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Abstract 
Background. Type I interferons (IFN-α/β) are cytokines that are typically expressed in response to double-stranded 
RNA associated with viral infections. Glioblastomas are the most common malignant primary brain tumors, char-
acterized by an infiltrative growth pattern and prominent angiogenic activity, and thought to be maintained by a 
subpopulation of glioma-initiating (stem-like) cells (GICs). The growth of human GIC lines is highly sensitive to 
IFN-β.
Methods.  Repetitive pulse stimulation with IFN-β1a (IS) was used to generate IS sublines that had acquired resist-
ance to IFN-β-induced suppression of sphere formation. These cell lines were characterized by analyses of type 1 
IFN signaling, growth patterns, and transcriptomic profiles.
Results.  Here we report that repetitive IFN-β1a stimulation (IS) induces a stable phenotype (referred to as IS) at 
the level of maintaining sphere formation, although classical IFN signaling defined by the expression of both IFN 
receptors, myxovirus resistance protein A (MxA) accumulation, and STAT1 induction is unaffected. Furthermore, 
this stably altered IS phenotype is characterized by constitutively decreased sphere formation capacity and mor-
phological features of senescence and autophagy. Transcriptional profiling reveals increased type I IFN signaling in 
these IS cells, but decreased expression of genes involved in receptor signaling and cell migration.
Conclusions.  Altogether, these data suggest a role for promoting IFN-β signaling in glioblastoma and might pro-
vide clues to design future therapeutic approaches.

Key Points

• 	 Repetitive exposure to IFN-β induces an IS phenotype characterized by acquired 
resistance to IFN-β-induced suppression of sphere formation despite preserved canonical 
type I IFN signaling.

• 	 IS cells exhibited decreased growth and spherogenicity and a transcriptional profile of 
reduced migratory and MAPK pathway activity.

Interferon-β exposure induces a fragile glioblastoma 
stem cell phenotype with a transcriptional profile of 
reduced migratory and MAPK pathway activity
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Glioblastomas without mutations in the isocitrate dehydro-
genase (IDH) 1 or 2 genes, ie, IDH-wildtype glioblastomas 
are the most common and most malignant group of glial tu-
mors. These tumors are characterized by a brain-infiltrative 
growth pattern, prominent angiogenic activity, and variable 
patterns of molecular genetic changes in signaling and cell 
cycle-related pathways.1 IDH-wildtype glioblastoma pa-
tients have a poor prognosis with median survival in the 
range of 12  months in population-based studies2,3 and of 
14–17 months in contemporary clinical trials.4–6 Besides sur-
gery and radiotherapy, alkylating agent chemotherapy with 
temozolomide (TMZ) constitutes the standard treatment.7,8 
For at least two-thirds of the patients, the DNA repair pro-
tein O6-methylguanine-DNA methyltransferase antagonizes 
the effect of TMZ.9,10 To overcome this challenge, interferon 
(IFN)-β1a treatment is of interest since it may sensitize 
human glioma cells, including glioma-initiating cells (GICs), 
to irradiation and TMZ.11,12

IFNs are pleiotropic cytokines that are divided into 3 
classes. Type I  IFNs are a multi-member cytokine family 
consisting of around 20 members. The human genome 
contains genes encoding IFN-α (13 subtypes), IFN-β, IFN-ε, 
IFN-κ, and IFN-ω. They signal via the Janus-associated ki-
nase–signal transducer and activator of transcription (JAK-
STAT) cascade by binding to their cognate IFN-α/β receptor 
(IFNAR), IFNAR1 and IFNAR2. IFNAR1 associates with ty-
rosine kinase 2 and IFNAR2 with JAK1. This ligation leads 
to autophosphorylation of STAT members that translocate 
to the nucleus where they initiate transcription by binding 
specific sites in the promoter region of IFN-stimulated 
genes.13 Type I IFNs control innate and adaptive immunity 
as well as intracellular antimicrobial programs. They limit 
the dissemination of infectious agents like viral pathogens 
by the induction of an antimicrobial state in infected cells 
and their neighboring cells. They also modulate the im-
mune system by promoting antigen presentation and nat-
ural killer cell function while suppressing pro-inflammatory 
pathways and cytokine production. Furthermore, type 
I  IFNs activate the adaptive immune system and thereby 
promote the development of T- and B-cell responses and 
immunological memory.13–15 In addition, there is a growing 
body of evidence suggesting that type I  IFNs are also in-
volved in natural and therapy-induced immunological con-
trol of malignancies that are not virus-related. However, 
the exact role of the type I IFN-mediated immune response 

