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The prevailing coronavirus disease-19 (COVID-19) caused by a novel severe acute respiratory syndrome coronavirus (SARS-CoV-2)
has presented some neurological manifestations including hyposmia, hypogeusia, headache, stroke, encephalitis, Guillain–Barre
syndrome, and some neuropsychiatric disorders. Although several cell types in the brain express angiotensin-converting enzyme-2
(ACE2), the main SARS-CoV-2 receptor, and other related proteins, it remains unclear whether the observed neurological manifesta-
tions are attributed to virus invasion into the brain or just comorbidities caused by dysregulation of systemic factors. Here, we
briefly review the neurological manifestations of SARS-CoV-2, summarize recent evidence for the potential neurotropism of
SARS-CoV-2, and discuss the potential mechanisms of COVID-19-associated neurological diseases.
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Introduction
In less than two decades, three coronavirus outbreaks

prevailed to form major epidemics that mainly attack the respi-
ratory system of patients, including severe acute respiratory
syndrome (SARS) caused by SARS-coronavirus (SARS-CoV) in
2002–2003, Middle East respiratory syndrome (MERS) by
MERS-CoV in 2012, and the ongoing coronavirus disease-19

(COVID-19). SARS affected a total of 8096 people and caused
�9.56% of deaths (De Wit et al., 2016), and MERS was respon-
sible for 34.4% of deaths in 2494 total patients (Berger, 2020).
As of May 10, 2021, COVID-19 has caused nearly 160 million
cases and over 3.3 million deaths globally and it is becoming
the most severe pandemic over the last century.

The most common symptoms of COVID-19 are fever, cough,
fatigue, muscle pain, and shortness of breath (Garg et al.,
2020; Grasselli et al., 2020; Guan et al., 2020; Huang et al.,
2020a). Some reports showed that >36.4% of confirmed
cases presented neurological manifestations, including diz-
ziness, headache, hypogeusia, and hyposmia (Helms et al.,
2020; Mao et al., 2020). Cerebrovascular diseases such as
stroke have also been identified in some patients (Giustozzi
et al., 2020; Oxley et al., 2020; Viguier et al., 2020). The neu-
rological involvement is not specific for COVID-19, because

similar neurological abnormalities are also observed follow-
ing infections from other coronaviruses, such as SARS-CoV
and MERS-CoV (Glass et al., 2004; Li et al., 2016; Ellul et al.,
2020).

Like SARS-CoV, SARS-CoV-2 also uses protease-processed

spike (S) protein to invade host cells through angiotensin-con-

verting enzyme-2 (ACE2) (Li et al., 2003; Hoffmann et al., 2020;

Walls et al., 2020). The cellular serine proteases transmembrane

protease serine 2 (TMPRSS2) and furin are responsible for S pro-

tein priming and pre-activated cleavage, respectively, to facilitate

the access to host cells (Hoffmann et al., 2020; Shang et al.,

2020). In addition, other cellular receptors, such as Neuropilin-1

(NRP-1) and CD147, may mediate the virus entry into the host

cell through ACE2-independent manner (Cantuti-Castelvetri et

al., 2020; Daly et al., 2020; Zhou et al., 2020). Using pseudovi-

rus system, it has been shown that SARS-CoV-2 entry and repli-

cation can be facilitated by the proprotein convertase furin, the

cell surface protease TMPRSS2, and the lysosomal proteases

cathepsins (Shang et al., 2020). The presence of a polybasic

furin-type cleavage site in the SARS-CoV-2 S protein might ex-

plain why SARS-CoV-2 spreads much more rapidly than SARS-

CoV (Coutard et al., 2020).
ACE2 protein was found to be expressed in neurons of the

brain (Song et al., 2021), and NRP-1 expression was observed
in the olfactory system (Kawakami et al., 1996), including neu-
rons of the olfactory epithelium (Cantuti-Castelvetri et al.,
2020). The expression of putative SARS-CoV-2 receptors in sev-
eral neuronal cell types raised possibility of direct invasion of
SARS-CoV-2 into the brain (Yang et al., 2020).
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COVID-19-associated neurological manifestations
Accumulating case reports have shown that COVID-19

