
cells

Review

Clinical Theragnostic Relationship between
Drug-Resistance Specific miRNA Expressions,
Chemotherapeutic Resistance, and Sensitivity in Breast
Cancer: A Systematic Review and Meta-Analysis

Rama Jayaraj 1,* , Madurantakam Royam Madhav 2,† , Sankaranarayanan Gomathi Nayagam 2,† ,
Ananya Kar 2, Shubhangi Sathyakumar 2, Hina Mohammed 2, Maria Smiti 2,
Shanthi Sabarimurugan 3, Chellan Kumarasamy 4, T. Priyadharshini 5, K. M. Gothandam 1 ,
N Ramesh 1, Ajay Gupta 6, Siddhartha Baxi 7, Suja Swamiappan 5 and Sunil Krishnan 8

1 College of Health and Human Sciences, Charles Darwin University, Darwin 0810, Australia;
gothandam@gmail.com (K.M.G.); drpnramesh@gmail.com (N.R.)

2 Vellore Institute of Technology (VIT), School of Bio-Sciences and Technology, Vellore 632014, India;
madhav.sridaran@gmail.com (M.R.M.); carthysgn@gmail.com (S.G.N.); anukar97@gmail.com (A.K.);
shubhangi.sathyakumar2015@vit.ac.in (S.S.); hinam606@gmail.com (H.M.); maria.smiti2015@vit.ac.in (M.S.)

3 CHIRI, School of Pharmacy and Biomedical Research, Faculty of Health Sciences, Curtin University,
Bently campus, Western Australia; drshanthisg@gmail.com

4 North Terrace Campus, University of Adelaide, Adelaide 5005, Australia; chellank54@gmail.com
5 Department of Biochemistry, Bharathiyar University, Coimbatore, Tamil Nadu 641046, India;

santhpriya8@gmail.com (T.P.); sujaramalingam08@gmail.com (S.S.)
6 National Heart Institute, New Delhi 110065, India; oncoldr@gmail.com
7 John Flynn Private Hospital, Genesis Cancer Care, Tugun 4224, Australia;

Siddhartha.Baxi@genesiscancercare.com
8 Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson

Cancer Center, Houston, TX 77030, USA; SKrishnan@mdanderson.org
* Correspondence: Rama.Jayaraj@cdu.edu.au
† These authors have contributed equally.

Received: 26 July 2019; Accepted: 21 September 2019; Published: 14 October 2019
����������
�������

Abstract: Awareness of breast cancer has been increasing due to early detection, but the advanced
disease has limited treatment options. There has been growing evidence on the role of miRNAs
involved in regulating the resistance in several cancers. We performed a comprehensive systematic
review and meta-analysis on the role of miRNAs in influencing the chemoresistance and sensitivity
of breast cancer. A bibliographic search was performed in PubMed and Science Direct based on
the search strategy, and studies published until December 2018 were retrieved. The eligible studies
were included based on the selection criteria, and a detailed systematic review and meta-analysis
were performed based on PRISMA guidelines. A random-effects model was utilised to evaluate
the combined effect size of the obtained hazard ratio and 95% confidence intervals from the eligible
studies. Publication bias was assessed with Cochran’s Q test, I2 statistic, Orwin and Classic fail-safe
N test, Begg and Mazumdar rank correlation test, Duval and Tweedie trim and fill calculation and
the Egger’s bias indicator. A total of 4584 potential studies were screened. Of these, 85 articles
were eligible for our systematic review and meta-analysis. In the 85 studies, 188 different miRNAs
were studied, of which 96 were upregulated, 87 were downregulated and 5 were not involved in
regulation. Overall, 24 drugs were used for treatment, with doxorubicin being prominently reported
in 15 studies followed by Paclitaxel in 11 studies, and 5 drugs were used in combinations. We found
only two significant HR values from the studies (miR-125b and miR-4443) and our meta-analysis
results yielded a combined HR value of 0.748 with a 95% confidence interval of 0.508–1.100; p-value
of 0.140. In conclusion, our results suggest there are different miRNAs involved in the regulation
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of chemoresistance through diverse drug genetic targets. These biomarkers play a crucial role in
guiding the effective diagnostic and prognostic efficiency of breast cancer. The screening of miRNAs
as a theragnostic biomarker must be brought into regular practice for all diseases. We anticipate that
our study serves as a reference in framing future studies and clinical trials for utilising miRNAs and
their respective drug targets.

Keywords: miRNAs; chemoresistance; breast cancer; systematic review; meta-analysis

1. Introduction

Breast cancer is the most prevalent type of cancer in women worldwide [1]. This makes it a cause
of increasing concern, and it is important to address this issue. It was estimated that 41,070 breast
cancer deaths occurred in women during 2017 in the USA alone, making it the second-leading
cause of cancer-related death in women [1]. A large number of breast cancer patients are from
developing countries as compared to Western countries, mainly due to their increasing populations [2].
In developed countries, breast cancer is often diagnosed early and treated accordingly; developing
countries have higher death rates due to delayed diagnosis and improper access to healthcare [2].
Regardless of this, in developed countries breast cancer is second to lung cancer for cancer-related
deaths in women [2]. Asia has 44% of the world’s breast cancer deaths, with 39% of overall new breast
cancer cases diagnosed [2]. In India, breast cancer has been ranked as the foremost cancer among the
Indian female population [3]. Approximately 25% of female cancer cases in the country are breast
cancer [4,5]. The rate of incidence was found to be 25.8 in 100,000 women, and the mortality rate was
12.7 per 100,000 women (2017 statistics) [3]. The highest rate of incidence was found to be in Delhi (41 per
100,000 women) followed by Chennai (37.9 per 100,000 women), Bangalore (34.4 per 100,000 women)
and Thiruvananthapuram district (33.7 per 100,000 women) [3]. When the mortality-to-incidence ratio
was analysed, it was found to reach 66 in rural registries and 8 in urban registries [3]. Another troubling
concern about the scenario of breast cancer in India is the increased incidence of disease in younger
Indian women (between the ages of 30 and 40) [3–5]. Presently, almost 48% of breast cancer patients in
India are below 50 years of age [4,5]. There is an increasing trend of breast cancer in women between
the ages of 25 to 40 in the past 25 years [4,5].

At present, breast cancer is classified into four types: (1) Luminal A (classical hormone-positive
tumours); (2) Luminal B (hormone-positive with higher ki 67 and poorer prognosis); (3) Triple-negative
(ER/PR/HER neu negative); and (4) Her 2 neu overexpressing [6,7]. Currently, several treatments
are available for breast cancer, and these include: surgical resection [8], which is often followed by
radiotherapy [9], hormone replacement therapy (differs in pre-menopausal and post-menopausal
women) [10], targeted therapies [11], immunotherapy [12] and chemotherapeutic drugs [13]. There are
a number of chemotherapeutic drugs that are commonly in use and have distinct mechanisms of action,
such as anthracyclines (e.g., doxorubicin [14] and epirubicin [15]), taxanes (e.g., Paclitaxel [16,17],
docetaxel [16]), alkylating agents (e.g., cyclophosphamide (CTX) [18], carboplatin [17]), trastuzumab—a
monoclonal antibody targeted against Her 2 neu [17], anti-metabolites (e.g., 5-fluorouracil (5-FU)) [18],
and hormonal agents (e.g., tamoxifen, estradiol (E2), fulvestrant, anastrazole, letrozole).

