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Hotspot swells and the lifespan of volcanic  
ocean islands
Kimberly L. Huppert1,2*, J. Taylor Perron1, Leigh H. Royden1

Volcanic ocean islands generally form on swells—seafloor that is shallower than expected for its age over areas 
hundreds to more than a thousand kilometers wide—and ultimately subside to form atolls and guyots (flat-
topped seamounts). The mechanisms of island drowning remain enigmatic, however, and the subaerial lifespan 
of volcanic islands varies widely. We examine swell bathymetry and island drowning at 14 hotspots and find a 
correspondence between island lifespan and residence time atop swell bathymetry, implying that islands drown 
as tectonic plate motion transports them past mantle sources of swell uplift. This correspondence argues strongly 
for dynamic uplift of the lithosphere at ocean hotspots. Our results also explain global variations in island 
lifespan, which influence island topography, biodiversity, and climate.

INTRODUCTION
The length of time volcanic islands stay above sea level strongly 
affects the evolution of their landscapes and biota (1), but island 
lifespans vary widely. Drowned islands in the Galápagos are as young 
as ~6 million years (Ma) old (2), whereas islands >20 Ma old persist 
above sea level in the Canary Islands. Island lifetime depends on the 
rate and magnitude of island subsidence, which, in turn, depends 
on the dynamics of the oceanic lithosphere and the underlying mantle. 
Ocean island lifetimes may therefore hold the key to resolving a 
conundrum about the mechanisms that modify seafloor depth at 
ocean hotspots.

Conductive cooling of the oceanic lithosphere is, in general, the 
first-order control on global seafloor depth (3), but the predictable 
pattern of seafloor deepening as it ages and moves away from mid-
ocean ridges goes awry at ocean hotspots, where the seafloor is 
anomalously shallow over broad regions. The processes generating 
these bathymetric swells are uncertain. Two end-member models 
(Fig. 1) have been proposed to explain swell uplift—each capable of 
reproducing some observations at ocean hotspots. The first model, 
lithospheric thinning (Fig. 1A), posits that reheating of the litho-
sphere, perhaps by vigorous secondary convection (4, 5), causes the 
seafloor to uplift due to the isostatic effect of replacing colder, denser 
lithosphere with hotter, less dense upper mantle (6). This thermal 
rejuvenation of the lithosphere could potentially explain the rapid 
uplift observed at ocean hotspots, provided that mantle temperatures 
are hot enough or mantle viscosity is sufficiently temperature-dependent 
to initiate convective instabilities that rapidly remove lithospheric 
material (4, 5). The lithospheric thinning model is also consistent with 
observed gravity anomalies [which indicate a source of compensation 
within the lithosphere (7, 8)], magmatism, surface heat flow anomalies 
(9), and reductions in the effective elastic thickness of the lithosphere 
(10, 11) along some hotspot swells.

The second model, dynamic uplift (Fig. 1B), proposes that swells 
are supported by upward flow of ascending mantle plumes and/or 
hot, buoyant plume material ponded beneath the swell lithosphere 
(5, 12). The dynamic pressure created by active upwelling and in-

creased thermal buoyancy beneath the swell should produce broadly 
distributed surface uplift, consistent with observed swell morphology 
(5, 12). Unlike the lithospheric thinning model, the dynamic uplift 
model does not require reheating of the lithosphere. Thus, dynamic 
uplift may explain measurements showing no systematic variations 
in heat flow across some hotspot swells at their subsiding end (13) 
[provided that these measurements are not unduly biased by hydro-
thermal circulation (14)].