patients exhibit a wide range of neurological manifestations of
either the central nervous system (CNS) or the peripheral ner-
vous system (PNS), in isolation or together with other features
(Ellul et al., 2020; Iadecola et al., 2020; Table 1). For example,
a retrospective study from Wuhan, China, reported that 53 of
214 COVID-19 patients (�25%) had CNS symptoms, including
28 with headache, 36 with dizziness, and 16 with conscious-
ness impairment (Mao et al., 2020). Notably, only �50% of
those with CNS symptoms (27/53) showed severe respiratory
problem. In another study carried out in France for 58 COVID-19

patients, 49 (84%) had neurological complications, including
40 with encephalopathy (Helms et al., 2020), which was de-
fined based on alterations in mental status, such as confusion,
agitation, disorientation, or delirium. The alterations in mental
status were most likely caused by systemic disorder, rather
than encephalitis resulted from direct SARS-CoV-2 infection,
because only a few cases showed modest amount of SARS-
CoV-2 RNA in the cerebrospinal fluid (CSF) (Huang et al.,
2020b; Moriguchi et al., 2020).

In addition to encephalopathy, cerebrovascular manifesta-
tions are also seen in some of COVID-19 patients. Ischemic
stroke has been reported in 1%–6% COVID-19 patients (Klok et
al., 2020; Mao et al., 2020; Merkler et al., 2020; Yaghi et al.,
2020), and notably, the rates are several folds higher than that
in patients with common influenza (Merkler et al., 2020). The
COVID-19-associated endothelial dysfunction might be related
with increased susceptibility to cerebrovascular disease
(Klok et al., 2020).

Compared to influenza patients, much higher ratio of COVID-19

patients reported olfactory dysfunction or gustatory disorders (Ellul

et al., 2020). In a multicenter European study of 417 COVID-19

patients, 85.6% reported decreased sense of smell, and 79.6%

reported a complete loss of taste (Lechien et al., 2020). Although

anosmia and ageusia are emerging as common symptoms of

COVID-19, it remains unclear whether these abnormalities were

caused by direct invasion of olfactory nerve or just because of co-

ryza, which can occur in many other respiratory viral infections.
Systemic inflammation and dysregulated immune responses

elicited after acute phase of viral infection are known to cause
CNS or PNS neurological complications. Up to now, only rare
cases of post-infectious CNS inflammations, typically encepha-
lomyelitis and myelitis, were reported (Zanin et al., 2020; Zhao
et al., 2020b; Zhang et al., 2021). More cases of Guillain–Barre
syndrome resulted from immune attack on PNS were reported
in COVID-19 patients, with evidence of axonal demyelination
and consequent symptoms of muscle weakness, ataxia, or are-
flexia (Dinkin et al., 2020; Gutiérrez-Ortiz et al., 2020; Marta-
Enguita et al., 2020; Toscano et al., 2020). Interestingly, a re-
cent study showed that all the brain regions with SARS-CoV-2
signals had minimal lymphocyte or leukocyte infiltration, sug-
gesting that SARS-CoV-2 may not elicit strong post-infectious
immune response (Song et al., 2021). This feature is distinct
from other neurotropic viruses like ZIKV, rabies virus, and her-
pes virus. In line with this notion, SARS-CoV-2-infected brain
organoids exhibited little change in the pathways related with
defense response to virus, cellular response to type I inter-
feron, and innate immune response, which were observed in
ZIKV-infected organoids (Song et al., 2021).

Table 1 Neurological and neuropsychiatric features of COVID-19 patients.