Conventional chemotherapeutics for breast cancer treatment comprise cytotoxic [19],
hormonal [20], and immunotherapeutic agents [21]. Both in neoadjuvant and adjuvant instances,
the effectiveness of the chemotherapeutics is limited by resistance developed in the tumour tissue.
This is mainly due to the various genetic and epigenetic changes found in cancer cells, and the
resistance thus conferred may be intrinsic or acquired [22]. Like most other tumour cells, breast cancer
cells exhibit the phenomenon of multi-drug resistance (MDR) [23]. MDR is characterized by a
combination of mechanisms including, P-glycoprotein (P-gp) [20], multidrug-resistance-associated
protein 1 (MRP1) and breast cancer resistance protein (BCRP) of the ATP-binding cassette (ABC)
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membrane transporter family, which efflux a diverse range of anticancer drugs from the tumour
cells [23,24]. Other notable mechanisms that simultaneously contribute to MDR are enhanced
aldehyde dehydrogenase (ALDH) activity, up-regulation of anti-apoptotic B-cell lymphoma-2 (Bcl-2)
family proteins and abnormal activation of signalling pathways such as PI3K (phosphatidylinositol
3-kinase)/Akt, Notch, Hedgehog and Wnt pathways [25–27]. These mechanisms are predominantly
showcased in CSCs (cancer stem cells).

The recent surge in the number of cancer cases along with the development of drug resistance
in a large number of tumours has pushed the direction of cancer research towards new arenas
that provide the grounds for the development of more effective personalised medicine treatment.
MicroRNAs (miRNAs) pave the way for this by being potential biomarkers for early cancer detection,
and could also help in designing a more specific treatment plan by helping in the analysis of drug
resistance and sensitivity [28]. Various studies have been conducted highlighting the effect of miRNAs
in chemotherapeutic resistance in cancers such as gastric cancer [29], breast cancer [30], cervical
cancer [31], colorectal cancer [32], lung cancer [33], oral cancer [34], ovarian cancer [35], pancreatic
cancer [36], prostate cancer [37] and skin cancer [38].

In one study it was found that there was increased resistance to docetaxel in breast cancer
tissues having decreased expression of miR-638, and the restoration of miR-638 in these tissues led to
apoptosis and enhanced sensitivity to docetaxel [39]. Microarray miRNA expression analysis in OHT
(4-hydroxytamoxifen) showed the overexpression of eight miRNA genes, namely, miR-221, miR-222,
miR-181, miR-203, miR-375, miR-32, miR-171, and miR-213, as compared to regular MCF-7 cell line
conferring resistance [40]. Furthermore, seven miRNAs were under-expressed in OHT cells: miR-342,
miR-484, miR-21, miR-24, miR-27, miR-23 and miR-200. miR-221 and miR-222 were also found to be
up-regulated in HER2/neu-positive primary human breast cancer cells [40].

When an MCF7 (Michigan Cancer Foundation-7 cell line treated with VP-16 (etoposide) was
compared with the untreated parent MCF7 cell line, it was observed that 17 miRNAs had abnormal
levels of expression; the majority of them were up-regulated, whereas miR-326, miR-429, miR-187,
miR-7, and miR-92-2 showed decreased expression [41]. The results were verified by RT-PCR, and it was
concluded that these miRNAs could be specific regulators of MRP1 (multidrug-resistance-associated
protein) and play a critical role in MDR (multiple drug resistance) [41].

A clinical study comparing the effects of the drug tamoxifen versus tamoxifen plus breast
radiotherapy, carried out on 71 lymph-node-negative (LNN) breast cancer patients, revealed that the
up-regulation of miRNA-301 in co-operation with SKA2 (spindle kinetochore-associated complex
subunit 2) increased proliferation, migration, invasion and tumour formation through the regulation
of key signalling pathways including PTEN, FOXF2 and Col2A1 [42]. According to another study,
high levels of miRNA-210 expression in plasma was observed to be associated with trastuzumab
resistance in HER-2 (human epidermal growth factor receptor 2)-positive breast cancer patients [43].
Xiang Ao and his colleagues examined 55 pairs of breast cancer tissues and adjacent normal tissues in
total, and found that resistance to taxol in breast cancer patients increased with the loss of miRNA-17
and miRNA-20b, by the up-regulation of nuclear receptor co-activator 3 (NCOA3) levels [44].

Over the years, several studies have focused on the role of various miRNAs in the chemotherapeutic
resistance or sensitivity in breast cancer. However, none of these studies have been able to conclusively
define the exact mechanism by which these miRNAs are involved in chemo-sensitivity/resistance.
Through this study, we aim to provide insight into the association of the expression of specific miRNAs
with breast-cancer-related chemotherapeutic drug resistance and sensitivity, thereby making it relevant
in a clinical setting. Further, this study paves the way to devise new treatment strategies targeting
these miRNAs, and developing alternate ways to counter the occurrence of chemo-resistance in breast
cancer. This study was carried out with the aid of tools including meta-analysis and systematic review.
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2. Methods

To obtain studies to perform the meta-analysis, two databases were extensively used: PubMed
and Science Direct. This systematic review required articles related to the chemotherapeutic resistance
specific to miRNA in breast cancer. To obtain relevant papers, the selection was performed using of the
following MeSH (Medical Subject Heading) terms: “miRNA” or “microRNA”, “drug resistance” and
“breast cancer”. To further refine the process of selection, only papers published within 2012–2018
were selected. This systematic review and meta-analysis study adheres to the Preferred Reporting
Items for Systematic Review and Meta-Analysis (PRISMA) guidelines [45].

The study search ended on (31 December 2018). After the initial screening process, additional
studies were obtained via the reference section of relevant articles. The relevance of articles was
determined by reading the title and abstract followed by the analysis of the complete text. The search
was conducted in an orderly and elaborate manner, and was designed to meet the requirements of
the study.

2.1. Selection Criteria

Studies that were to be used in the systematic review and meta-analysis had to adhere to
certain selection criteria. These criteria were of two types: inclusion criteria and exclusion criteria.
The inclusion criteria set the guidelines for the studies that could be included in the analysis process
and included the following factors:

1. An analysis of the association between miRNA and breast cancer;
2. Studies with both breast cancer patients as well as in vitro studies with cell lines;
3. Studies that focused on cancer tissues that had resistance to some form of therapy;
4. Reporting of miRNA profiling platforms;
5. Information about the genes or pathways involved in chemotherapeutic resistance or sensitivity;
6. Inclusion of some in vitro assays to analyse the expression of miRNA or gene-related studies.

Some studies were not considered because of certain exclusion criteria. These included studies that
were not in the English language, did not involve drug resistance in breast cancer, studies involving
microbes and those focusing only on long non-coding (lnc) RNA. Additionally, review articles,
editorials and studies with only in vitro or only breast cancer patient samples were excluded.

2.2. Data Analysis

The studies were evaluated separately by both authors (RJ and MRM), and further elaboration
was performed with the help of corresponding authors. All articles were subject to the exclusion and
inclusion criteria. An MS Excel worksheet (Master) was used to structurally store all the information
obtained from the studies that qualified for final inclusion. After a complete survey of full-text and
supplementary material, the data from all the studies were broken down under the following important
headings: First author, Year of publication, Patients information, Location of the study, Ethnicity,
Gender, Drug used, Clinical stages, Number of samples, Lymph node metastasis, Cell lines used,
miRNA(s) involved, miRNA profiling platform and Drug pathways or gene associated. A number of
biochemical and molecular assays were used to qualitatively and quantitatively analyse the miRNA
expression in various studies. The frequency of their usage in all studies were compared and duly
represented in a graphical form.

For further qualification of the studies, they had to pass a set of criteria that ensured a degree of
quality control [46–48]. Two of the authors (RJ and MRM) critically assessed the quality of eligible
articles for epidemiological studies based on some checklists derived from Dutch Cochrane Centre
represented by Meta-analysis Of Observational Studies in Epidemiology (MOOSE) [49]. The studies
that were finally selected had to meet all the criteria as determined by the authors. This process of
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sorting all the information obtained was a step that was crucial to ensure efficient examination of
the studies.

