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ABSTRACT
South Asian (SA) Canadian immigrants have a higher risk of developing certain immune-mediated 
inflammatory diseases compared to non-migrant SAs. We sought to investigate the effect of 
migration on the gut metagenome and to identify microbiological associations between migration 
and conditions that may influence the development of immune-mediated inflammatory diseases. 
Metagenomic analysis of 58 first-generation (GEN1) SA immigrants and 38 unrelated Canadian born 
children-of-immigrants (GEN2) determined that the time lived in Canada was associated with 
continued changes in gut microbial communities. Migration of GEN1 to Canada early in life results 
in a gut community with similarities to GEN2 SA Canadians and non-SA North Americans. 
Conversely, GEN1 immigrants who arrived recently to Canada exhibited pronounced differences 
from GEN2, while displaying microbial similarities to a non-migrating SA cohort. Multivariate 
analysis identified that community composition was primarily influenced by high abundance 
taxa. Prevotella copri dominated in GEN1 and non-migrant SAs. Clostridia and functionally related 
Bacteroidia spp. replaced P. copri dominance over generations in Canada. Mutually exclusive 
Dialister species occurred at differing relative abundances over time and generations in Canada. 
This shift in species composition is accompanied by a change in genes associated with carbohy
drate utilization and short-chain fatty acid production. Total energy derived from carbohydrates 
compared to protein consumption was significantly higher for GEN1 recent immigrants, which may 
influence the functional requirements of the gut community. This study demonstrates the associa
tions between migration and the gut microbiome, which may be further associated with the altered 
risk of immune-mediated inflammatory diseases observed for SA Canadians.
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Introduction

Diversity of the gut microbiome has been examined 
in a variety of divergent populations1, revealing asso
ciations with culture, geography, diet, lifestyle, and 
migration.2–8 Immune-mediated inflammatory dis
eases, which are a significant factor reducing the 
quality of life and increasing mortality, are particu
larly prevalent in westernized regions such as North 
America.9–11 These diseases include Type 1 diabetes, 
Type 2 diabetes mellitus, asthma, allergies, and 
inflammatory bowel disease, including ulcerative 
colitis and Crohn’s disease. Risk factors promoting 
immune-mediated inflammatory diseases include 
a diet rich in saturated fats, trans-fats, and refined 

sugars, particularly for obese and diabetic 
individuals.11 Along with North America, India has 
recently become another epicenter of type 2 diabetes 
mellitus incidence, with onset now occurring for 
people with a lower BMI and at a younger age.12,13 

The incidence rate of inflammatory bowel disease in 
India is also rising, approaching the levels observed 
in European and North American countries, nations 
currently with the highest prevalence rates.14–16

Of the 1.2 million immigrants that arrived in 
Canada between 2011 and 2016, India and 
Pakistan were among the top five most prevalent 
countries of birth.17 Previous studies identified 
a higher incidence of type 2 diabetes mellitus in 
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South Asian (SA) immigrant Canadians, compared 
to multi-generation Canadians, and non-SA 
immigrants.18 Type 2 diabetes mellitus in SA immi
grants has been associated with time since migra
tion to Canada, suggesting that the likelihood of 
disease increases as dietary acculturation occurs.19 

The incidence of inflammatory bowel disease is 
currently low for first-generation SA immigrants, 
regardless of time spent living in Canada.18 After 
a generation was born in Canada, the incidence rate 
increased, becoming similar between Canadian- 
born children of SA immigrants and multi- 
generational Canadians.18,20

Over the last half century, there has been a shift 
from the consumption of coarse grains such as 
sorghum, barley, rye, maize, and millet, to the con
sumption of rice and wheat in SA countries.21 

Consumption of simple sugars and dairy fat, such 
as ghee, has also risen.21 Carbohydrate consump
tion is typically high for SAs, particularly in the case 
of vegetarians, while the intake of fiber is low 
among both vegetarians and non- 
vegetarians.20,22,23 In the United States, low and 
high carbohydrate consumption were both asso
ciated with increased mortality rates, while moder
ate carbohydrate consumption resulted in the 
lowest risk of metabolic disease development, espe
cially when plant-derived proteins were most often 
consumed.24 For SA immigrants, an increase in the 
consumption of fats and dietary cholesterol and 
a decrease in carbohydrates, fiber, and folate were 
directly associated with length of residence in 
North America.25,26