Neurological symptoms Etiology/pathophysiology References

Cerebrovascular disease
Ischemic strokes
Brain hemorrhage
Thrombocytopenia

Neuroimaging, viral presence in
CSF, inflammatory factors

Poyiadji et al. (2020); Mao et al. (2020); Pleasure et al. (2020);
Jin et al. (2020); Ellul et al. (2020)

CNS neurological disease
Encephalopathy
Encephalitis
Myelitis

Neuroimaging, viral presence in CSF,
CNS infection, spine imaging

Helms et al. (2020); Poyiadji et al. (2020); Mao et al. (2020);
Duong et al. (2020); Asadi-Pooya and Simani (2020)

PNS neurological disease
Guillain–Barre
Myalgia
Paralysis

PNS infection, nerve demyelination,
neuromuscular junction, immune
dysregulation

Sedaghat and Karimi (2020); (Zhao et al., 2020a)

Sensory impairment
Hypogeusia
Hyposmia
Anosmia
Ageusia

Olfactory viral invasion, CNS
autoimmunity

Poyiadji et al. (2020); Najjar et al. (2020); Mao et al. (2020);
Sohal and Mansur (2020)

Seizure Neuroimaging, viral presence in CSF Mao et al. (2020); Poyiadji et al. (2020); Duong et al. (2020);
Sohal and Mansur (2020)

Neuropsychiatric disorder
Depression
Anxiety
Confusion
Agitation
Delirium

Not reported Mao et al. (2020); Rogers et al. (2020); Varatharaj et al. (2020)
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Neurotropic characteristics of SARS-CoV-2
Of the seven types of coronaviruses that infect humans, at

least two strains have been shown to be able to enter and per-
sist in the brain, including SARS-CoV (Arbour et al., 2000; Gu et
al., 2005). The high similarity of SARS-CoV-2 in its nucleotide
sequence to SARS-CoV, in particular the receptor-binding do-
main, indicates that it may also invade the host cells through
ACE2 (Lu et al., 2020; Wang et al., 2020a). In support of this
conclusion, intranasal infection of mice expressing human
ACE2 with SARS-CoV-2 caused high viral loads in the lung, tra-
chea, and brain (Sun et al., 2020).

In line with frequently observed loss of smell in COVID-19

patients, ACE2 and TMPRSS2 that mediates proteolytic process-
ing of the S protein were observed in the olfactory epithelium,
but not olfactory neurons, in both murine and human samples
(Bilinska et al., 2020; Brann et al., 2020). Varied expression of
ACE2 was observed in human neurons in a subtype- and
region-specific manner, and high expression of ACE2 and
TMPRSS2 was observed in pericytes, endothelial cells, or cho-
roid plexus cells (He et al., 2020; Jacob et al., 2020; Ramani et
al., 2020; Chen et al., 2021; Song et al., 2021).

Other evidence supporting the neurotropism of SARS-CoV-2
came from in vitro cellular or organoid models. In a cultured hu-
man brain organoid model, SARS-CoV-2 exhibited neuroinva-
sive ability in an ACE2-dependent manner, leading to neuronal
death (Song et al., 2021). Several independent studies using
brain organoids have also shown neurotropism of SARS-CoV-2
in their brain organoid systems (Ramani et al., 2020; Yang et
al., 2020; Zhang et al., 2020). However, the results for targeted
cell types were inconsistent among different studies. Some
studies showed that SARS-CoV-2 preferably targets mature neu-
rons (Ramani et al., 2020; Song et al., 2021), whereas other
studies state that SARS-CoV-2 cannot target neuronal cell types
(Pellegrini et al., 2020) or only has minimal neuronal infection
ability (Jacob et al., 2020). Interestingly, in the brain organoids
of hippocampal-like regions, SARS-CoV-2 signals were found to
be enriched in choroid plexus epithelia-like cells and SARS-
CoV-2 entry can lead to damages for the integrity of choroid
plexus epithelium (Jacob et al., 2020; Pellegrini et al., 2020),
suggesting that barrier disruption might facilitate SARS-CoV-2
invasion into the brain.