Seismic imaging may provide a direct test of these two uplift 
mechanisms, because thermal rejuvenation implies that the litho-
sphere should be substantially thinner beneath hotspot swells than 
beneath adjacent regions. However, the lithosphere-asthenosphere 
boundary (LAB) has only been imaged beneath confined regions 
of the Hawaiian (12), Cape Verde (15), and Galápagos (16) swells. 
Within these regions, arrivals of S-to-P or P-to-S waves suggest little 
or no lithospheric thinning or thinning within only a narrow region 
of the broader hotspot swell (assuming that seismic waves are indeed 
reflected at the LAB rather than at intralithospheric melt layers) 
(12, 15, 16). At other hotspots, or even beyond the confined range 
of imaging at these well-studied hotspots, it remains unclear what 
role lithospheric thinning and dynamic uplift play in generating 
swells.

These two models also predict different patterns of seafloor 
subsidence following swell uplift. If swells are dominantly produced 
by lithospheric thinning and heating, then seafloor subsidence is the 
result of conductive cooling and contraction of reheated lithosphere. 
Despite some differences in the shape of the initial geotherm, the 
resulting thermal subsidence should approximately mimic the sub-
sidence of much younger oceanic lithosphere. This places an upper 
bound on the rate of thermal subsidence that can be achieved following 
swell uplift, as conductive cooling of the lithosphere is a slow, gradual 
process. However, if swell topography is dominantly produced 
by dynamic uplift, then seafloor subsidence depends on how 
rapidly plate motion carries the seafloor off the swell, the spatial 
extent of the swell, and fluctuations in dynamic pressure beneath 
the swell.

Swell morphology and changes in island bathymetry through 
time may reveal which of these mechanisms dominates the process 
of swell uplift (although they may, and probably do, occur together 
to some extent). This requires a record of seafloor uplift and sub-
sidence through time, such as that provided by paleoshorelines on 
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island, atoll, and guyot volcanoes. In this study, we use the evolution 
of island volcanoes formed atop swells to infer the primary mecha-
nism of swell compensation.

RESULTS
We analyzed swell morphology and the record of island drowning at 
14 ocean hotspots (Fig. 2B). We used an objective filtering method 
(17) to isolate swell bathymetry at each hotspot (see Materials and 
Methods; Fig. 2, A and C; and fig. S2). We then compared the mor-
phology of the swell tail at each hotspot to the expected subsidence 

of thermally rejuvenated lithosphere (Fig. 2, D and E, and fig. S2). 
We assumed that the lithosphere is reset to the thermal age required 
to explain the observed uplift—8 to 150 Ma younger than the age 
of the seafloor—at the onset of each swell tail (table S1). At each 
hotspot, subsidence of the observed regional bathymetry outpaces 
the thermal subsidence of rejuvenated lithosphere (fig. S2). The 
difference is less pronounced at the Comoros (fig. S2H), Madeira 
(fig. S2L), and St. Helena (fig. S2O) hotspots, but the large dis-
crepancies elsewhere suggest that the observed rates of subsidence 
are too rapid to be produced by conductive cooling of the lithosphere. 
This indicates that there must be a substantial component of 
dynamic (sublithospheric) compensation for the swells (table S4). 
This conclusion is valid regardless of whether the rapid subsidence 
is produced by fluctuations in dynamic compensation or from 
the volcanic islands being carried off the swell by plate motion. This 
result is also consistent with drill cores and seismic surveys of coral 
reef caps and the depths of wave-cut guyot terraces, which indicate 
that, following submergence, island volcanoes also subside substan-
tially faster than predicted for normal conductive cooling of the 
lithosphere (Fig. 3) (18, 19).

If swells are generated by dynamic uplift (Fig. 1B), then the rates 
at which islands and the lithosphere are transported away from 
hotspots by plate motion should influence the rates and timing of 
island subsidence, provided that mantle buoyancy remains steady 
and the relevant density anomalies occur below the asthenosphere. 
Numerical models of plume-plate interactions develop time-invariant 
swell topography through either the formation of a steady plume 
train or steady shear-aligned flow (5). In these cases, the subaerial 