2.3. Publication Bias

On the basis of a few distinct methods, two of the authors (RJ and MRM) individually assessed
the risk of bias [50–54]. This included the number of patients, year of publication, study period,
study location and diagnostic procedure. With the information obtained from the eligible studies,
the reviewers arrived at a decision [55–59]. Egger’s and Begg’s bias indicator tests were employed to
infer the publication bias along with the inverted funnel plot [60–63]. The effect size of statistically
non-significant, unpublished and small studies was addressed using classic [64] and Orwin [65] fail-safe
N tests. Duval and Tweedie’s trim and fill calculation was also performed to compute the new size
effect, after the removal of an extremely positive and small study, until a symmetric funnel plot was
obtained [66]. A third reviewer was consulted to resolve any disagreement regarding the decision of
the team.

2.4. Statistical Analysis

We used the Comprehensive Meta-Analysis (CMA) 3.0 software for the meta-analysis and
calculated the hazard ratios (HRs) with 95% confidence intervals (CIs). Cochran’s Q test and Higgins’
I2 statistic [67] were used to obtain the heterogeneity, and statistical significance was defined as a
p-value less than 0.01. A fixed-effect model [67] or random-effects model [68] was used to calculate
95% CI in cases where significant heterogeneity was not observed. The overall standard deviation (SD)
of each sample from the main sample was calculated using the statistical Z-test.

3. Results

The eligible studies for our systematic review and meta-analysis through search results identified
are shown in the form of the flow chart in Figure 1. Of the 4584 potential studies, 600 were screened
for further proceeding and 92 articles were analysed in depth. Finally, 85 studies were found to be
confined to the inclusion and exclusion criteria and the eligible studies involved 5159 tissues. The main
characteristics of the patients are represented in Table 1. The systematically reviewed articles met all
the criteria, and of the 85 articles included only 6 had hazard ratios and 95% confidence intervals and
among these 3 articles denoted them directly in the article and 3 were extracted from Kaplan–Meier
curves through online software. Between the 85 articles published, 57 were from China, 9 were from the
USA, 5 were from Japan, 3 were from India, 2 each were from France, Italy and Taiwan, and there was
1 from each of Argentina, Canada, Finland, South Korea and Spain. Thirty studies used frozen tissues
samples, 15 studies used formalin fixed paraffin embedded (FFPE) samples, 6 studies used core needle
biopsy and 1 used blood sample. Meanwhile, 33 studies did not mention the type of material used.
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Figure 1. Flowchart of our literature search. Figure 1. Flowchart of our literature search.
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Table 1. Main characteristics of the included studies.

Author Ethnicity
(Patient) Period of Study Drug(s) Clinical

Stages
No. of Samples
(Cancer/Normal) miRNA miRNA Profiling Platform

Total stages I II III IV

Lin X et al.
(2017) [69] Chinese 2001 to 2006 and

2015 docetaxel 2 stages (I–II
and III) 74 4 60 0 138/83 34a

GeneSpring GX
(Agilent Technologies, Capital

Biochip Corporation)

Zhao G et al.
(2017) [39] Chinese January 2012 to

November 2015 docetaxel NM NM NM NM NM 78/78 638 qRT-PCR- SYBR Premix ExTaqTM
(Takara, USA)

Nakano M et al.
(2017) [70] Japanese NM methotrexate 3 stages (I,

I–II, II, II–III) 1 21 1 NM 19/19 25-3p and 125a-3p Mx3000P (Stratagene,
La Jolla, CA)

Miao Y et al.
(2017) [71] Chinese January 2014 to

March 2016 doxorubicin NM NM NM NM NM 29/29 130b SYBR Green qRT-PCR master mix
(TaKaRa, Otsu, Shiga, Japan)

Chen M-J et al.
(2017) [72] Taiwanese NM tamoxifen NM NM NM NM NM 36a 148a, 152

ABI 7900 and SYBR®Select
Master Mix

(Applied Biosystems).

Yang F et al.
(2017) [73] Chinese 2012–2015 docetaxel NM NM NM NM NM 24/24 346 ABI 7300 real-time PCR machine

(Applied Biosystems, USA)

Gong J-P et al.
(2016) [74] Chinese July 2010 to

June 2014 Paclitaxel NM NM NM NM NM 40a 24
TaqMan™MicroRNA Assays
(Applied Biosystems; Thermo

Fisher Scientific, Inc.)

Ao X et al.
(2016) [44] Chinese 2009–2011 taxol 3 stages (II, III

and III-IV) 0 12 18 25 55/55 17 and 20b SYBR on the CFX96 system
(Bio-Rad).

Zhu J et al.
(2016) [75] Chinese 2005–2009 tamoxifen 3 stages (II, III

and III–IV) 0 8 22 22 73/19 27b-3p SYBR on the CFX96 system
(Bio-Rad)

Chen X et al.
(2016) [76] Chinese January 2010 to

February 2015
docetaxel, epirubicin

and vinorelbine NM NM NM NM NM 55/26

29a, 34a, 90b, 130a, 138,
139, 140, 149, 197, 200b,

210, 222, 423, 452, 574, 671,
744, 1246, 1268a, 3178,
3613, 4258, 4298, 4644,
6780b, 7107 and 7847

SYBR®Advantage®qPCR
Premix, Light cycler system

(Roche, Australia)

Damiano V et al.
[77] Italian 2000–2010

anthracycline,
anthracycline +

taxane and CMF

2 stages
(I–II and III) 2 48 0 51a 200c

TaqMan normalizer
(Applied Biosystems,

ThermoFisher Scientific)

Jana S et al.
(2016) [78] Indian NM NM NM NM NM NM NM 35/35 216b SYBR green detection system

Wang D et al.
(2016) [79] Chinese 2010–2015 doxorubicin NM NM NM NM NM 21a 222 SYBR Premix Ex Taq system

(Roche, Australia)
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Table 1. Cont.

Author Ethnicity
(Patient) Period of Study Drug(s) Clinical

Stages
No. of Samples
(Cancer/Normal) miRNA miRNA Profiling Platform

Total stages I II III IV

Xu X et al.
(2016) [80] NM 2011–2014 docetaxel NM NM NM NM NM 37/37 125a-3p SYBR Premix ExTaqTM

(Takara, USA)

Chen X et al.
(2016) [81] Chinese January 2010 to

February 2015 epirubicin 3 stages
(I, II and III) 10 32 4 0 76a 4443

MiR-X miRNA qRT-PCR SYBR
Kit (638314; Clontech
Laboratories, USA)

Gao M et al.
(2016) [82] Chinese NM doxorubicin NM NM NM NM NM 55/21 145

NCode VILO miRNA cDNA
Synthesis Kit and the EXPRESS

SYBR GreenER miRNA qRT-PCR
Kit, respectively (Invitrogen,

Carlsbad, CA, USA)

Thakur S et al.
(2016) [83] Indian NM NM 2 stages (I–II

and III–IV) 47 38 100/100 21, 145, 195, 210, 221 and
Let-7a

TaqMan Universal Master Mix kit
(Applied Biosystems, USA)

Hu Y et al.
(2016) [84] Chinese June 2014 to June

2015

docetaxel,
doxorubicin and

cyclophosphamide

3 stages (II, III
and III–IV) 0 7 19 4 30a 205 TaqMan assays

(Life Technologies)

Sha L-Y et al.
(2016) [85] Chinese NM epirubicin plus

Paclitaxel NM NM NM NM NM 20/20 18a TaqMan MicroRNA Assay Kit
(Applied Biosystems)

Chen X et al.
(2016) [86] Chinese 2008–2013 doxorubicin 4 stages (I, II,

III and IV) 37 64 12 3 114/114 489 SYBR Primescript miRNA RT
PCR Kit (TaKaRa, Dalian, China)