Diet influences the gut microbiota, affecting both 
the Firmicutes/Bacteroidetes (F/B) and Prevotella/ 
Bacteroides (P/B) ratios.5,7,27 A low-fat, high-fiber 
diet has previously been associated with a reduced 
risk of obesity and inflammatory diseases, including 
type 2 diabetes mellitus and inflammatory bowel 
disease, and a high ratio of P/B.28–31 However, this 
is not always consistent, and other researchers have 
observed differing trends between obesity and the F/ 
B, or P/B ratios.32–36 A higher relative abundance of 
Prevotella has been observed in Asian populations, 
populations consuming non-westernized diets, and 
vegetarians compared to omnivores.4,6,7,27,37,38 Fiber 
and non-digestible carbohydrates are fermented by 
bacteria in the lower gut, resulting in the production 
of many compounds, including short-chain fatty 

acids (SCFA).39 SCFAs are consumed by enterocytes 
in the intestine, suppressing gut inflammation and 
reducing the incidence of related diseases.40,41 In the 
absence of fiber, certain polysaccharide degrading 
gut bacteria can utilize mucus glycoproteins (mucin 
glycans) as nutrients, which results in an eroded 
colonic mucus barrier and inflammation.42 

Western diets may alter the P/B ratio, affecting the 
amount and type of SCFA produced, potentially 
contributing to a proinflammatory state in the gut.43

We sought to investigate the effect of migration 
on the gut metagenome of Canadians of SA ances
try. Specifically, we were interested in determining 
taxonomic and functional differences in the gut 
microbiome of first-generation SA immigrants 
(GEN1) compared to Canadian-born children of 
unrelated SA immigrants (GEN2), and how these 
differences may influence the incidence rate of 
various immune-mediated inflammatory diseases 
for each generation. Furthermore, we hope to 
identify changes in the gut microbiome of SA 
Canadians as a function of time in Canada, com
pared to the gut microbiome of an Indian and 
a North American population, constituting of per
sons who have not migrated from their respective 
countries of birth. This will allow us to better 
identify characteristics of microbiota that are sus
ceptible to change over time, and those that are 
a stable reflection of early life exposure. It has been 
previously observed that migration to North 
America can significantly impact gut microbiota 
for other first- and second-generation 
immigrants.7 We hope to further this research by 
showing that these changes occur across many 
immigrant communities, while exploring how the 
SA Canadian community is specifically affected, 
leading to the high immune-mediated inflamma
tory disease prevalence rates previously observed 
for this population.

Results

Participant characteristics and dietary intake 
measurements are consistent between generations, 
estimated socioeconomic status influenced by time 
in Canada

The metagenomes of 58 first-generation and 
38 second-generation Canadians, age 18–35, who 
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identify ethnically as South Asian (SA) were 
sequenced (Table 1, Figure S1). First-generation 
(GEN1) Canadians were defined as those indivi
duals who migrated to Canada, while second- 
generation (GEN2) Canadians are the offspring of 
unrelated GEN1 migrants. Ethnicity was self- 
declared by participants.

Generation (GEN), years after immigration 
(YAI), and immigration as an adult were examined. 
Immigration as an adult was defined as participants 
who immigrated over the age of 18. YAI was exam
ined as both a continuous and categorical variable, 
divided into tertiles; recent immigrants (3 months 
to 4 years), moderately recent immigrants (4 to 
14 years), and early immigrants (greater than 
14 years since immigration) (Figure S1). There 
was no significant correlation between generation 
or YAI and self-declared ethnicity. A greater fre
quency of GEN2 Canadians participated in the 
study at a younger age. YAI and immigration age 
were significantly correlated (ANOVA, p < .01, 
adjusted R2 = 0.75). There was no significant dif
ference between Body Mass Index (BMI) or Waist 
Circumference (WC) between generations, YAI, 
immigration as an adult, or age (Table S1A 
and S1B).

Socioeconomic status for each participant was 
estimated by identifying the value of socioeconomic 
status factors for the participants’ respective disse
mination areas using the 2016 Canadian Census. 
There was no significant difference in these esti
mated socioeconomic status values between gen
erations, combined with or as independent factors 
(Table S1C). Estimated median total household 
income was observably lower for both GEN1 and 
GEN2, compared to the median values of all the 

dissemination areas belonging to the census dis
tricts in which participants resided. The difference 
between our cohort and the median census district 
values was particularly apparent for recent and 
moderately recent YAI groups (Figure S1). 
Population density was also higher for both GEN1 
and GEN2 compared to the median values of the 
census district regions. Due in part to the age 
restrictions of the study, we observed that the 
majority of GEN1 recent immigrants were adults 
when they immigrated, while none of the GEN1 
early immigrants were adults when they immi
grated. No significant effect of immigration as an 
adult on socioeconomic status was identified.