to cancer is not fully understood.16 Different studies indi-
cate that type I  IFNs are involved in immunoediting,17,18 
a process in which the immune system protects the host 
against oncogenesis and is able to recognize and respond 
to tumor development.19 Furthermore, IFN-α/β have been 
proposed to mediate antitumoral effects, which are often 
delayed but enduring, by acting on cancer stem cells.20,21

Type I IFNs have been investigated for the treatment of 
multiple neoplasms, eg, Kaposi sarcoma,22 hairy cell leu-
kemia,16,23,24 renal cell carcinoma,25 chronic myeloid leu-
kemia,26 and multiple myeloma.27,28 Type I  IFNs were also 
tested in phase I/II clinical trials that suggested potential 
activity in newly diagnosed glioblastoma,29–31 yet, a recent 
randomized trial failed to confirm the activity of type I IFN 
when added to the standard of care in newly diagnosed 
glioblastoma.32

Resistance to conventional treatments like radio- and 
chemotherapy is considered a typical feature of GICs. 
Based on the establishment of models of acquired resist-
ance to TMZ33 and the profound anti-GIC properties of 
type I IFNs,11 the present study explores the phenotypical 
changes and the underlying signaling perturbations caused 
by acquired resistance of GIC models to IFNs. Here we re-
port that, while such IFN resistance can indeed be induced, 
it comes at a price of a stable change in phenotype referred 
to here as “IFN-stimulated” (IS) that is characterized by im-
paired tumor growth in vitro and in vivo, features of senes-
cence and profound changes in gene expression related to 
receptor kinase signaling and cell migration.

Material and Methods

Materials and Cell Lines

Human IFN-β1a and pegylated IFN-β1a were provided 
by Biogen Inc. Stock solutions for in vitro experiments 
were prepared in 20  mM sodium acetate, pH 8.4, con-
taining 150 mM arginine hydrochloride; 3-methyladenine 
was from Sigma Aldrich. After informed consent and 
approval of the local ethics committees, the GIC lines 
were established from freshly resected tumors as de-
scribed previously.34 Cells were cultured in phenol red-
free Neurobasal medium (NB) with B-27 supplement  
(20 μL/mL) (Thermo Fisher Scientific), l-glutamine (10 μL/mL),  

Importance of the Study

Type I  interferons (IFN-α/β) contribute to 
the natural immune response to viral in-
fections, but have also recently been at-
tributed to anticancer stem stell properties. 
Glioblastomas are thought to be maintained 
by a subpopulation of glioma-initiating 
(stem-like) cells (GICs). The growth of human 
GIC lines is highly sensitive to IFN-β. We re-
port that repetitive pulse exposure to IFN-β1a 
induces acquired resistance to IFN-β-induced 

suppression of sphere formation in GICs, de-
spite preserved canonical type I IFN signaling 
(IS phenotype). Yet, IS GIC lines exhibit a 
fragile phenotype characterized by constitu-
tively decreased spherogenicity, features of 
senescence, and a transcriptional profile of 
decreased expression of genes involved in re-
ceptor signaling and cell migration. These data 
suggest a role for promoting IFN-β signaling 
in the treatment of glioblastoma.
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fibroblast growth factor-2, and epidermal growth factor 
(20 ng/mL each; Peprotech). TMZ was provided by 
Merck. All cells were regularly tested for mycoplasma 
contamination and sent for short tandem repeat anal-
ysis (Deutsche Sammlung von Mikroorganismen and 
Zellkulturen—DSMZ).