Venturutti L
et al. (2016) [87] Argentinians 2008–2014 trastuzumab and

lapatinib
4 stages (I, II,

III and IV) 5 9 3 2 19a 16 TaqMan®MicroRNA assay
(Ambion)

Gu X et al.
(2016) [88] Chinese January 2010 to

December 2013
epirubicin and

docetaxel
2 stages

(II and III) NM NM NM NM 82/60 451

miScript SYBR Green PCR Kit
(QIAGEN, Hilden, Germany) and

a real-time LightCycler PCR
(Roche Molecular Biochemicals,

Mannheim, Germany)

Zhong S et al.
(2016) [89] Chinese January 2010 to

February 2015
docetaxel, epirubicin

and vinorelbine
3 stages

(I, II and III) 6 8 9 0 23a

138-5p, 139-5p, 140-3p,
149-3p, 197-3p, 210-3p,
423-5p, 574-3p, 744-5p,
1246, 1268a, 3178, 4258,

4298, 4443, 4644, 6780b-3p,
7107-5p and 7847-3p

Affymetrix GeneChip miRNA
4.0 Array

Zhang B et al.
(2015) [90] Chinese NM Paclitaxel NM NM NM NM NM 36/36 100

Realplex Real-time PCR
Detection System

(Eppendorf, Beijing, China)
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Table 1. Cont.

Author Ethnicity
(Patient) Period of Study Drug(s) Clinical

Stages
No. of Samples
(Cancer/Normal) miRNA miRNA Profiling Platform

Total stages I II III IV

Shen R et al.
(2015) [91] Chinese

Between January
2006 to December

2011
tamoxifen NM NM NM NM NM 18a 155

SYBR Green PCR master mix
(TaKaRa) on the ABI

7500HT System

Yu X et al.
(2015) [92] Chinese NM tamoxifen and

fulvestrant NM NM NM NM NM 20/20 214 MiScript SYBR Green PCR kit
(Qiagen)

Zhou S et al.
(2015) [93] Chinese March 2014 to

June 2015 cisplatin NM NM NM NM NM 40/40 27a FastStart Universal STBR Green
Master (Roche, Switzerland)

Zheng Y et al.
(2015) [94] Chinese NM doxorubicin NM NM NM NM NM 30/30 181b TaqMan MicroRNA assays kit

(Applied Biosystems, USA)

Ye Z et al. (2015)
[95] Chinese NM cisplatin NM NM NM NM NM 85/85 221 SYBR Green (Takara)

Mattos-Arruda
L-D et al. (2015)

[96]
Spaniards 2005–2011

trastuzumab,
anthracyclines,

taxanes
NM NM NM NM NM 85a 21 LightCycler 480 Real-Time PCR

System (Roche)

Lu L et al.
(2015) [97] Chinese Not mentioned

doxorubicin,
cyclophosphamide

and fluorouracil

2 stages
(II–III) NM NM NM NM 40a 134 SYBR PrimeScript miRNA

RT-PCR Kit (Takara, Japan)

Zhang H-d et al.
(2015) [98] Chinese 2012–2015 docetaxel 2 stages

(I–II and III) 18 17 0 35a 139

TaqMan MicroRNA Assay Kit
(assay ID: miR-139-5p: 002289,
and RNU6B: 001093), (Applied
Biosystems, Life Technologies)

He H et al.
(2015) [99] Chinese October 2012 to

January 2015 cisplatin NM NM NM NM NM 70/70 944

ABI PRISM 7900 Sequence
Detection System (Applied

Biosystems) with SYBR Green
(TaKaRa, Japan)

Ikeda K et al.
(2015) [100] Japanese Not mentioned tamoxifen NM NM NM NM NM 40/16 378a-3p TaqMan microRNA assays

(Applied Biosystems, CA, USA)

Wu J et al.
(2015) [101] Chinese

January 2005 to
December 2006 before therapy NM NM NM NM NM 39a

Let7a
Real-time quantitative reverse
transcription PCR (qRT-PCR)January 2008 to

December 2009 epirubicin NM NM NM NM NM 31a
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Table 1. Cont.

Author Ethnicity
(Patient) Period of Study Drug(s) Clinical

Stages
No. of Samples
(Cancer/Normal) miRNA miRNA Profiling Platform

Total stages I II III IV

Takahashi R
et al. (2015)

[102]
Japanese 1996–2000 docetaxel 1 stage (II–III) NM 26 NM 26/9 27b TaqMan MicroRNA Assays

(Applied Biosystems)

Niu J et al.
(2015) [103] Chinese 1 January 2009 to

31 December 2010 doxorubicin 2 stages (I–II
and III–IV) 49 13 62a 181a MyiQ Real-Time PCR Detection

System (Bio-Rad)

Su C-M et al.
(2015) [104] Taiwanese NM Paclitaxel 2 stages

(I and I–II) 36 110 NM NM 146a 520h Applied Biosystems 7900 Fast
Real-Time PCR

Boulbes D et al.
(2015) [105] American NM

trastuzumab,
fluorouracil,

epirubicin and
cyclophosphamide

NM NM NM NM NM 50a has-520b-5p, 532-3p, 548n
and 34a-3p

miRNA microarray (version 4.0,
microRNACHIPv4)

Manvati S et al.
(2015) [106] Indian NM docetaxel 3 stages

(I, II and III) NM NM NM NM 46/46 24-2 TaqMan microRNA assays
(Applied Biosystems)

Kang L et al.
(2015) [107] Chinese NM Paclitaxel 4 stages (I, II,

III and IV) 11 18 12 4 45a 34a
TaqMan MicroRNA Assay kit

(Applied Biosystems, Foster City,
CA, USA)

Lu M et al.
(2015) [108] Chinese 2009–2010 tamoxifen NM NM NM NM NM 31/27 320a

Applied Biosystems Step One
real-time PCR system using an

SYBR Premix Ex Taq II Kit
(Takara Bio, Inc., Shiga, Japan)

Ye F-G et al.
(2015) [109] Chinese September 2013 gemcitabine 3 stages

(I, II and III) 159 32 NM 400/243 484 SYBR Premix Ex Taq System
(TaKaRa)

Vilquin P et al.
(2015) [110] French NM

letrozole, anastrazole,
tamoxifen and

fulvestrant

3 stages
(I, II and III) 4 18 23 0 65/65 125b

ExiLENT SYBR Green Master Mix
and CFX96 (BioRad,

Marne-laCoquette, France)

Ujihira T et al.
(2015) [111] Japanese NM tamoxifen NM NM NM NM NM 19a 574-3p

triplicate TaqMan microRNA
assays (Applied Biosystems,

CA, USA)

Cui J et al.
(2014) [112] Chinese NM tamoxifen NM NM NM NM NM NM 873

RNeasy Mini kit (Qiagen, Hilden,
Germany) or TRIzol (Invitrogen)
reagent. SYBR Green PCR Master
Mix reagents using an ABI Prism
7700 Sequence Detection System
(Applied Biosystems, Foster City,

CA, USA)
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Table 1. Cont.