It is worth noting that SARS-CoV-2-positive neurons in human
brain organoids exhibit mis-localization of axonal protein Tau
to the cell soma and aberrant Tau phosphorylation, a phenome-
non often seen in tauopathy-related neurodegeneration dis-
eases (Ramani et al., 2020). In accordance with positive
association between the ApoE4, a strong genetic risk factor for
Alzheimer disease, and severe COVID-19 (Kuo et al., 2020), the
ApoE4/4 neurons, astrocytes, or brain organoids exhibit in-
creased rate of SARS-CoV-2 infection (Wang et al., 2021).
These results indicate that particular attention should be paid
to the potential long-term effects of SARS-CoV-2 infection on
different patient populations, in particular the neurological and
neuropsychological morbidities.

In histological analyses of the deceased individuals with
COVID-19, SARS-CoV-2 RNA and protein were found in epithe-
lial tissues of the olfactory mucosa and defined CNS regions re-
ceiving olfactory neuronal projections (Meinhardt et al., 2021).
Notably, the SARS-CoV-2 S protein was observed in cortical
neurons of ischemic regions in brains of some cases of post-
mortem COVID-19 patients, who were diagnosed with severe
encephalopathy and multiple ischemic infarcts (Song et al.,
2021). These studies have provided direct evidence supporting
neurotropism of SARS-CoV-2 in COVID-19 patients and substan-
tiated the findings obtained in human brain organoids.

Possible mechanisms of neurological manifestations
Viral entry to the brain via the olfactory bulb is a possible route

given frequent anosmia in COVID-19 patients (Figure 1). In sup-
port of this possibility, the brain has been shown to be one of the
major organs in hACE2 transgenic mice after intranasal infection
with either SARS-CoV or SARS-CoV-2 (Tseng et al., 2007; Netland
et al, 2008; Sun et al., 2020). Notably, magnetic resonance imag-
ing analysis in a COVID-19 patient with anosmia showed a tran-
sient hyperintensity in the olfactory cortex, as well as a subtle
hyperintensity in the olfactory bulb suggestive of viral infection
(Politi et al., 2020). The presence of SARS-CoV-2 RNA and protein
in the olfactory mucosa, its neuronal projections, and several CNS
regions has provided direct evidence supporting the olfactory
route of CNS entry by SARS-CoV-2 (Meinhardt et al., 2021). The
presence of SARS-CoV-2 in defined neuroanatomical areas receiv-
ing olfactory tract projections, including the primary respiratory
and cardiovascular control center, raises the possibility of axonal
transport and/or trans-synaptic spread of virus (Meinhardt et al.,
2021; Zubair et al., 2020). The trans-synaptic spread of virus has
been demonstrated for several other types of coronaviruses, such
as HCoV-OC43 (Dubéet al., 2018).

Pathogens like viruses can enter the blood and circulate to
cerebrovascular after crossing the blood–brain barrier (BBB),
following viremia or through infected immune cells (Bohmwald
et al., 2018). Of note, remarkable percentage of the blood
specimen, varying from 1% to 22%, derived from COVID-19

patients, displayed SARS-CoV-2 RNAemia suggestive of viremia
(Huang et al., 2020a; Peng et al., 2020; Wang et al., 2020b).
The lack of detailed clinical information of patients limits the
correlation of viremia with prognosis or disease course. The
BBB formed by tight junctions consisted of endothelial cells to-
gether with surrounding pericytes and astrocytes plays a cru-
cial role in maintaining the homeostasis of the brain and
prevents pathogen invasion into the brain. Virions in the blood
can directly attach to endothelial and pericytes through viral
entry receptors for SARS-CoV-2, leading to alterations of the
tight junction. High expression of ACE2 and TMPRSS2 in peri-
cytes and endothelial cells supports this possibility (He et al.,
2020; Chen et al., 2021). The transcytosis transport across the
endothelia and pericytes by endocytic vesicles is an alternative
pathway, as that done by other neuroinvasive respiratory

Emerging neurotropic features of SARS-CoV-2 | 707



viruses (Suen et al., 2014; Bohmwald et al., 2018). The pres-
ence of SARS-CoV-2 S protein in cerebral and leptomeningeal
endothelial cells also supports the possible route of viral entry
along CNS endothelia (Meinhardt et al., 2021).