No significant differences were observed 
between GEN1 and GEN2 nutrition, based on 
food frequency questionnaire data. On average, 
participants consumed significantly higher 
amounts of omega-3 fat, protein, total sugar, and 
sodium (Figure S1), and significantly lower vitamin 
D, fruit servings, and vegetable servings than the 
recommended daily allowances. GEN1, but not 
GEN2, participants also consumed significantly 
lower calcium and fiber compared to the recom
mended daily allowance values.

High interpersonal variability in human stool 
microbiota at species level

We performed Illumina metagenomic sequencing 
on stool samples from each study participant and 
obtained a mean of 18,196,704 ± 1,045,084 150 bp 
paired-end reads per participant. After removing 
low-quality sequences, PCR duplicates, and human 
DNA, a mean of 81.0 ± 5.63% of the sequence data 
remained for metagenomic analysis (med
ian = 82.4%, minimum = 17.5%, 
maximum = 86.2%).44,45 Nonpareil analysis esti
mated that the metagenomes were sequenced at 
a depth resulting in a mean coverage of 
86.5 ± 4.75% of the complete metagenome.

Across the 96 participant samples, we observed 
eight unique phyla of bacteria, archaea, and viruses 
in the metagenomes after removing rare species. 
The most abundant phyla were Firmicutes, 
Bacteroidetes, and Actinobacteria (Table S1D). 
Bacteroidetes and Firmicutes were inversely corre
lated (Pearson r = −0.89), while the most abundant 
species were Prevotella copri, Eubacterium rectale, 

Table 1. Participant Characteristics.
Characteristics GEN1 (n = 58) GEN2 (n = 38)

Age, mean (SD) 24.3 (4.5) 23.3 (3.8)
Male Sex, count (%) 30 (52) 20 (53)
BMI, mean (SD) 24.8 (5.8) 24.7 (6.2)
Immigration Age, mean (SD) 16 (9.4) NA
Immigration as Adult (>18), count (%) 24 (43) NA
Self-Reported Ethnicity, count (%)
Indian 20 (34) 6 (15)
Pakistani 7 (12) 5 (13)
Tamil 5 (8) 4 (10)
Punjabi 2 (3) 6 (16)
Sri Lankan 1 (2) 6 (16)
Bangladeshi 6 (10) 1 (3)
Bengali 3 (5) 2 (5)
Gujarati 3 (5) 1 (3)
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and Faecalibacterium prausnitzii, and the most pre
valent species was Subdoligranulum sp., which was 
identified in all participants.

Abundant taxa strongly influence community 
composition

The species composition of GEN1 and GEN2 SA 
Canadians was compared using Bray–Curtis PCoA 
plots (Figure S2, Table S2A). While the estimated 
alpha diversity did not differ significantly between 
generations when tested independently (Table 
S1E), beta-diversity (MetaPhlAn2 normalized) dis
tances were significantly associated with the most 
abundant taxa (Table S1F) within a sample and the 
Chao1 alpha-diversity (ADONIS R2 = 0.37, p < .05 
and R2 = 0.019, p < .05, respectively). When the 
data were then re-scaled using cumulative sum 
scaling normalization (Figure 1) 46,47 we continued 
to identify a significant effect of the maximum 
abundant taxa, but with a reduced impact 
(ADONIS R2 = 0.22, p < .05). Sequencing coverage 
and the percentage of human DNA did not signifi
cantly affect the community, while total mapped 
genes and identified gene families did (Table S2B).

We determined that participants were 
grouped into nine UPGMA-GMD-based clusters 
based on metagenomic community composition, 
with four major clusters having two or more 
participants and encompassed 96% of the sam
ples (Figure 1, Table S3A). We measured the 
association between clusters and categorical vari
ables and found that the clusters are most 
strongly associated with the maximum taxa 
(Goodman–Kruskal Tau test of association, 
Table S3B). PanPhlAn analysis and UPGMA- 
GMD clustering identified two major P. copri 
pangenome clusters, labeled as Cluster 1 and 2. 
‘No Cluster’ samples contained a P. copri relative 
abundance average and median of 2.12% and 
0.13%, respectively, and were automatically fil
tered out when following the default PanPhlAn 
analysis parameters (Table S3C). ‘Unclustered’ 
samples contained P. copri pangenomes that 
formed individual UPGMA-GMD clusters. We 
identified a third group of dissimilar P. copri 
identified in P. copri maximum taxa participants, 
but with gene content so divergent that they 
were also filtered out when following the default 