Author Ethnicity
(Patient) Period of Study Drug(s) Clinical

Stages
No. of Samples
(Cancer/Normal) miRNA miRNA Profiling Platform

Total stages I II III IV

Lv J et al. (2014)
[113] Chinese 2008–2009 doxorubicin NM NM NM NM NM NM

31, 125b-1, 141, 145, 196b,
200a, 200c, 370, 429,

491-3p, 576, 760, 765 and
Let-7a

ABI 7900 PCR System (Applied
Biosystems, USA) using Power

SYBR Green PCR Master Mix (2X,
Applied Biosystems)

He X et al.
(2014) [114] Chinese NM cisplatin 4 stages (I, II,

III and IV)
15 +
17

15 +
17 30 + 23 30 + 23 85a 218

TRIzol reagent (Invitrogen)
miRNA microarray chip (v.10.0,

Exiqon, Vedbaek, Denmark)

Winsel S et al.
(2014) [115] Norwegians May 1995 to

December 1998 taxol NM NM NM NM NM 101a 378a-3p

RNeasy Mini Kit (Qiagen)
TaqMan Universal Master Mix II,

no PNG (Applied Biosystems,
Foster City, CA, USA)

Hu J et al.
(2014) [116] Chinese NM NM 4 stages (I, II,

III and IV) 20 25 31 4 119a 93
TRIzol Reagent (Invitrogen) and

the miRNeasy Mini Kit
(QIAGEN)

He DX et al.
(2014) [117] Chinese NM doxorubicin,

Paclitaxel NM NM NM NM NM NM 320a
All-in-One miRNA qRT-PCR
detection kit (GeneCopoeia,

Rockville, MD, USA)

He DX et al.
(2014) [118] Chinese NM doxorubicin,

Paclitaxel NM NM NM NM NM NM 149

All-in-One miRNA qRT-PCR
detection kit (GeneCopoeia,

Rockville, MD, USA). Briefly,
total RNA was extracted from

MCF-7/WT and ADM cells with
TRIzol (Invitrogen, Carlsbad,

CA, USA)

Ouyang M et al.
(2014) [119] Chinese 2011

(January–October) doxorubicin NM NM NM NM NM NM

10b-5p, 21-3p, 31-5p,
125b-3p, 130a-3p, 155-5p,
181a-5p, 181b-5p, 183-5p,

195-5p and 451a

Total RNA was harvested using
TRIzol (Invitrogen) and

miRNAeasy mini kit (QIAGEN).
SYBR Premix EX TaqTM II kit

(Takara, Dalian, China)

Luo ML et al.
(2014) [120] Chinese NM PiB NM NM NM NM NM NM 200

Total RNA was isolated from
miRNeasy kit (Qiagen) and

reversely transcribed by miScript
PCR starter kit
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Table 1. Cont.

Author Ethnicity
(Patient) Period of Study Drug(s) Clinical

Stages
No. of Samples
(Cancer/Normal) miRNA miRNA Profiling Platform

Total stages I II III IV

Jiang L et al.
(2014) [121] Chinese NM doxorubicin NM NM NM NM NM NM 489

Total RNA was prepared using
TRIzol (Beyotime, China)

according to the manufacturer’s
instructions.

Ye XM et al.
(2014) [122] Chinese NM trastuzumab/Herceptin NM NM NM NM NM NM 375

Total RNA was extracted from
each cell line using TRIzol
reagent (Invitrogen, USA)

Zhu Y et al.
(2013) [123] Chinese NM doxorubicin 2 stages

(I and II) 34 9 NM NM 43a 181a
Total RNA was extracted from

each cell line using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA)

Ye X et al. (2014)
[122] Chinese NM trastuzumab NM NM NM NM NM NM 221

Total RNA from each cell line was
extracted by TRIzol reagent

(Invitrogen, USA)

Yang G et al.
(2013) [124] Chinese NM doxorubicin 2 stages

(I and II) 9 8 NM NM 30a 195

Total cellular RNA from tissues
and cultured cells were isolated

using a TRIzol Reagent
(Invitrogen)

Pichiorri F et al.
(2013) [125] Americans NM fulvestrant NM NM NM NM NM 183/57 21, 103, 221 and 222

TaqMan PCR kit (Applied
Biosystems) and 7900HT

Sequence Detection System
(Applied Biosystems)

Wang H-J et al.
(2013) [126] Chinese January 2010 to

December 2011

Paclitaxel, 5-FU,
epirubicin and

cyclophosphamide
NM NM NM NM NM 19/19 125b ABI 7900HT system

(Applied Biosystems)

Ji S et al. (2013)
[127] Chinese 2007–2009 taxol + doxorubicin +

cyclophosphamide NM NM NM NM NM 67/67 128 QRT-PCR

Hu H et al.
(2013) [128] Chinese October 2003 to

July 2010

topotecan, etoposide,
doxorubicin,

docetaxel and
cyclophosphamide

NM NM NM NM NM 39/39 663 Conventional TaqMan PCR
(Bio-Rad)

Masuda M et al.
(2011) [129] Japanese NM estradiol (E2) NM NM NM NM NM 41a 7

PCR was performed in ABI7500
Real-Time PCR System (Applied
Biosystems, Foster city, CA, USA)
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Table 1. Cont.

Author Ethnicity
(Patient) Period of Study Drug(s) Clinical

Stages
No. of Samples
(Cancer/Normal) miRNA miRNA Profiling Platform

Total stages I II III IV

Li X et al. (2012)
[130] Chinese 2008–2010

doxorubicin,
cyclophosphamide

(CTX) and
5-fluorouracil (5-FU)

1 stage (II) 0 38 0 0 38/38 34a
SYBR Green PCR Master Mix

(Applied Biosystems, Foster City,
CA, USA)

Lv K et al.
(2012) [131] Chinese 2002–2010 Paclitaxel, vincristine NM NM NM NM NM 9/9 Lin28

Real-time PCR was performed
using the TaqMan MicroRNA

Reverse Transcription Kit and the
Fast Real-Time PCR System

(Applied Biosystems, Carlsbad,
CA, USA)

Wang H et al.
(2012) [132] Chinese 2009–2010 5-FU (5-fluorouracil) 2 stages

(II and III) 0 35 21 0 56/10 10b, 34a, 125b and 155
miRNA-specific TaqMan

MicroRNA Assays
(Applied Biosystems)

Jung E-J et al.
(2012) [43]

Americans,
Koreans NM

trastuzumab,
Paclitaxel,

fluorouracil,
cyclophosphamide

and epirubicin

3 stages
(I, II and III) 33 31 8 0 72/72 21, 29a, 126 and 210

TaqMan MicroRNA Assay kit
(Applied Biosystems,

Foster City, Calif)

Chen J et al.
(2011) [133] Chinese 2007–2011 doxorubicin NM NM NM NM NM 39a 200c

Real-time PCR was performed
using SYBR Green PCR Master
Mix (Applied Biosystems, USA)

on the Stepone plus system
(Applied Biosystems, USA)

Zhu Y et al.
(2011) [134] Chinese 2004–2011 NM 3 stages

(II, III and IV) NM 44 29 4 77a 128

Mature miRNA expression
analysis was conducted using
a TaqMan MicroRNA Assays

(Applied Biosystems)

Zhao Y et al.
(2011) [135] NM NM tamoxifen NM NM NM NM NM 29/15 Let-7

mirVana miRNA isolation kit
(Ambion Inc., Austin, TX, USA)
or from FFPE tissues using the
miRNeasy FFPE Kit (Qiagen,

Valencia, CA, USA)

Gong C et al.
(2011) [136] Chinese 2008–2009 trastuzumab

(Herceptin) NM NM NM NM NM 32a 21

Total RNA was harvested using
TRIzol (Invitrogen) and the

RNeasy minikit (Qiagen)
according to the manufacturer’s

instructions.
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Table 1. Cont.
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(Patient) Period of Study Drug(s) Clinical

Stages
No. of Samples
(Cancer/Normal) miRNA miRNA Profiling Platform

Total stages I II III IV

Shi W et al.
(2011) [42] NM NM NM 3 stages

(I, II and III) 8 33 30 NM 71a 301 Standard TaqMan MicroRNA
Assay (Applied Biosystems)

Cittelly D et al.
(2010) [137] Americans 1978–1993 tamoxifen 3 stages

(I, II and III) 72 346 322 NM 791a 342 miRVANA RNA Isolation System
(Ambion)

Liang Z et al.
(2010) [41] Americans NM VP-16, mitoxantrone 3 stages

(I, III and IV) 5 NM 10 (III
and IV)