Generation of IFN-β1a-Resistant GICs

Samples of T-325, ZH-161, ZH-305, and S-24 cells were di-
vided into 2 fractions indicated as GIC-NC for normal con-
trol GIC, which were not pulsed with IFN-β1a, or GIC-IS for 
GIC, which were serially stimulated with IFN-β1a. Both cell 
fractions were continuously processed in parallel. These 
models were passaged in NB medium without or with IFN-
β1a at the same time intervals. IS cells underwent serial 
IFN-β1a stimulation with 10 IU/mL for T-325 and 100 IU/mL 
for ZH-161, ZH-305, and S-24 every 3–4 weeks. After com-
pletion of more than 4 stimulation rounds, a subfraction 
of NC and IS cells were separated and seeded to assess 
their clonogenic potential using spherogenicity assays. The 
remaining IS cells were kept in culture under permanent 
IFN-β1a stimulation as described above.

Real-Time PCR, Immunoblot, PCR and Viability 
Assay

Detailed methods are provided in Supplementary Note 1.

Gene Expression Profiling

About 500 ng total RNA was processed using the TruSeq 
RNA Sample Preparation v2 Kit (low-throughput pro-
tocol; Illumina) to prepare the barcoded libraries. Libraries 
were validated and quantified using DNA 1000 and high-
sensitivity chips on a Bioanalyzer (Agilent); 7.5 pM de-
natured libraries were used as input into cBot (Illumina), 
followed by deep sequencing using HiSeq 2500 (Illumina) 
for 101 cycles, with an additional 7 cycles for index reading. 
Fastq files were imported into Partek Flow (Partek). Quality 
analysis and control were performed on all reads to as-
sess read quality and to determine the amount of trimming 
required (both ends: 13 bases 5′and 1 base 3′). Trimmed 
reads were aligned against the hg38 genome using the 
STAR—v2.5.3a aligner. Unaligned reads were further pro-
cessed using Bowtie 2 v2.2.5 aligner. Aligned reads were 
combined before quantifying the expression using the 
Partek Expectation-Maximization algorithm against the 
ENSEMBL (release 84)  database. Finally, statistical gene 
set analysis was performed using the T-test to determine 
differential expression at the gene level. Partek flow default 
settings were used in all analyses. For pathway analysis, 
gene sets were derived from curated pathways from sev-
eral databases including GO, Reactome, KEGG (August 01, 
2018 version; http://download.baderlab.org/EM_Genesets/
current_release/Human/symbol/) and visualized using 
Cytoscape (www.cytoscape.org; P ≤ .001, q ≤ 0.05, simi-
larity cutoff 0.5). RNA sequencing data were analyzed by 
cell line IS versus NC, and the T-value was used to perform 
a ranked analysis.

Animal Studies

The standard operating procedures for the animal studies 
were approved by the Swiss Cantonal Veterinary Office 
under the Animal license permission number ZH105/2015. 
The care and treatment of all animals were in accordance 
with the Swiss Federal Law on the Protection of Animals 
of the Federal Food Safety and Veterinary Office and with 
the Swiss Federal Ordinance on the Protection of Animals. 
Following anesthesia, a burr hole was drilled in the skull 
2 mm lateral to the bregma. The needle of a Hamilton syringe 
(Hamilton) was introduced to a depth of 3 mm. A single-cell 
suspension of 105 GICs in 2 μL PBS was slowly injected into 
the right striatum of immuno-compromised CD1 Foxn1 nude 
mice (Charles River) (n = 10 per group). The mice enrolled 
had body weights of more than 20  g. Systemic treatment 
with human peg-IFN-β1a was performed by subcutaneous 
injection twice weekly (8  × 107 U/kg). The mice were ob-
served daily and euthanized by cervical dislocation when de-
veloping neurological symptoms or at defined time points 
for histological analysis as indicated. Three mice per group 
were euthanized, defined by a pre-randomized list, when the 
third mouse in any group of the experiment became symp-
tomatic in order to perform histological analysis to assess 
tumor growth at an early stage. The remaining mice were eu-
thanized when displaying neurological symptoms to obtain 
survival data. All brains were explanted upon euthanasia, 
embedded in cryo-moulds in Shandon Cytochrome yellow 
(Thermo Fisher Scientific) and frozen in liquid nitrogen. 
Tumor incidences and volumes were determined using he-
matoxylin and eosin stainings of 8  µm thick cryosections 
cut using a Microm HM560 (Microchom HM560, Thermo 
Scientific).35 Details on immunohistochemistry methods are 
provided in Supplementary Note 2.

