was isolated in a 50% yield and with moder-
ate enantioenrichment for both diastereoisomers. Finally, incorporation of a 2-naphthyl
substituent at this position was well tolerated, with amide 18 obtained in an 83% yield,
70:30 dr and excellent enantiocontrol (94:6 er) for the major diastereoisomer.
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Table 1. Reaction optimization.
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2 0 1 i-Pr2NEt 0 - - -
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All reactions were carried out on a 0.25 mmol scale; isolated yields are a mixture of diastereoisomers 7 and 8;
dr was determined by 1H NMR spectroscopic analysis of the crude reaction mixture; er was determined by
CSP-HPLC analysis: 7 (2S,1′R:2R,1′S) and 8 (2S,1′S:2R,1′R). [a] Reaction performed at 40 ◦C.

Although structural variation of the para-QM provided marginal improvements in dr,
the use of 2,6-di-tert-butyl para-QM 5 was considered most convenient for further investi-
gations due to its stability and ease of synthesis, and the higher yields of product obtained
from catalysis. To investigate if the dr obtained in these reactions was a manifestation of a
kinetic or thermodynamic preference, isolation of diastereoisomeric PNP esters 19 and 20
and resubjection to catalysis conditions was attempted. Although the diastereoisomeric
amides 7 and 8 had proved difficult to separate, the corresponding PNP esters 19 and 20
were chromatographically separable and displayed high stability. Epimerization studies
were conducted using each diastereoisomer through sequential treatment with i-Pr2NEt,
(S)-TM HCl 6, para-nitrophenoxide and benzylamine (Scheme 3). These experiments were
followed by in situ 1H NMR spectroscopic analysis and revealed no epimerization in either
case. This indicates the dr obtained in the catalytic reaction most likely reflects the inherent
diastereoselectivity of the transformation. Following separation of the diastereoisomers,
the absolute configuration of the major diastereoisomer could also be confirmed as (2S,1′R)
by single crystal X-ray crystallographic analysis [83,84]. Based on literature precedent, the
(S)-configuration at C(2) was expected to be generated under catalyst-control, and therefore
the absolute configuration of the minor diastereoisomer was predicted to be (2S,1′S).
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Having established the stability of the PNP ester products and demonstrated the
potential to separate the diastereoisomers by column chromatography, the scope of the cat-
alytic transformation was investigated through variation of the PNP ester substrate. In each
case, the PNP ester product diastereoisomers were at least partially separable, enabling un-
ambiguous characterization. To test the applicability of the procedure, p-tolyl-substituted
PNP ester product 19 was prepared on a larger scale (1.25 mmol) (Scheme 4). A combined
85% yield of both diastereoisomers was obtained, with comparable stereoselectivity to that
observed when the reaction was conducted on an analytical scale (Table 1, Entry 7). The
generality of the procedure was further probed using five electronically- and sterically-
differentiated PNP esters. Introduction of an electron-donating 4-methoxy substituent was
well tolerated, with PNP ester 26 obtained in quantitative yield, 60:40 dr and with high
enantioselectivity for both diastereoisomers. Under the optimized conditions, the introduc-
tion of an electron-withdrawing 4-trifluoromethyl group resulted in low enantioselectivity
(27: 63:37 er), which was attributed to a competitive Brønsted base-promoted background
reaction. Consistent with this hypothesis, repeating the reaction in the absence of Et3N, and
using the free base of the isothiourea catalyst 6, provided PNP ester product 27 in 94% yield
and significantly improved enantioselectivity (88:12 ermaj; 79:21 ermin). A similar effect was
observed when using a 2-naphthyl-substituted PNP ester, with optimal enantioselectivity
obtained in the absence of an auxiliary base (28: 91:9 ermaj; 85:15 ermin). Introduction of a
sterically-imposing 1-naphthyl or a heteroaromatic thienyl substituent was also tolerated,
with 29 and 30 obtained in excellent yield and with high enantioselectivity.
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2.3. Proposed Mechanism