10 (III
and IV) 35a 326

Total RNA was extracted from
70% to 85% confluence of MCF-7
and MCF-7/VP cells with TRIzol
(Invitrogen, Carlsbad, CA, USA)

Maillot G et al.
(2009) [138] NM NM tamoxifen 2 stages

(III and IV) NM NM 5 10 15a 21, 23b, 26a, 26b, 27b,
181a, 181b and 200c

miRNA microarray analysis was
performed as described by

Castoldi and colleagues

Iorio M et al.
(2009) [139] Italians NM NM NM NM NM NM NM NM 205

TaqMan MicroRNA Reverse
Transcription kit and TaqMan

MicroRNA Assay were used to
detect and quantify mature

microRNA-205
(Applied Biosystems)

Miller T et al.
(2008) [40] Americans NM tamoxifen NM NM NM NM NM 76a 221 and 222

The miRNA microarray was
performed at the Ohio State
University Comprehensive
Cancer Center Microarray

Core Facility

Yu F et al. (2007)
[140] Chinese NM epirubicin NM NM NM NM NM 25a Let-7 NM

Li G et al. (2016)
[141] Chinese 2001–2002 tamoxifen NM NM NM NM NM 57/57 1254

mirVana miRNA isolation kit
(Ambion) using stem-loop RT

primers and analysed by qPCR
(TaqMan, TaKaRa)

Yu S-J et al.
(2018) [142] Chinese 2003–2009 Paclitaxel and

carboplatin
2 stages

(II and III) NM 28 44 NM 110/110 200a-5p 7900HT Fast Real-Time PCR
System (Applied Biosystems)

Lee J-W et al.
(2017) [143]

South
Korean NM doxorubicin 2 stages (I–II

and III–IV) 28 NM 21 NM 50/50 708-3p
High-Capacity cDNA Reverse

Transcription Kit
(Life Technologies)
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(Patient) Period of Study Drug(s) Clinical

Stages
No. of Samples
(Cancer/Normal) miRNA miRNA Profiling Platform

Total stages I II III IV

Si W et al.
(2018) [144] Chinese NM Paclitaxel 3 stages

(I, II and III) 15 38 53 0 106/106 20a SYBR Premix Ex Taq
(TaKaRa, RR420A)

Cheng S et al.
(2018) [145] Chinese NM cisplatin and

doxorubicin NM NM NM NM NM 57/31 137
ABI Prism 7900HT thermal cycler
(Applied Biosystems, Foster City,

CA, USA)

Hu G et al.
(2018) [146] Chinese August 2013 to

December 2015 doxorubicin NM NM NM NM NM 30a 125b
ABI PRISM 7900 Sequence

Detection system
(Applied Biosystems)

NM: Not Mentioned; a: only cancer tissue; CMF: Cyclophosphamide, Methotrexate, Fluorouracil.



Cells 2019, 8, 1250 16 of 31

A total of 22 cell lines were used in the 85 studies, and MCF-7, SKBR3, T47D and MDA-MB-231
cell lines were the most frequently included, with MCF-7 used in 33 studies. Zhao Y et al. (2011) used
the highest number of cell lines in a single study [135].

Overall, 188 miRNAs were studied in our systematic review and meta-analysis, conjointly 96
miRNAs were upregulated and 87 miRNAs were downregulated. Elevated expression of miR- 18a,
21, 21-3p, 29a, 31, 34a, 34c-5p, 124, 125b, 130b, 137, 138, 138-5p, 139, 139-5p, 140, 140-3p, 141, 149,
149-3p, 155-5p, 181a-5p, 181b, 181b-5p, 181d, 183-5p, 197, 197-3p, 200a-5p, 200c, 205, 210, 210-3p,
221, 222, 378a-3p, 423, 423-5p, 520h, 574, 574-3p, 663, 671, 671-5p, 744, 744-5p, 944, 1246, 1268a, 3178,
3613, 3613-5p, 4258, 4298, 4438, 4443, 4644, 6780b, 6780b-3p, 7107, 7107-5p, 7847, 7847-3p, Let-7a and
Lin28 and redundant expression of miR-7, 10b-5p, 17, 20a, 20b, 21, 24-2, 25, 25-3p, 27b, 31-5p, 34a-3p,
103, 125a-3p, 125, 125b-5p, 128, 134, 145, 148a, 149, 181a, 191, 195, 195-5p, 200c, 210, 221, 222, 301a,
320a, 375, 424, 451, 489, 520b-5p, 532-3p, 548n, 574-3p, 708-3p, 873 and Let7a were associated with
chemotherapeutic resistance and increased expression of miR- 16, 27a, 34a, 128, 148a, 152, 155, 210, 221,
346, 484 and Let-7 and reduced expression of miR- 21, 24, 23b, 26a, 26b, 27b, 27b-3p, 34a, 100, 125a-3p,
125b-1, 130a-3p, 139, 145, 181a, 181b, 195, 200, 200c, 205, 214, 216b, 218, 301, 320a, 326, 342, 370, 378a-3p,
451a, 489, 576-3p, 638, 760, 765, 1254, Let-7 and Let-7a were associated with chemosensitivity.

Five miRNAs were differentially regulated and four miRNAs (i.e., miR- 90b, 130a, 200b and
452) contributed to chemoresistance. miR-491-3p did not have any impact on chemoresistance or
sensitivity. Chemotherapeutic resistance and chemosensitivity were boosted by the miRNAs through
drug-regulated cellular pathways. In total, 26 drugs were studied in the included articles: 5-FU,
anastrozole, cisplatin, cyclophosphamide, docetaxel, doxorubicin, E2, epirubicin, etoposide, fulvestrant,
gemcitabine, lapatinib, letrozole, methotrexate, mitoxantrone, Paclitaxel, PiB, tamoxifen, topotecan,
trastuzumab, vinorelbine and combinations such as cisplatin plus doxorubicin, epirubicin plus
Paclitaxel, Paclitaxel plus carboplatin, taxol plus doxorubicin plus Cyclophosphamide, Methotrexate,
Fluorouracil (CMF), and anthracycline plus taxane were studied, and radiotherapy was also observed
in one study.

miRNA Pathway Relation

The miRNA and pathways involved in chemoresistance and chemosensitivity are represented in
Tables 2 and 3, respectively.
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Table 2. Pathways involved in chemoresistance.

Downregulated Upregulated

Drug miRNA Gene/Pathway Drug miRNA Gene/Pathway

5-FU 134 ABCC1 5-FU 125b EMT

anastrozole 424 Akt/mTOR pathway 5-FU 125b Transcription factor E2F3

anthracycline 200c ZEB1 anthracycline 21 IL-6/STAT3/NF-κB/PI3K pathway.