Lithospheric thinningA

Dynamic upliftB

Lithosphere

Upper mantle

Fig. 1. Hypothesized mechanisms of swell uplift. (A) Lithospheric thinning or 
thermal rejuvenation of the lithosphere. Dotted white line shows initial lithospheric 
thickness before thinning. (B) Dynamic uplift. Dashed gray lines show seafloor 
depth in the absence of surface loading and associated flexural isostasy. Figure 
components are not to scale.
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Fig. 2. Hotspot swells compared to subsidence of thermally rejuvenated lithosphere. (A and C) Anomalous bathymetry at Hawai’i and Canary hotspots, with 
contours showing regional (swell) bathymetry [km relative to a plate cooling model (3)]. Purple lines bound a swath profile along the azimuth of plate motion through 
all volcanoes, taking into account bends in each track. Only select volcanoes are labeled. (D and E) Gray silhouette shows maximum elevations along the profile. 
Purple line shows mean swell elevation, with shading spanning the range observed along the profile. Dotted line shows expected seafloor depth predicted by the 
plate cooling model. Green line shows modeled thermal subsidence of the lithosphere. Maps and profiles for all 14 hotspots analyzed (B) for two different plate cooling 
models are provided in fig. S2.
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lifespan of ocean islands should relate to their residence time atop 
swell bathymetry, 𝜏s

     s   ~      s   ─  u  p      (1)

where 𝜆s is the distance from the hotspot to the subsiding swell tail 
in the direction of plate motion, and up is plate velocity. The corre-
spondence between swell residence time and island lifespan may 
be particularly strong if swells are flat-topped with steep convex 
boundaries, as we observe (Fig. 2, D and E) and as expected for 
flexure of the lithosphere due to an impinging plume head (20).

To test this prediction, we estimated swell residence time 𝜏s at 
each hotspot from measurements of swell length 𝜆s and plate velocity 
up (Eq. 1 and table S1). We found bimodally distributed 𝜏s, with short 
𝜏s clustered around ~10 Ma associated primarily with hotspots on 
fast-moving plates and longer 𝜏s clustered around ~25 Ma associated 
primarily with hotspots on slower-moving plates. To compare these to 
the subaerial lifespan of islands in each hotspot chain, we bracketed 
the typical age of island drowning using the ages of volcanoes currently 
exposed above sea level as a lower bound and the ages of submerged 
volcanoes that show evidence of past subaerial eruption and erosion 
as an upper bound (tables S1 and S3). Evidence of past subaerial ex-
posure includes wave-cut terraces, drowned coral, rounded cobbles 
and beach deposits, and vesicular or low-sulfur content basalt.

Swell residence time agrees well with the lifespan of islands in 
each chain (Fig. 4). Despite considerable differences in initial volcano 
elevations and the climatic settings of the various island chains [which 
affect the efficiency of their fluvial and coastal erosion (21) and their 
coral growth potential], island peak elevations decay to sea level or 

persist there with reef growth over the time period implied by swell 
length and plate motion with remarkable reliability. Only the North 
American Azores track appears to have an island lifespan that does 
not coincide with swell residence time when uncertainties in swell 
residence time and volcano ages are taken into account (22). Other-
wise, the consistency between swell residence time and island lifespan 
supports the hypothesis that volcanic ocean islands generally drown 
when they migrate off swell bathymetry. This correlation also sug-
gests that fluctuations in the dynamic support of the swell are probably 
not the dominant cause of island drowning, although exceptions may 
occur at individual swells.

This result indicates that there is an important sublithospheric 
source of swell compensation, because volcanoes migrate with the 
lithosphere as tectonic plates move relative to mantle buoyancy. 
If swell uplift primarily resulted from thermal rejuvenation of the 
lithosphere, then rates of seafloor and island subsidence would 
depend on the extent of thermal rejuvenation, and one would expect 
more gradual subsidence of islands on fast-moving plates that spend 
little time reheating over hotspot thermal anomalies (23). Our dataset 
shows exactly the opposite trend. Considering swell tail slopes and 
plate velocities, we find faster average swell subsidence rates (the product 
of swell tail slope and up) on the fast-moving Pacific Plate (0.37 mm/year) 
than on the slow-moving African Plate (0.07 mm/year) (table S1).