Data Analysis

Data are representative of experiments performed 2–3 
times with similar results. Statistical analysis was per-
formed using GraphPad Prism 5 or 7 software. Statistical 
significance was assessed using either two-sided un-
paired and paired Student’s t-test or one-way ANOVA with 
Tukey’s post hoc test for multiple analyses. Quantitative 
data are represented as mean ± standard deviation (SD) or 
standard error of the mean (SEM). A P-value below .05 was 
considered significant. Kaplan–Meier survival curves gen-
erated from the animal studies were analyzed using the 
Gehan–Breslow–Wilcoxon test. A  P-value below .05 was 
considered significant.

Results

Repeated Exposure to IFN-β1a Induces 
Resistance in GICs

To model acquired resistance to IFN-β1a in GIC in vitro, T-325, 
ZH-161, ZH-305, or S-24 cells underwent serial IFN-β1a stim-
ulation every 3–4 weeks (Figure 1A). To ascertain the induc-
tion of a stable, IFN-β1a-resistant phenotype, we determined 
clonogenic survival and assessed the half-maximal effective 

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
http://download.baderlab.org/EM_Genesets/current_release/Human/symbol/
http://download.baderlab.org/EM_Genesets/current_release/Human/symbol/
http://www.cytoscape.org
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
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concentration (EC50) of IS versus NC cells by metabolic ac-
tivity assays. We noted an up to 8-fold increase of the EC50 
values in IS cells (Figure 1B). This resistance phenotype was 
maintained in all 4 IS lines (T-325-IS, ZH-161-IS, ZH-305-IS, 
and S-24-IS) for 12 weeks after the last exposure to IFN-β1a. 
Later time points were not explored. Representative studies 
are shown in Supplementary Figure S1A. Next, ZH-161-NC 
or ZH-161-IS cells were orthotopically implanted into nude 
mice that were treated biweekly with peg-IFN-β1a or vehicle 
control to explore whether IFN resistance established in 
vitro is maintained in vivo. First, we noted that there were 
more longer surviving mice in the untreated ZH-161-IS than 

in the untreated ZH-161-NC groups. Moreover, treatment 
with peg-IFN-β1a prolonged survival in ZH-161-NC glioma-
bearing mice (***P  =  .0001), but not in mice harboring 
ZH-161-IS gliomas (P = .2712) (Figure 1D).

Classical Type I IFN Signaling Is Not Affected in 
GIC-IS Cells

We next explored the level of signaling at which resistance 
to IFN-β1a had evolved in IS cells. Both cognate receptors, 
IFNAR1 and IFNAR2, were expressed on NC and IS cells on 
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Figure 1.  Responsiveness to IFN-β1a in normal control (NC) and interferon-stimulated (IS) cells in vitro. (A) Schematic illustration of the generation 
of IS cells. (B) Clonogenic survival of NC or IS cells upon IFN-β1a stimulation was assessed by MTT assay. (C) Nude mice intracranially implanted 
with ZH-161-NC or ZH-161-IS cells were treated twice weekly with vehicle or peg-IFN-β1a (8 × 107 U/kg) from day 14 on. Kaplan–Meier survival 
curves of ZH-161-NC or ZH-161-IS glioma-bearing mice are shown (median survival in days provided in brackets, Gehan–Breslow–Wilcoxon test, P 
< .05, n = 7–8 mice per group).
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mRNA (Figure 2A and B) and protein level (Figure 2C and D).  
Responsiveness to IFN-β1a was confirmed at the level of 
induction of STAT1 mRNA expression (Figure 2E). MxA as 
the classical downstream target of the IFN signaling cas-
cade was also concentration-dependently induced at the 
mRNA (Figure  2F) and protein levels (Figure  2G) in NC 
and IS cells. The maintained signaling response to IFN 
was confirmed by a significant upregulation of MxA pro-
tein using immunohistochemistry in tumors of ZH-161-NC 
or ZH-161-IS glioma-bearing mice 48 h after peg-IFN-β1a 
treatment in vivo (Figure 2H).