Dysregulated immune response like cytokine storm is a com-
mon phenomenon in many severe COVID-19 patients (Mehta et
al., 2020). High levels of inflammatory cytokines saturate in the
blood can cause breakdown of the BBB (Poyiadji et al., 2020;
Quirch et al., 2020), which may facilitate virion entry into the
brain (Figure 1). Furthermore, cytokines may cause damage to
the CNS by facilitating the formation of thrombosis, leading to
cerebrovascular diseases (Hoffmann et al., 2020; Figure 1). It
has been suggested that the infected immune cells can cross
the BBB via the paracellular route (Suen et al., 2014;
Bohmwald et al., 2018). Indeed, a report demonstrated that cir-
culating monocytes, B lymphocytes, and CD4

þ T lymphocytes
are the main cell types frequently detected with positive sig-
nals for SARS-CoV-2 (Pontelli et al., 2020). Interestingly, im-
mune cells with SARS-CoV-2 settled down in the lung of COVID-
19 patients (Pontelli et al., 2020), implying the ‘Trojan Horse’
invasion mechanism—infected immune cell may mediate viral
invasion into organs, including the brain. This entry strategy
has been suggested to be used by immunodeficiency virus
(HIV-1) (Albright et al., 2003; Spindler and Hsu, 2012) and

another coronavirus HCoV-229E (Desforges et al., 2007).
Further studies are needed to confirm whether SARS-CoV-2 en-
try into the brain is also via this route.

Conclusion and perspective of future study
In addition to the potential direct cytolytic effect, SARS-CoV-2

can also lead to brain dysfunction and neuronal damage
through indirect systemic effects such as secondary inflamma-
tory response (Van den Pol, 2006). In the absence of direct viral
invasion, the neurotoxicity of the cytokine storm itself may
cause damage to the CNS, such as acute necrotizing encepha-

lopathy (Ouattara et al., 2011). Besides, cytokines may also
cause brain damage by activating the thrombotic pathway
(Hoffmann et al., 2020), which may lead to ischemic stroke.

Although many reports demonstrated that SARS-CoV-2 could

cause nervous system diseases, the underlying mechanism is
not clear. The effects of SARS-CoV-2 on the CNS most likely in-
volve the direct entry of viruses into neurons, which causes
neuronal cell death, and indirect pathway through the cytokine
storm and thrombosis (Figure 1). In addition, SARS-CoV-2 may
invade the CNS through axonal transport and trans-synaptic
transfer via the olfactory nerve and through infection of peri-
cytes or endothelial cells that make up BBB or leukocytes that

Figure 1 Possible mechanism for the effects of SARS-CoV-2 on the nervous system. SARS-CoV-2 may cause damage to the nervous system
through direct or indirect pathways. The direct infection of SARS-CoV-2 into sustentacular cells and horizontal basal cells impairs the func-
tion of olfactory neurons, which leads to the loss of smell sense and may further cause brain damage. SARS-CoV-2 induces an immune re-
sponse after it enters the human body. The cytokine storm formed in the process of immune response can cause thrombosis and
destruction of the BBB, and thus indirectly cause brain damage. When the BBB is broken, SARS-CoV-2 may cross the barrier and directly in-
fect nerve cells by binding to specific receptors on nerve cells.
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pass through BBB (Zubair et al., 2020; Alquisiras-Burgos et al.,
2021; Figure 1). These possibilities can be thoroughly verified
using animal models such as hACE2 transgenic mice, which
can be used to resemble the systemic effects of the disease.

Besides ACE2, other receptors and accessary proteins have
been shown to facilitate SARS-CoV-2 entry into the cell. What
factors mediate the interaction of SARS-CoV-2 with human
brain remains to be studied systematically. Their expression
and subcellular localization in human cell types, including vari-
ous neurons, glia, and vascular cells, would be essential infor-
mation. Furthermore, CNS control of systematic functions, such
as autonomic pathways that control breathing, would help to
disentangle neurological and systematic complications. Given
the ongoing trends of COVID-19 pandemic, the long-term neuro-
logical and psychiatric sequelae of SARS-CoV-2 infection need
serious consideration and follow-up tracking studies.
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