DISCUSSION
Why has the correspondence between island lifespan and swell res-
idence time gone unnoticed? Few studies (24) have used swell 
morphology to assess mechanisms of swell uplift because volcanic 
and sediment loads and variations in seafloor depth make it difficult 
to observe swell topography directly. We account for sediment loading 
explicitly and use an objective method to isolate swell bathymetry 
(17). Previous studies that have measured swell wavelength have 
focused on swell width perpendicular to plate motion to estimate 
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Fig. 3. Excess island subsidence following submergence. Expected thermal 
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on radiometric seafloor (39) and volcano ages (table S3) (19) and a plate cooling 
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reported in (19) or extracted from a global sediment thickness map (21). Error bars 
reflect volcano age uncertainty and uncertainty associated with thickness of coral 
or sediment. Dashed line shows the 1:1 correspondence, n = 109.
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hotspot buoyancy fluxes (25, 26), whereas we measured swell length 
parallel to plate motion to uncover the correlation. Consequently, 
patterns of swell subsidence have not been examined directly, although 
different swell compensation mechanisms should produce distinct 
patterns of swell subsidence.

Swell-controlled island subsidence may help explain the Darwin 
Point of atoll formation in the Hawaii-Emperor chain, the ~24° to 
30°N zone of atoll drowning (since ≥34 Ma) beyond which decreasing 
annual daylight, sea surface temperatures, and nutrient availability 
are thought to limit coral reef growth beyond a threshold for con-
tinued atoll development (27). Our analyses indicate that the Hawaiian 
Swell subsides within this latitude range, so we posit that relative sea 
level rise from atoll migration off the Hawaiian Swell also plays a 
central role in atoll drowning. Other hotspot island chains may have 
similar Darwin Points set by climate and geodynamic conditions.

Rapid subsidence as islands migrate away from a mantle source 
of swell uplift may also resolve the paradox of carbonate platform 
drowning. Drowned carbonate platforms are puzzlingly common, 
given that growth rates of healthy coral are much faster than typical 
rates of sea level rise. Rapid pulses of sea level rise, paleoenvironmental 
changes in equatorial regions, and other anomalous conditions have 
been proposed to explain the existence of drowned platforms (28, 29). 
Our results indicate that these explanations are unnecessary: Carbonate 
platforms that form on swells may drown when plate motion carries 
them away, since reefs subjected to normal environmental variability 
grow at unsteady rates that, over million-year time scales, will cu-
mulatively fail to keep pace with sustained sea level rise that is more 
rapid than thermal subsidence (30).

Last, our results explain global variations in island lifespan, 
which influence island biodiversity and global climate. Models of 
island biogeography predict humped trends in carrying capacity, 
species richness, and speciation rates over the course of island land-
scape development, implying variations in biodiversity with island 
lifespan. Taking observed differences in island lifespan into ac-
count, these models predict global variations in island biodiversity, 
consistent with measurements of native species richness and single- 
island endemism in the Azores, Canary, Galápagos, Marquesas, and 
Hawaiian islands (1). Our results demonstrate a geodynamic and 
tectonic control on island lifespan that implies clear links between 
island biodiversity and solid earth dynamics in different geographic 
settings—suggesting a geophysical mechanism underlying observed 
global variations in island biodiversity. Moreover, because drowned 
islands have served as source areas for the adaptive radiation of 
fauna inhabiting younger islands (2, 31, 32) and have provided 
“stepping stones” and havens for the transoceanic dispersal of 
organisms, our results provide geodynamic and tectonic constraints 
on the duration of subaerial or shallow water volcano exposure that 
may be critical for understanding variations in biotic dispersal across 
different ocean basins (33).