Altered Morphological and Cell Culture 
Phenotype Upon Chronic IFN-β1a Exposure

During culturing NC and IS cells in parallel, differences in 
proliferation were observed. While cell-doubling times of 
NC and IS cells under optimal growth conditions were not 
different (Figure  3A), sphere formation defined as clus-
ters of more than 5 cells was reduced in IS cells compared 
with NC cells. Furthermore, sphere formation capacity 
was reduced in NC cells by IFN-β1a, whereas IFN-β1a had 
no such effect in IS cells (Figure  3B). A  detailed evalua-
tion of the size and morphology of spheres at day 20 re-
vealed that untreated IS cells and IFN-β1a-treated NC cells 
generated smaller spheres than vehicle-treated NC cells 
(Supplementary Figure S1B–D). Limiting dilution assays 
showed that IS cells had a growth disadvantage compared 
with NC cells (Figure 3C). When comparing cell cycle pro-
gression between NC and IS cells, no difference was ob-
served besides an increased fraction of sub-G1 phase cells 
in IS cells, indicating spontaneous cell death (Figure 3D). 
We also noted a minor increase in the EC50 values for ir-
radiation and TMZ in the IS models; however, given their 
overall reduced growth rate relative to NC cells, we con-
sidered these data difficult to interpret and not indicative 
of induced cross-resistance. The previously reported sen-
sitization of GIC to irradiation and TMZ was no longer sig-
nificant, but again this likely resulted mainly from overall 
reduced growth rates in the IS cultures (data not shown).

In vivo, the proliferation rate determined by Ki-67 la-
beling was significantly decreased only in peg-IFN-β1a-
treated ZH-161-NC tumors, but not in peg-IFN-β1a-treated 
ZH-161-IS tumors (Figure 3E). Tumor vessel density studies 
did not show differences between the treatment groups 
and cell lines (Supplementary Figure S2). To elucidate the 
impaired growth of IS cells, we investigated whether cell 
organelles were affected. Endoplasmatic reticula, Golgi 
apparatus, and mitochondria of NC and IS cells appeared 
largely similar (Supplementary Figure S3A). Next we de-
termined senescence-associated β-galactosidase activity 
using irradiation at 20 Gy as a positive control.36 IS cells 
uniformly exhibited higher β-galactosidase activity than 
NC cells (Figure  4A). In contrast, a single exposure to 
IFN-β did not induce β-galactosidase activity in NC cells 
(Supplementary Figure S3B).

By electron microscopy, NC cells of ZH-161 and S-24 
appeared unremarkable with intact plasma and nuclear 
membranes, well-separated nucleoli, physiological size, 
and physiological distribution of mitochondria. Ribosomes 
were attached to the rough endoplasmatic reticula and 

numerous circular vesicles were detectable in the cyto-
plasm (Figure  4B). In contrast, IS cells contained several 
autophagosomes filled with cellular components sur-
rounded by double membrane layers, demonstrating the 
typical phenotype of autophagy.37 GIC-NC were irradiated 
with 20 Gy as a positive control for senescence. Similar to 
IS cells, irradiated cells showed abundant autophagosomes 
and swollen mitochondria (Supplementary Figure S4A). 
Yet, LC3 immunoblotting did not confirm constitutive ac-
tivation of autophagy in IS cells (Supplementary Figure 
S4B), and IS cells were not more sensitive to the inhi-
bition of autophagy by 3-methyladenine than NC cells 
(Supplementary Figure S4C).

In IS cells, rough endoplasmatic reticula were partially 
devoid of ribosomes, indicating impaired protein synthesis 
(Figure 4B). Given this depletion of ribosomes in IS cells, 
NC cells were also treated with cycloheximide, an inhib-
itor of protein synthesis. Cycloheximide-treated NC cells 
showed a different phenotype compared to IS cells, exhib-
iting substantial amounts of intermediate filaments near 
the nucleus and mitochondria with dilated cristae and high 
electron negativity (Supplementary Figure S4D). To gain 
support for impaired protein synthesis, a protein synthesis 
assay was performed using cycloheximide-treated NC 
cells as a positive control. No difference between NC and 
IS cells became apparent (Supplementary Figure S4E).