The mechanism of this transformation is proposed to begin with N-acylation of the
free base isothiourea catalyst 6 by PNP ester 31 to generate the corresponding acyl am-
monium para-nitrophenoxide ion pair 32 (Scheme 5). Subsequent deprotonation leads to
(Z)-ammonium enolate 33. Based on previous mechanistic studies [78,85], and the catalytic
activity observed in the absence of an auxiliary base (Table 1, Entry 9), deprotonation is
likely to be affected by the para-nitrophenoxide counterion. 1,6-Conjugate addition of
ammonium enolate 33 to para-QM electrophile 34, followed by protonation, gives acyl
ammonium intermediate 35. Finally, regeneration of catalyst 6, and concurrent release of
product 37, is proposed to be facilitated by para-nitrophenoxide [59–79,86,87]. Although
not essential for reactivity, the addition of Et3N as an auxiliary base may be beneficial
as a proton shuttle, and to maintain the isothiourea catalyst in its non-protonated form
6 [77,86]. The enantioselectivity of the transformation indicates the C–C bond forming
event takes place on the Si-face of the ammonium enolate. This selectivity can be ratio-
nalized through preferential formation of the (Z)-ammonium enolate [76–79,85], which
is conformationally-restricted by an intramolecular 1,5-O· · · S interaction [61,88–104] and
results in the phenyl stereodirecting group of the catalyst blocking the enolate Re-face.
The observed poor diastereoselectivity can be tentatively rationalized by a simple stereo-
chemical model that assumes a favored, open pre-transition state assembly where steric
interactions are minimized about the forming C–C bond. Minimal differentiation between
the aryl- and quinone substituents of the para-QM quinone leads to the two transition state
assemblies 38 and 39 that give the major and minor diastereoisomers, respectively.
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3. Materials and Methods
3.1. General Procedure for the Enantioselective 1,6-Addition

In a flame-dried vial, the requisite para-quinone methide (1.0 equiv.), aryl ester
(1.5 equiv.), (S)-TM HCl (5 mol%), Et3N (1.0 equiv.) and anhydrous MeCN (0.6 M) was
added and stirred at r.t. for 24 h. The reaction was then quenched with benzylamine
(5.0 equiv.) and stirred at r.t. for a further 12 h before being concentrated in vacuo. The
residue was diluted with EtOAc (20 mL) and washed successively with 10% citric acid
(20 mL × 1), aqueous NaOH (20 mL × 3) and brine (20 mL × 1). The organic layer was
extracted, dried over MgSO4 and the filtrate was concentrated in vacuo. The crude material
was purified by flash silica column chromatography to give the desired product.

3.2. Representative Synthesis and Characterization of Compounds 7 and 8 (Entry 8)

Following the general procedure above, 4-benzylidene-2,6-di-tert-butylcyclohexa-2,5-
dien-1-one 5 (74 mg, 0.25 mmol), 4’-nitrophenyl 2-(p-tolyl)acetate 1 (102 mg, 0.375 mmol),
(S)-TM HCl 6 (3 mg, 5 mol%) and Et3N (35 µL, 0.25 mmol) were dissolved in anhydrous
MeCN (0.42 mL). The reaction mixture was stirred at 40 ◦C for 24 h before being quenched
with benzylamine (137 µL, 1.25 mmol) at r.t. to give a crude mixture containing the title
compound in 60:40 dr. The mixture was purified by flash silica column chromatography
(petroleum ether/EtOAc, 85:15) to afford diastereoisomers 7 and 8 (60:40 dr) (132 mg, 99%)
as a pale yellow solid.

mp 126–128 ◦C; [α]20
D +10.0 (c 1.0, CHCl3); IR νmax (film)/cm−1 3638 (O−H) 3304

(N−H), 2955 (C−H), 1645 (C=O); HRMS (ESI+) C37H43NO2 ([M + H]+), found 534.3359,
requires 534.3367 (−1.4 ppm).