anthracycline + taxane 200c ZEB1 cisplatin 944 Bcl2/BNIP3

CMF 200c ZEB1 cisplatin and doxorubicin 137 FSTL1/integrin β3/Wnt

CTX 134 ABCC1 CTX 125b EMT

docetaxel 451 NM CTX 663 HSPG2

docetaxel 24-2 YWHAZ, TP53, SMAD3, ESR1 and CREBBP docetaxel 663 HSPG2

doxorubicin 145 MRP1 doxorubicin 130b PTEN/PI3K/Akt

doxorubicin 320a TRPC5, NFATC3 and ETS-1 gene doxorubicin 222 PTEN/Akt/cyclin-dependent kinase (p27) pathway

doxorubicin 149 GlcNAc-NDST1 doxorubicin 181b MMP/caspase pathway

doxorubicin 103 NCL doxorubicin 663 HSPG2

doxorubicin 222 NCL doxorubicin 31 MAPK signalling pathway, cytokine–cytokine
receptor interaction

doxorubicin 134 ABCC1 doxorubicin 141 MAPK signalling pathway, cytokine–cytokine
receptor interaction

doxorubicin 181a STAT3/NF-kB/MSK1 doxorubicin 200c MAPK signalling pathway, cytokine–cytokine
receptor interaction

doxorubicin 10b-5p PTEN/Akt, MAPK, RhoA, FOXO3 and PDCD4 genes doxorubicin 181b-5p PTEN/Akt, MAPK, RhoA, FOXO3 and PDCD4 genes

doxorubicin 125b-3p PTEN/Akt, MAPK, RhoA, FOXO3 and PDCD4 genes doxorubicin 183-5p PTEN/Akt, MAPK, RhoA, FOXO3 and PDCD4 genes

doxorubicin 155-5p PTEN/Akt, MAPK, RhoA, FOXO3 and PDCD4 genes doxorubicin 195-5p PTEN/Akt, MAPK, RhoA, FOXO3 and PDCD4 genes

doxorubicin 181a-5p PTEN/Akt, MAPK, RhoA, FOXO3 and PDCD4 genes doxorubicin 21-3p PTEN/Akt, MAPK, RhoA, FOXO3 and PDCD4 genes

doxorubicin 31-5p PTEN/Akt, MAPK, RhoA, FOXO3 and PDCD4 genes E2 124 EGFR

doxorubicin 200c MDR1 mRNA E2 29a EGFR

doxorubicin 708-3p ZEB1/CDH2/vimentin E2 21 EGFR

doxorubicin 125b HAX-1 E2 181d EGFR

E2 301a EGFR E2 34c-5p EGFR
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Table 2. Cont.

Downregulated Upregulated

Drug miRNA Gene/Pathway Drug miRNA Gene/Pathway

E2 20a EGFR epirubicin 4443 TIMP2

E2 149 EGFR epirubicin + Paclitaxel 18a Dicer

E2 17 EGFR epirubicin 125b EMT

E2 25 EGFR etoposide 663 HSPG2

E2 191 EGFR fulvestrant 125b Akt/mTOR pathway

E2 27b EGFR letrozole 205 Akt/mTOR pathway

E2 148a EGFR Paclitaxel 520h DAPK2

E2 210 EGFR Paclitaxel Lin28 p21, RB, cyclin B1, Akt and Let-7 miRNA

E2 7 EGFR Paclitaxel 125b EMT

epirubicin Let7a H-RAS/HMGA2 Paclitaxel and
carboplatin 200a-5p TP53INP1/YAP1

epirubicin Let7a H-RAS/HMGA2 tamoxifen 222 p27Kip1

epirubicin 451 NM tamoxifen 221 p27Kip1

fulvestrant 21 NCL taxanes 21 IL-6/STAT3/NF-κB/PI3K pathway

methotrexate 25-3p ADAR1/DHFR taxol 378a-3p Triggered receptor tyrosine kinase–MAP kinase
pathway signalling, suppression of Aurora B kinase

methotrexate 125a-3p ADAR1/DHFR topotecan 663 HSPG2

Paclitaxel 320a TRPC5 gene; NFATC3gene; ETS-1 gene trastuzumab 21 IL-6/STAT3/NF-κB/PI3K pathway

Paclitaxel 149 GlcNAc-NDST1 trastuzumab 221 PTEN

Paclitaxel 20a MAPK1/c-Myc trastuzumab 21 PTEN

tamoxifen 574-3p CLTC vincristine Lin28 p21, RB, cyclin B1

tamoxifen 873 CDK3, Erα

tamoxifen 424 Akt/mTOR pathway

taxol 17 NCOA3

taxol 20b NCOA3

trastuzumab 221 NCL

trastuzumab 375 IGF1R

anthracyclin: epirubicin/doxorubicin; EMT: Epithelial-Mesenchymal Transition.
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Table 3. Pathways involved in chemosensitivity.

Downregulation Upregulation

Drug miRNA Gene/Pathway Drug miRNA Gene/Pathway

CTX 205 VEGF/FGF2 5-FU 34a Notch 1

cisplatin 218 BRCA1 CTX 34a Notch 1

doxorubicin 489 Smad3, EMT cisplatin 27a BAK-SMAC/DIABLO-XIAP Pathway

doxorubicin 181a Bcl-2 cisplatin 221 BIM/Bcl-2/Bax/Bak

docetaxel 34a C22ORF28 docetaxel 346 SRCIN1

docetaxel 638 STARD10 doxorubicin 196b MAPK signalling pathway, cytokine–cytokine
receptor interaction

docetaxel 125a-3p BRCA1 doxorubicin 200a MAPK signalling pathway, cytokine–cytokine
receptor interaction

doxorubicin 195 Raf-1 doxorubicin 34a Notch 1

docetaxel 139 Notch 1 doxorubicin 451a PTEN/Akt, MAPK, RhoA, FOXO3 and PDCD4 genes

docetaxel 27b ENPP1 doxorubicin 429 MAPK signalling pathway, cytokine–cytokine
receptor interaction

docetaxel 205 VEGF/FGF2 gemcitabine 484 CDA/Cyclin-dependent kinase

doxorubicin 145 MAPK signalling pathway, cytokine–cytokine
receptor interaction lapatinib 16 CCNJ/FUBP1

doxorubicin 370 MAPK signalling pathway, cytokine–cytokine
receptor interaction tamoxifen 148a ALCAM

doxorubicin 576-3p MAPK signalling pathway, cytokine–cytokine
receptor interaction tamoxifen 152 ALCAM

doxorubicin 760 MAPK signalling pathway, cytokine–cytokine
receptor interaction tamoxifen Let-7 MAPK/Akt, ER-α36

doxorubicin 765 MAPK signalling pathway, cytokine–cytokine
receptor interaction tamoxifen 155 SOCS6-STAT3 signalling pathway

doxorubicin 125b-1 MAPK signalling pathway, cytokine–cytokine
receptor interaction

taxol + doxorubicin
+ cyclophosphamide 128 Bax

doxorubicin Let-7a MAPK signalling pathway, cytokine–cytokine
receptor interaction trastuzumab 16 CCNJ/FUBP1
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Table 3. Cont.

Downregulation Upregulation

Drug miRNA Gene/Pathway Drug miRNA Gene/Pathway

doxorubicin 130a-3p PTEN/Akt, MAPK, RhoA, FOXO3 and PDCD4 genes

doxorubicin 205 VEGF/FGF2

epirubicin Let-7 HMGA2

fulvestrant 214 UCP2/PI3K-Akt-mTOR pathway

mitoxantrone 326 MRP-1

Paclitaxel 24 ABCB9

Paclitaxel 34a Notch 1

Paclitaxel 100 mTOR

PiB 200 Pin1

tamoxifen 342 Cyclin B1, p53, BRCA1 gene

tamoxifen 27b-3p NR5A2/CREB1

tamoxifen 378a-3p GOLT1A

tamoxifen 320a ARPP-19/ERRγ, c-Myc, Cyclin D1

tamoxifen 21 Estrogen-dependent cellular functions

tamoxifen 181a Estrogen-dependent cellular functions

tamoxifen 181b Estrogen-dependent cellular functions

tamoxifen 200c Estrogen-dependent cellular functions

tamoxifen 23b Estrogen-dependent cellular functions

tamoxifen 26a Estrogen-dependent cellular functions

tamoxifen 26b Estrogen-dependent cellular functions

tamoxifen 27b Estrogen-dependent cellular functions

tamoxifen 1254 CCAR1

tamoxifen 214 UCP2/PI3K-Akt-mTOR pathway

VP-16 326 MRP-1

Anthracyclin: epirubicin/doxorubicin.
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The relationship between miRNA expression and patient survival was assessed by meta-analysis.
Breast cancer (BC) patients had elevated expressions of miR-125b (HR = 6.350, 95% CI = 1.211–33.297),
484 (HR = 0.375, 95% CI = 0.193–0.730), 520h (HR = 1.233, 95% CI = 0.890–1.707), 4443 (HR = 0.721,
95% CI = 0.529–0.983) and downregulated expression of miR-200c (HR = 0.433, 95% CI = 0.102–1.829),
489 (HR = 0.703, 95% CI = 0.415–1.191). An extensive examination found that 89 out of 95 articles did
not mention the HR and 95% confidence interval values and of the six remaining articles, only three
mentioned them in their manuscript and three HR values were obtained from Kaplan–Meier curve
through online software. So, 89 studies were excluded from our meta-analysis due to insufficient data.
Cumulatively, a meta-analysis was done for six studies encompassing 852 samples (Figure 2).