Transcriptional Profiling of IS Cells Reveals 
Downregulation of Gene Sets Related to Receptor 
Signaling and Cell Migration

Whole-transcriptome sequencing revealed profound 
changes in the transcriptional landscape in IS cells relative 
to the corresponding NC controls. Overall, 783 genes were 
significantly differentially expressed in both IS models 
versus the respective NC cells. Specifically, 578 and 205 
genes were consistently upregulated or downregulated, re-
spectively, in both ZH-161 and S-24 IS cells (Supplementary 
Table S1, Supplementary Figure S5A). Notably, unsuper-
vised hierarchical clustering using the top 200 (Figure 5A) 
or all differentially expressed transcripts (Supplementary 
Figure S5B) clearly segregated the models according to IS 
versus NC phenotype. Gene set enrichment analysis com-
paring the transcriptional profiles of both IS models with 
their NC GIC counterparts revealed upregulation of “inter-
feron signaling” and “negative control of viral process,” 
likely reflecting the direct signaling activity of type I  IFN 
(Figure 5B and C).

Upregulation of the senescence marker, protein tyro-
sine phosphatase receptor type J,38 was consistent with 
the morphological observations in IS cells (Supplementary 
Figure S5C). In addition, activating transcription factor 
4 signaling was upregulated in IS cells compared to NC 
cells. Although protein kinase RNA–like endoplasmic retic-
ulum kinase (PERK)/eukaryotic translation initiation factor 
2-alpha kinase 3 (EIF2AK3) were not differentially regu-
lated between IS and NC cells, EIF2AK2, which is typically 
upregulated during viral infections, was upregulated in 
IS cells (Supplementary Figure S5D). Also, genes related 
to the terms oxidative phosphorylation (normalized en-
richment score, NES, 1.67, P-value 0), mitochondrial gene 

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
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https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
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expression (NES 1.67, P-value 0), and hallmark unfolded 
protein response (NES 1.45, P-value .009) were positively 
enriched in IS cells (Supplementary Table S2), but did not 
pass the false discovery rate threshold to be included in 
the gene set enrichment analysis.

One candidate gene induced in both IS models, nerve 
growth factor receptor (NGFR), was also induced in 2 
other IS models not subjected to gene expression profiling 
(Supplementary Figure S5E). Notably, the largest cluster 
downregulated in IS cells contained gene sets involved 
in receptor signaling. The top-ranking gene set among 
these affected signaling nodes was transmembrane re-
ceptor protein tyrosine kinase activity (NES −2.64, false 
discovery rate q-value 4.79  × 10−04). The transmembrane 
receptor protein tyrosine kinase, anaplastic lymphoma 
kinase (ALK), was the most significantly downregulated 
transcript (Supplementary Table S1). The reduction of ALK 
mRNA and protein in IS cells was confirmed by RT-PCR 
and immunoblot (Supplementary Figure S5F and G). 
Appropriate control experiments showed that a single ex-
posure of either GIC line to IFN-β was insufficient to reduce 
ALK mRNA expression (data not shown). Hence, loss of 
ALK signaling activity may mediate part of the resistance 
to type I IFN.

Another cluster downregulated in IS cells involved cell 
migration although genes in this cluster overlap with re-
ceptor signaling cluster. Migration-associated genes 
downregulated in IS cells included IFITM1, DDX58, and 
LAMB1 (Figure  6). Accordingly, ZH-161 IS cells formed 
less invasive tumors than ZH-161 NC cells (Supplementary 
Figure S6).

Discussion

The present study sought to explore the biological conse-
quences of chronic exposure of human glioblastoma stem 
cell models to type I  IFN signaling. Repeated stimulation 
of GIC with IFN-β resulted in sublines referred to as IS that 
were refractory to the inhibitory effects of IFN on stemness 
defined by a reduction of spherogenicity. IS cells generated 
by repetitive exposure to IFN-β1a remained insensitive 
to IFN-β1a-induced suppression of sphere formation for 
weeks (Figure 1, Supplementary Figure S1A) which could 
not be attributed to adaptive downregulation of canon-
ical IFN signaling (Figure  2). Resistance to IFN-mediated 
growth suppression was maintained in vivo while canon-
ical signaling was preserved there, too (Figures 1D and 2).