Data for major diastereoisomer (7): Chiral HPLC analysis, Chiralpak AD-H (10% i-
PrOH/hexane, flow rate 1.5 mLmin−1, 211 nm, 40 ◦C), tR 8.5 min and 29.3 min, 92:8 er;
1H NMR (500 MHz, CDCl3) δH: 1.42 (18H, s, (C(3′′ ′′)C(CH3)3, C(5′′ ′′)C(CH3)3), 2.24 (3H,
s, C(4′′)CH3), 3.90–4.05 (2H, m, C(2)H, CHAPh), 4.44 (1H, dd, J 15.0, 6.8, CHBPh), 4.82
(1H, d, J 11.7, C(1’)H), 5.14 (1H, s, OH), 5.55 (1H, t, J 5.6, NH), 6.71–6.76 (2H, m, Ar),
6.96–7.05 (2H, m, Ar), 7.09–7.15 (2H, m, Ar), 7.15–7.22 (4H, m, Ar), 7.23–7.30 (4H, m, C(4′ ′′)H,
C(2′′ ′′)H, C(6′′ ′′)H, Ar), 7.34 (1H, t, J 7.6, Ar), 7.43–7.51 (1H, m, Ar); 13C{1H} NMR (126 MHz,
CDCl3) δC: 21.0 (C(4′′)CH3), 30.4 (C(3′′ ′′)C(CH3)3, C(5′′ ′′)C(CH3)3), 34.4 (C(3′′ ′′)C(CH3)3,
C(5′′ ′′)C(CH3)3), 43.6 (CH2Ph), 54.1 (C(1’)), 59.5 (C(2)), 124.7 (C(2′′ ′′), C(6′′ ′′)), 125.8 (C(4′ ′′)),
128.2 (Ar), 127.2 (Ar), 127.3 (Ar), 128.0 (Ar), 128.4 (Ar), 128.5 (Ar), 128.6 (Ar), 129.0 (Ar),
133.8 (C(1′ ′′)), 135.2 (C(1′′)), 135.6 (C(3′′ ′′), C(5′′ ′′)), 136.4 (C(4′′)), 137.9 (i-Ph), 142.4 (C(1′′ ′′)),
152.4 (C(4′′ ′′)), 172.1 (C(1)).

Selected data for minor diastereoisomer (8): Chiral HPLC analysis, Chiralpak AD-H (10%
i-PrOH/hexane, flow rate 1.5 mLmin−1, 211 nm, 40 ◦C), tR 3.8 min and 18.6 min, 85:15 er;
1H NMR (500 MHz, CDCl3) δH: 1.27 (18H, s, (C(3′′ ′′)C(CH3)3, C(5′′ ′′)C(CH3)3), 2.27 (3H, s,
C(4′′)CH3), 3.90–4.05 (2H, m, C(2)H, CHAPh), 4.50 (1H, dd, J 15.0, 6.8, CHBPh), 4.69 (1H,
d, J 11.7, C(1′)H), 4.89 (1H, s, OH), 5.69 (1H, t, J 5.6, NH), 6.81–6.84 (2H, m, Ar); 13C{1H}
NMR (126 MHz, CDCl3) δC: 21.0 (C(4”)CH3), 30.2 (C(3′′ ′′)C(CH3)3, C(5′′ ′′)C(CH3)3), 34.2
(C(3′′ ′′)C(CH3)3, C(5′′ ′′)C(CH3)3), 43.4 (CH2Ph), 54.7 (C(1′)), 59.5 (C(2)), 125.3 (C(2′′ ′′),
C(6′′ ′′)), 126.3 (C(4′ ′′)), 127.5 (Ar), 128.2 (Ar), 128.4 (Ar), 128.8 (Ar), 132.1 (C(1′ ′′)), 134.9
(C(3′′ ′′), C(5′′ ′′)), 135.5 (C(1′′)), 136.4 (C(4′′)), 138.2 (i-Ph), 143.6 (C(1′′ ′′), 151.7 (C(4′′ ′′)),
172.0 (C(1)).

4. Conclusions

An isothiourea-catalyzed enantioselective 1,6-conjugate addition of para-nitrophenyl
(PNP) esters to para-quinone methides (QMs) has been developed. Variation of the ary-
lacetic ester and para-QM substrates has provided a range of functionalized products in
generally excellent yields and high enantiocontrol (up to 94:6 er). An inherent limitation of
the method is that the products were routinely obtained in ~60:40 dr. This diastereoselec-
tivity was shown to arise from kinetic control, but was relatively insensitive to changes
in reaction conditions and structural variation of the substrates. Although the dr could
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not be improved, the diastereoisomeric PNP ester products could be separated by col-
umn chromatography. The success of this catalytic methodology is proposed to rely upon
the para-nitrophenoxide, expelled during N-acylation of the catalyst, to facilitate catalyst
turnover and release the product. Current work in our laboratory is focused on further
applications of using in situ-generated aryloxides to promote catalyst turnover in Lewis
base catalysis.

Supplementary Materials: Full experimental procedures, characterization data, NMR spectra and
HPLC chromatograms for all new compounds, as well as crystallographic data for product 19 (CCDC
1992504) are available online.
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