An unbiased correlation was observed from Begg and Mazumdar rank collection test results.
Regarding Duval and Tweedie’s trim and fill calculation for the fixed-effect model, the point estimate
and 95% confidence interval for the combined studies was 0.83921 (0.69115–1.01899). Under the
random-effects model, the point estimate and 95% confidence interval for the combined studies
was 0.79909 (0.50575–1.26256). Using trim and fill, these values were unchanged. Egger’s regression
intercepted at −0.132 with 95% CI from −5.141 to 4.877; t = 0.07, p = 0.945. The 1-tailed p-value was
0.47237, and the 2-tailed p-value was 0.94473. The funnel plot is represented in Figure 3.
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4. Discussion

This systematic meta-analysis of “the miRNAs that influence the chemoresistance or chemosensitivity
to drugs in breast cancer” carefully reviewed over 400 research articles through a systematic PubMed
search query from which 80 research articles were scrutinized based on the inclusion criteria.

From the meta-analysis, the results indicate that many miRNAs could intricately orchestrate
cellular functions including chemosensitivity/resistance through post-transcriptional control on target
gene expression, either canonically or non-canonically. Of the studies included in this meta-analysis,
anthracyclines like doxorubicin and epirubicin were predominantly tested in patients/cell lines to
study the differential expression of miRNAs followed by tamoxifen in the case of Estrogen Receptor
(ER) positive subjects and trastuzumab in the case of Human Epidermal growth factor Receptor (HER)
positive subjects. A major limitation in our research is that less than 10% of the 80 papers (6 papers)
had direct hazard values that could be utilized for the meta-analysis, reducing the accuracy of the
results obtained since only a small fraction of papers were used to give results of the whole, leading to
the biasing of the results. There is a possibility of our interpretation being wrong in the context of
heterogeneous disease.

4.1. Role of miRNAs in Guiding Diagnosis and Prognosis

We extracted the prognosis results of six miRNAs from six different studies. Among the selected
miRNAs, two miRNAs (miR200c and miR489) were downregulated and the remaining four miRNAs
(miR484, miR4443, miR520h and miR125b) were upregulated. Both downregulated miRNAs were
associated with better prognosis; similarly, both miRNAs (miR484 and miR4443) from the overexpressed
miRNAs were expressed as better prognosis whereas miR520h and miR125b were associated with
poor prognosis.

The overall hazard ratio (95% CI) of the prognostic significance was 0.78 (0.508–1.100) at a
p-value of 0.140 which was analysed by random-effect model. This overall combined sized effect
estimate indicates that the miRNAs decreased the likelihood of death of breast cancer patients by
22%. This means an HR value >1 indicates an increased risk of breast cancer survival whereas an
HR <1 indicates a decreased risk of breast cancer patient survival. The Z-value of the overall effect
size was −1.476. The individual overall hazard ratios (95% CIs) of upregulated and downregulated
miRNAs were estimated 0.662 (0.403–1.087) and 0.904 (0.487–1.678), respectively. On observing the
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overall effect size of the individual subgroups, the significant prognosis was associated with a good
prognosis, and hence the miRNAs could be considered as better prognostic biomarkers for breast
cancer patients.

The Z-value of upregulated and downregulated miRNAs for the null hypothesis test (the mean
risk ratio of which is 1.0) were −1.636 and −0.319, respectively. Both the differently expressed miRNA
subgroups were associated with lower risk of death in breast cancer patients and hence we cannot
accept the null hypothesis that the risk is lower in both differently expressed miRNAs. Similar to our
study, two other studies have studied the subgroup analysis of higher and lower expressed miRNAs in
meta-analysis studies of the prognosis of melanoma and nasopharyngeal carcinoma patient survival.
Those studies demonstrated different risk levels among the subgroups, whereas in our study both
subgroups exhibited better prognosis for cancer patients. More studies are required to obtain better
prognostic significance of miRNAs in breast cancer patients [147].

4.2. Current Challenges

Systematic reviews and meta-analytic studies face a number of challenges when investigating
the theragnostic relationship between miRNA and chemotherapeutic response in breast cancer.
The primary limiting factor for detailed analysis and clinically applicable insights/results is the scarcity
of data. The literature in this specific niche of breast cancer treatment is sparse, with few high-quality
studies being available for comparison and analysis. This challenge is exacerbated by the lack of
homogeneity between similar studies. The variance in study parameters and the methodology makes
assessment difficult by introducing uncertainty in the reliability of the results. Furthermore, a large
number of studies have explored this topic via the use of in-vitro models, which cannot be directly
applied to clinical theragnostics. The lack of well-documented, large-scale, patient-based clinical
studies is a significant challenge faced by this study. Furthermore, the mechanisms of miRNA and
chemotherapeutic response are not currently understood in detail, requiring further assessment in the
future if meta-analytic studies are to provide conclusions viable for application in the clinical sphere.

The strengths of our paper include its large set of research papers, varied results in terms of miRNAs
and pathways that show a change in function in cancerous cells. The result of this exhaustive analysis
has provided us with a large number of miRNAs that can be focused on for prognostic or diagnostic
purposes. Many miRNAs play a role in regulating many vital cellular pathways, and these regulations
are observed to be significantly potentiated or deregulated during treatment with chemotherapeutics.
A single miRNA can regulate multiple genes, and this regulation down the cascade can affect many
pathways. Many reports have independently observed several genes or pathways as targets of many
miRNAs. Of those, the treatment of doxorubicin has been frequently observed to affect the PTEN/Akt
and MAPK signalling pathways, and increases chemoresistance (Table 3). In the case of miRNA 21
which is also an oncomiR, treatment with Fulvestrant; Selective Estrogen Receptor Degrader (SERD)
or trastuzumab (HER2 antagonist) leads to downregulation, affecting the EMT. Whereas treatment
with tamoxifen; Selective Estrogen Receptor Modulators (SERM) downregulates the expression of
miRNA-21 via estrogen-dependent functions, leading to chemosensitivity.

In case of miRNAs 221 and 222, the treatment with fulvestrant, doxorubicin or trastuzumab
also leads to the downregulation with increased expression of ABC transporters. The treatment with
Paclitaxel leads to the downregulation of miRNA 320a with downregulation of TRPC5, NFATC3 and
the FTS-1 genes, ultimately causing chemoresistance. miRNA 125b is upregulated when treated with
tamoxifen, letrozole, anastrazole or fulvestrant due to its interaction with the Akt/mTOR pathway,
leading to chemoresistance. The same pattern is observed when treatment of 5-FU, Paclitaxel and
cyclophosphamide is applied, which affects the EMT pathway; or when 5-FU is used, which affects the
transcription factor E2F3.

miRNAs Let-7, 181a and 145 are also majorly downregulated when treated with drugs like
doxorubicin, tamoxifen, or epirubicin, with increases in chemosensitivity. Thus, myriad miRNAs take
centre stage in the search for theragnostic miRNAs indicating drug resistance. However, Our study has
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tried its best to bridge the gaps, and serves as a benchmark for further clinical studies in personalized
treatment research.
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