Cellular unresponsiveness to IFN has previously been 
analyzed in vitro and in vivo in other cell types. Permanent 
stimulation with high-dose IFN or long-lasting peg-IFN led 
to the downregulation of the IFNAR1 cell surface receptor 
in HEK-293T cells in vitro.39 The state of unresponsiveness 
of IFN-treated cells lasted up to 3 days.40 Once IFN was re-
moved, IFNAR1 cell surface expression returned to con-
trol levels within 3 h.39 In addition, mice repeatedly treated 
with murine IFN-α became refractory to further IFN injec-
tion within hours after the first treatment by upregulating 
the ubiquitin-specific peptidase 18 (USP18) which has been 
described as a negative regulator of type I IFN signaling41 

and which was also upregulated in the IS models studied 
here (Figure 6).

Acquired resistance to IFN-β-induced growth suppres-
sion came at a price: the IS phenotype was characterized by 
decreased constitutive sphere formation, impaired growth 
under suboptimal conditions, and increased survival of 
tumor-bearing mice (Figures  1C and 3, Supplementary 
Figure S1B–D). Possible pathways induced by IFN-β and 
associated with decreased growth in IS cells include senes-
cence42 and autophagy37 (Figure 4). Senescence is a state in 
which viable cells cease to divide whereas autophagy is a 
catabolic process that degrades and recycles unnecessary 
or dysfunctional cellular components inside lysosomes. 
Both processes can be triggered by cytotoxic stress.43,44 
The phenotype of senescence can be heterogeneous and 
its expression depends on the exposed stress. It may com-
prise different effector mechanisms including autophagy, 
resistance to apoptosis, or activity of cyclin-dependent ki-
nase inhibitors.45–47 Metabolic or genotoxic stress-induced 
autophagy can have a survival effect rather than mediating 
cell death and allow a switch between apoptosis and se-
nescence. Aging fibroblasts revealed some features of 
the IS phenotype such as increased β-galactosidase ac-
tivity associated with an increased number of autophagic 
vacuoles.48

Plenty nondistinct fragmented membranes were also 
observed in IS cells which most likely originate from the 
rough endoplasmatic reticulum due to their shape and 
structure. Furthermore, rough endoplasmatic reticula 
without ribosomes attached were detected. Since ribo-
somes are associated with the translation of mRNA into 
protein,49 this might indicate impaired protein synthesis in 
IS cells (Figure 4B). When comparing IS cells to NC cells 
that were treated with CHX as a positive control for inhib-
ited protein synthesis,50 CHX-treated NC still shared more 
morphological similarities with untreated NC than with un-
treated IS cells, suggesting that impaired protein synthesis 
in IS cells does not go along with morphological changes 
or that protein synthesis is not affected in IS cells to a rel-
evant quantitative extent (Supplementary Figure S4D). 
Increased expression of genes related to the unfolded 
protein response was confirmed by transcriptional pro-
filing (Supplementary Figure S5D and E). RNA sequencing 
revealed profound changes in IS versus NC cells: main-
tained signaling activity of type I  IFN was confirmed by 
demonstrating upregulation of genes related to interferon 
signaling and negative control of viral processes. In con-
trast, among multiple gene families downregulated in IS 
cells, genes related to tyrosine receptor signaling and cell 
migration were of particular interest to understand the IS 
phenotype (Figure 5B). The profound changes in transcrip-
tional profiles raise the possibility of durable epigenetic 
changes induced by type I IFN.

Altogether, these data indicate that prolonged expo-
sure of human glioblastoma patients to type I  IFN at suf-
ficient local concentrations might be a suitable strategy to 
overcome treatment resistance. Local delivery might be a 
strategy to achieve this goal while circumventing systemic 
toxicity. Future studies should explore how to integrate IFN 
exposure with other novel treatment strategies, notably in 
the field of immunooncology.

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa043#supplementary-data
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