Variations in island lifespan affect global climate by influencing 
biogeochemical cycles and patterns of oceanic and atmospheric 
circulation. Island lifespan controls the exposure of volcanic flows 
to chemical weathering, which may affect global consumption of 
atmospheric carbon dioxide by silicate weathering (34, 35). Island 
emergence and submergence can also affect the carbon cycle and 
global climate by perturbing ocean circulation, increasing phyto-
plankton productivity and carbon dioxide uptake in the lee of islands 
and in interisland channels (36) and potentially altering the period of 
El Niño Southern Oscillation through its impact on ocean-atmosphere 

heat exchange (37). Our observation that island lifespan is predom-
inantly set by geodynamic and plate tectonic processes, rather than 
by island exposure to rainfall, waves, and other climatic drivers of 
erosion, has implications for quantifying the magnitude of island 
influences on global climate and for understanding feedbacks between 
global climate and the solid earth. Our results explain variations in 
island lifespan in different tectonic settings, which affect topography, 
biodiversity, and climate, and thereby link the evolution of the solid 
earth, biosphere, and hydrosphere.

MATERIALS AND METHODS
Experimental design
We performed two analyses to assess the relative contribution of 
lithosphere and mantle processes to swell uplift and island sub-
sidence. First, we compared the morphology of the subsiding swell 
tail at each hotspot to predicted thermal subsidence of reheated lith-
osphere. Second, we calculated the residence time of a volcano on 
each hotspot swell using measurements of swell length and plate 
velocity in the hotspot reference frame. We then compared swell 
residence times to the typical subaerial lifespan of islands, bracketed 
by the ages of the oldest subaerial and youngest submerged volcanoes 
in each chain. Both analyses used swell topography, which we isolated 
from the bathymetry by removing sediment loading and using an 
objective filtering method. The first analysis provides a test of the 
thermal rejuvenation hypothesis, while the second provides a test of 
swell compensation in the mantle, since a correspondence between 
the timing of island subsidence and plate tectonic motion supports 
a model in which island volcanoes and the lithosphere move past a 
mantle source of swell uplift.

Isolating swell bathymetry
We computed residual bathymetry relative to a plate cooling model 
(3) using ETOPO1 1 Arc-Minute Global Relief Model bathymetry 
(38) and seafloor ages interpolated between seafloor isochrons in the 
direction of seafloor spreading (39). We removed sediment and its 
flexural isostatic compensation based on a global sediment thickness 
map (40), the median estimated effective elastic thickness of the litho-
sphere at each hotspot (table S2) (41), a sediment density of 2300 kg/m3, 
a water density of 1000 kg/m3, an upper mantle density of 3330 kg/m3, 
a Young’s modulus of 1011 Pa, and a Poisson ratio of 0.25. We dis-
cretized sediment as gridded point loads to determine the pattern of 
deflection resulting from sediment loading. The effect of removing 
sediment and its compensation is minimal at intraplate hotspots, 
where sediment is nearly uniformly distributed and relatively thin. 
However, on passive margins, sediment thickness is spatially vari-
able and can exceed 10 km, so it can obscure evidence of swell 
topography (42).