PanPhlAn analysis parameters. StrainPhlAn was 
used to determine whether this was due to strain 
specific divergence or the presence of a multi- 
strain species complex. StrainPhlAn determined 
a P. copri average polymorphism rate of 
2.4 ± 1.7% for all participants and 4.1 ± 1.2% 
for the divergent cluster. The P. copri average 
polymorphism rate was 2.2 ± 1.7% for GEN2 
and 2.6 ± 1.7% for GEN1, with the highest 
average polymorphism rate reported at 
2.8 ± 2.0% for GEN1 recent immigrants com
pared to other YAI groups. Average polymorph
ism values for other species of interest are 
shown in Table 2.

We examined P. copri and Prevotella sp. meta
genome assembled genomes (MAGs) using Anvi’o 
in order to compare the Prevotella genomes identi
fied in this study with the genome clades (A, B, C, 
D) identified by Tett et al., 2019.48 Samples without 
identifiable P. copri, labeled as ‘No Cluster’ in the 
previously described analysis, were not analyzed. 
Within the remaining data, we identified two 
P. copri genome bins, referred to as ‘Bin 1ʹ and 
‘Bin 2ʹ. Genome average nucleotide identity (ANI) 
clustered P. copri Bin 1 with reference genomes 
from Clades C and D, while P. copri Bin 2 clustered 
with reference genomes from Clade A (Figure S3). 
The Prevotella sp. genome bins primarily clustered 
outside of the reference clades, except for ‘Bin 3ʹ, 
which clustered with a reference genome from 
Clade B. The average relative abundance and varia
bility (rate of polymorphism) were identified for 
‘Bin 1ʹ and ‘Bin 2ʹ in each sample (Table S3A). 
These two P. copri bins were identified in all exam
ined participants at differing abundances. We 
observed that the proportion of Bin 1 was 1.9x 
higher than that of Bin 2 in the Div/Multi cluster, 
compared to an average of 0.6x higher for all other 
samples in Clusters 1, 2, and Unclustered samples. 
There was no observable association between abun
dance of the different bins between GEN1 and 
GEN2.

We also investigated the association of each 
metadata factor of interest with the microbial com
position, both individually and combined, using 
Redundancy Analysis (Figure 2). As with the 
ADONIS results, maximum abundant taxa, as well 
as generation, BMI, YAI, immigration as an adult 
or child, and Chao1 were all significantly associated 
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Figure 1. Bray–Curtis PCoA plots of community dissimilarities shows separation of participants by (a) generation, (b) years after 
immigration (YAI) groups, (c) immigration as an adult (IA), and (d) maximum abundant taxa. Boxplots show the dissimilarity distances 
for each group, on each primary axis. (b) The recent immigrant group (0–4 YAI) and (c) those who immigrated as adults show the 
greatest dissimilarity from GEN2 (Pairwise ADONIS, p < .01). The samples are primarily separating by (d) maximum abundant taxa 
(ADONIS, R2 = 0.22, p < .05). Participants also show Bray–Curtis PCoA separation by the (e) four main species-composition community 
clusters identified using UPGMA-GMD hierarchical clustering and by the (f) two main P. copri pangenome clusters. Participants with 
divergent or multi-strain (Div/Multi) P. copri contained highly polymorphic P. copri that mapped outside of the pangenome species 
complex, suggesting the presence of unique strains or a greater proportion of multiple P. copri strains within these communities. 
‘Unclustered’ samples contained P. copri pangenomes that formed individual UPGMA-GMD clusters. ‘No Cluster’ samples contained 
a P. copri relative abundance median <1% and were filtered out when following the default PanPhlAn analysis parameters.
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with the species composition when tested either 
individually or as a mixed model (p < .05) (Table 
S3E). The Principal Component Analysis biplot 
shows that BMI, YAI, and immigration as an 
adult significantly influence species abundances in 
a similar direction.

Shifting from P. copri and D. succinatiphilus to 
Bacteroides spp. and D. invisus for GEN1 to GEN2 
Canadians

We examined whether specific taxa were differen
tially abundant between generations via multiple 
methods (Figure 2, Table 3, Figure S4, Table S3D). 
Within the Negativicutes class, D. succinatiphilus 
was significantly more abundant in GEN1, while 
D. invisus was significantly more abundant in 
GEN2. Within the Bacteroidia class, multiple spe
cies from the genus Bacteroides were significantly 
more abundant in the GEN2, while P. copri and 
P. stercorea were significantly more abundant in 
GEN1. Different species from the class Clostridia, 
Akkermansia muciniphila, and Bifidobacterium 
catenulatum were also found to be significantly 
enriched in either GEN1 or GEN2.

When BMI and Chao1 index values, which were 
significantly associated with beta diversity, were 
added to the differential analysis model comparing 
GEN1 and GEN2, P. copri was no longer associated 
with generation, suggesting the involvement of 
BMI and Chao1 values on the relative abundance 
of P. copri (Table S4A). Additionally, we found that 
Megamonas funiformis was significantly enriched 

in overweight and obese participants, compared to 
those with a normal BMI, when controlling for age, 
sex, and YAI (Table S4B).

All participants' samples contained either 
a species of Bacteroides, Alistipes, or P. copri, and 
73% of participants had all three taxa. The relative 
abundance of P. copri was inversely proportional to 
these other Bacteroidia species. In contrast, no sam
ples contained both D. invisus and 
D. succinatiphilus, while 50% of participants had 
one of the two species. Again, the relative abun
dances of these species are inversely proportional 
by generation, with no GEN2 participants report
ing the presence of D. succinatiphilus.

Effect of time spent in Canada on the abundance of 
Dialister and Bacteroides spp

The effect of years after immigration (YAI, i.e., 
time since immigration) and immigration as an 
adult were compared between GEN1 and GEN2 
(Figure 1). The Bray–Curtis beta diversity PCoA 
plot shows observable clustering by YAI group 
and by the immigration age. As with the genera
tion analysis, the maximum taxa, as well as the 
Chao1 index, and immigration age were signifi
cantly associated with beta diversity (p < .05) 
(Table S2C). The Bray–Curtis distances differ sig
nificantly between the recent immigrant group 
(0–4 YAI) and GEN2 (ADONIS adjusted 
p-value = 0.002), and between immigration as an 
adult and GEN2, and immigration as an adult and 
immigration as a child (ADONIS adjust p-values 
0.0006 and 0.03, respectively) (Table S2D). This 
difference was not observed between GEN2 and 
moderately recent (mid) or early immigrant 
groups, or between GEN2 and immigration as 
a child.

The change in the relative abundance of species 
between the YAI recent immigrant groups and 
GEN2 was specifically assessed. From classes 
Negativicutes and Bacteroidia, our results identified 
D. succinatiphilus and Acidaminococcus fermentans 
to be significantly enriched in GEN1 recent immi
grants, and B. thetaiotaomicron and 
B. cellulosilyticus to be significantly reduced (Table 
S4C). D. succinatiphilus was significantly enriched 
in both participants who immigrated as children or 
as adults, compared to GEN2.

Table 2. Species Average Polymorphism Rates.
Species Percent average polymorphism ± s.d.

P. copri all participants 2.48 ± 1.67
P. copri divergent cluster 4.06 ± 1.16
P. copri GEN1 2.61 ± 1.67
P. copri GEN1 recent immigrants 2.83 ± 1.97
P. copri GEN2 2.22 ± 1.69
Bacteroidia spp. 0.50 ± 0.14
B. fragilis 0.56 ± 0.35
B. plebeius 0.48 ± 0.36
B. dorei 0.63 ± 0.36
B. ovatus 0.47 ± 0.27
B. stercoris 0.46 ± 0.35
B. uniformis 0.53 ± 0.41
B. vulgatus 0.63 ± 0.41
B. intestinalis 0.17 ± 0.14
B. longum 0.63 ± 0.35
E. rectale 0.91 ± 0.35
F. prausnitzii 4.57 ± 1.15
D. invisus 0.90 ± 0.48
D. succinatiphilus 1.29 ± 0.76
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a

b c

Figure 2. (a) The RDA biplot shows the significant effect of many factors (labeled solid arrows), including generation, age, YAI, BMI, 
Chao1, immigration as an adult (IA), and immigration as a child (IC) on the relative abundance of each microbial species. Unlike the 
PCoA plots, each point represents a species, not a participant. (b) The relative abundance averages and (c) dispersion of Bacteroidia and 
Negativicutes species identified as significantly associated with GEN1 or GEN2 (Table 3 and Table S3D). Prevotella, Bacteroides, and 
Alistipes species were often found to co-occur, while D. succinatiphilus and D. invisus were never identified in the same participant.
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Negatively co-occurring species segregate into 
distinct microbial community types