We filtered the sediment-free residual bathymetry using a median 
filter, which returns the median value of pixels within a moving 
window. We used the optimal robust separator (ORS) filter width 
at each hotspot (table S2). The ORS filter width maximizes the 
mean amplitude of the short-wavelength bathymetry within a region 
bounded by a small positive contour (17). We used the 100-m contour 
at hotspots on seafloor younger than 100 Ma and the 200-m contour 
at hotspots on older seafloor to avoid extraneous meandering of this 
contour in the presence of noise. We assumed that the ORS spatial 
median–filtered regional bathymetry represents swell bathymetry at 
each hotspot.
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The filtering method we used is designed to optimize the parti-
tioning of short- and long-wavelength features of the bathymetry, 
which we expect relate uniquely to volcanic loading and swell uplift. 
However, if these processes act over similar spatial scales, the regional 
bathymetry we isolate might be biased by the presence of large volcanic 
surface loads. A particular concern is broad regions of thickened 
oceanic crust. Unfortunately, the depth of the Mohorovičić dis-
continuity has only been determined in a few hotspot island locations, 
so we lack sufficient information to account for crustal thickening 
in our calculations. Crustal thickening could produce shallow ba-
thymetry surrounding ocean hotspots (43), but the onset of seafloor 
shallowing is typically hundreds of kilometers upstream of hotspot 
volcanism, and the existence of drowned island volcanoes in many 
hotspot chains argues against crustal thickening as the primary cause 
for shallow bathymetry. Isostasy calculations show that crustal thick-
ening is insufficient to explain shallow seafloor depths near the 
Galápagos hotspot (44). The correspondence between filtered swell 
bathymetry and broad, coherent regions of shallow bathymetry visible 
in our unfiltered maps of anomalous seafloor depth suggests that the 
swell bathymetry we extract is not an artifact of our filtering technique. 
The frequent occurrence of volcanoes atop “normal” or even anom-
alously deep seafloor also suggests effective separation of short- and 
long-wavelength features (fig. S2). Swell uplift associated with oceanic 
hotspots is a robust feature of the bathymetry, analogously expressed 
in gravity anomaly data and seismic observations.

Swell residence times
We compiled radiometric ages of volcanoes and used the age- distance 
relationship of volcanoes >1 Ma to determine the azimuth and velocity 
of plate motion relative to the hotspot over the duration of volcanism 
in each chain (table S3). We assumed that the location of the hotspot 
coincides with the location of active volcanism, or we extrapolated 
to the position of the hotspot using the ages and locations of the 
youngest volcanoes and modeled globally consistent azimuths and 
velocities of plate motion over the past 5 Ma (45) in chains without 
active volcanoes. We found separate azimuths of plate motion 
upstream and downstream of the bend in the Canary (46) and 
Hawaii-Emperor chain (47) and accounted for the change in hotspot 
or plate motion in our plate velocity calculation. We extracted a swath 
profile along the azimuth of plate motion through all volcanoes at 
each hotspot included in our compilation (fig. S2). We then measured 
the distance 𝜆s along each profile from the hotspot to the point of 
maximum convexity of the swell (Laplacian of the swath profile mean 
regional bathymetry; solid purple lines in Fig. 2, D and E, and fig. S2), 
defining the upstream edge of the subsiding swell tail. Our results 
are relatively insensitive to this definition of 𝜆s (figs. S3 to S6).

We divided 𝜆s by plate velocity up to calculate swell residence 
time, accounting for uncertainty in plate velocity using the SD of 
plate velocities associated with each volcano (table S1). The up values 
we calculated reflect the average rates of plate velocity relative to the 
hotspot over the duration of volcanism in each chain (~6 to >85 Ma). 
All but one of our estimates are within 10 mm/year of modeled globally 
consistent plate velocities averaged over the past 5 Ma (45). The small 
differences—our estimates tend to be faster than the modeled rates—
may be partly due to hotspot motion. Paleomagnetic data indicate 
largely coherent hotspot motion over the past 40 Ma in the direc-
tion opposite plate motion at hotspots on the Pacific Plate (48). Our 
estimates may also be biased slightly fast fast due to the tendency 
for volcanism to continue over a period following passage of the 

hotspot (45). We accounted for uncertainty in our up estimates by 
taking the SD of plate velocities implied by the age-distance rela-
tionship of all volcanoes to the hotspot (table S3).

Fractional uncertainties in plate velocity are >45% at hotspots on 
the African plate—Cape Verde, Canary, St. Helena, and Madeira. 
These uncertainties reflect deviations from linear, age-progressive 
volcanism in each track. They may also reflect variations in plate 
motion. Our up estimates average over proposed changes in the 
direction and velocity of African plate motion [possible ~33% 
deceleration in plate motion since 19 to 30 Ma (49)], Eurasian plate 
motion [possible change in azimuth within the past ~3 Ma (50)], 
North American plate motion [possible deceleration 25 to 40 Ma 
(51)], Pacific plate motion [possible changes in azimuth ~6 Ma (45) 
and in azimuth and velocity of plate motion ~43 to 48 Ma (52)], 
and South American plate motion [possible increase in velocity 
from ~20 to 28 mm/year over the past 30 Ma and transition from 
less northerly to more westerly motion (53)]. This may be a source 
of mismatch in our comparisons between swell residence time and 
island lifespan.

Thermal rejuvenation of the lithosphere
We used the swath profile mean regional seafloor depth, a plate 
cooling model, and parameters after (3) and (54) to determine the 
thermal reset age at each hotspot swell edge 𝜆s (table S1). We 
assume that the lithosphere has been thermally rejuvenated to this 
age, and we modeled thermal subsidence downstream of 𝜆s along 
the swath profile assuming that the seafloor ages with distance 
from 𝜆s based on the rate of plate velocity relative to the hotspot 
up. Predicted thermal subsidence of reheated lithosphere is virtually 
indistinguishable for the two plate cooling models, or it differs 
by ≤~10% compared to observed seafloor subsidence at each 
hotspot (fig. S2).

Thermal rejuvenation of the lithosphere at the  
Galápagos hotspot
To model swell subsidence along the Cocos and Nazca tracks of the 
Galápagos hotspot, where regional bathymetry is elevated above 
typical mid-ocean ridge depths, we computed the temperature 
profile of the lithosphere based on seafloor age at the swell tail

   T(z ) =  T  m   erf (     z ─ 
 √ 
_

 4t  
   )     (2)

using upper mantle temperature Tm = 1450°C or Tm = 1350°C, ther-
mal diffusivity  = 8.05 × 10−7 m2/s, and asymptotic plate thickness 
L = 95 km or L = 125 m after (3) and (54), respectively. We then 
found the depth of the 1000° or 1250°C isotherm and set the tem-
perature below the isotherm to the upper mantle temperature plus 
the thermal anomaly T required to produce the observed seafloor 
depth, prescribed by

  d =  d  r   +      m    ─    m   −    w      ∫0  
L
    [  T  m   − T(z ) ] dz  (3)

where dr = 2600 m or dr = 2500 m is mid-ocean ridge depth, 
m = 3330 kg/m3 and w = 1000 kg/m3 are upper mantle and water 
density, respectively, and  = 3.1 × 10−5 °C−1 or  = 3.28 × 10−5 °C−1 
is the coefficient of thermal expansion. This approach is analogous 
to (19), and it assumes that the thinned lithosphere and underlying 
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hot mantle layer are in isostatic equilibrium with a compensation 
depth of L. We used a fast Fourier transform method to forward 
model the thermal evolution of the lithosphere numerically, as-
suming that the seafloor ages at the rate of plate velocity and that 
the top and the base of the lithosphere are fixed at 0°C and Tm + T, 
respectively (55).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/1/eaaw6906/DC1
Fig. S1. Hypothesized mechanisms of island drowning.
Fig. S2. Swell bathymetry and subsidence of thermally rejuvenated lithosphere at each 
hotspot.
Fig. S3. Swell subsidence versus subsidence of thermally rejuvenated lithosphere from the 
point of maximum convexity in swell amplitude.
Fig. S4. Swell residence time versus island lifespan, using a swell length set by the point of 
maximum convexity in swell amplitude at each hotspot.
Fig. S5. Swell subsidence versus subsidence of thermally rejuvenated lithosphere from the last 
downstream point of increase in swell amplitude at each hotspot.
Fig. S6. Swell residence time versus island lifespan, using a swell length set by the last 
downstream point of increase in swell amplitude at each hotspot.
Table S1. Thermal reset age, swell residence time, swell subsidence rate, and island lifespan.
Table S2. Attributes for extracting swell bathymetry at each hotspot.
Table S3. Island, atoll, and guyot ages and plate motion relative to each hotspot.
Table S4. Maximum fraction of swell subsidence attributable to thermal subsidence.
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