We looked for species co-occurrence and relative 
abundance correlation via network analysis 
(Figure S5, and Table S5A). Within the largest 
network, consisting of both positively and nega
tively correlated species, we identified 10 network 
clusters. Clostridium spp. were identified within 
the top 10 most interconnected species, acting as 
hub species. To examine these relationships more 
closely, we created separate positive and negative 
correlation networks. Secondary positive correla
tion networks were identified to both contain cor
related Negativicutes species including the positive 
correlation between D. succinatiphilus and 
M. funiformis.

All study participants carried at least one of the 
highly abundant and prevalent species, P. copri, 
Bacteroides uniformis, or Bifidobacterium longum. 
In fact, there was a strong negative association 
between P. copri and B. uniformis and B. longum, 
as well as the hub species C. bolteae (Figure 3). 
A Dirichlet-Multinomial Mixture (DMM) model 
identified two community types, with the top dri
vers including B. longum and B. uniformis for one 
community type, and P. copri as the top community 
driver for the other. The Dirichlet Component 
Value for P. copri was twice as high as any other 
contributing species value.

Examining the transition from an Indian 
metagenome to ‘westernized’ metagenome

An Indian cohort (NCBI BioProject 
PRJNA397112) and an American Caucasian 
cohort (https://ibdmdb.org) were used as com
parators to our Canadian SA immigrant data set. 
The sequence reads were retrieved and processed 
using the same method as the Canadian data. Of 
the two regions represented in the Indian cohort, 
Bhopal is an urban city in North-Central India 
whose participants consumed primarily a plant- 
based diet, and Kerala is a rural state in South- 
Western India whose participants consumed an 
omnivorous diet.37 The American participants all 
consumed an omnivorous diet. As with the 
Canadian data, the subset of participants used 
for this analysis self-declared to not have any 
known diseases and were considered healthy.

The Bray–Curtis beta diversity PCoA plot 
shows a separation by maximum abundant taxa 
on the primary axis, and by cohort on the second
ary axis (Figure 4, Figure S2, Table S2E). As with 
the previous analysis, the maximum abundant 
taxa had the greatest effect on clustering on the 
cumulative sum scaling normalized data 
(ADONIS, R2 = 0.26, p = .001), followed by the 
effect of population-YAI and population- 
generation group comparisons (ADONIS, 
R2 = 0.13, p < .05, and R2 = 0.11, p < .05, 

Table 3. Differentially Abundant Species Between Generations.

Species Class Enriched
GEN1 

(mean RA%)
GEN2 

(mean RA%)
LEfSE 

LDA Score FitDO Odds Ratio FitZigLogFC

Bifidobacterium catenulatum Actinobacteria GEN2 8.01E-02 1.09E-01 ns 0.15*** 2.70***
Alistipes finegoldii Bacteroidia GEN2 3.95E-02 2.81E-01 ns 0.00*** 2.65***
Alistipes onderdonkii Bacteroidia GEN2 3.58E-01 3.62E-01 ns 0.50** 1.47***
Bacteroides intestinalis Bacteroidia GEN2 3.25E-02 1.58E-01 ns 0.14*** 2.33***
Bacteroides stercoris Bacteroidia GEN2 7.57E-01 1.74E+00 3.35** 1.80** ns
Bacteroides thetaiotaomicron Bacteroidia GEN2 3.95E-01 6.79E-01 ns 0.55** 1.41***
Bacteroides uniformis Bacteroidia GEN2 1.06E+00 2.28E+00 3.54* 0.59*** ns
Bacteroides vulgatus Bacteroidia GEN2 1.50E+00 3.38E+00 3.90** 0.62*** ns
Bacteroides xylanisolvens Bacteroidia GEN2 1.03E-01 2.65E-01 2.89* 0.28*** ns
Coprobacter fastidiosus Bacteroidia GEN2 2.09E-04 3.45E-02 2.614* ns 2.81***
Parabacteroides distasonis Bacteroidia GEN2 1.77E-01 2.01E-01 ns 0.24*** 2.04***
Prevotella copri Bacteroidia GEN1 1.62E+01 7.56E+00 4.48* 1.78*** ns
Prevotella stercorea Bacteroidia GEN1 5.46E-01 4.72E-02 ns 8.52*** −2.22***
Clostridium hathewayi Clostridia GEN2 8.71E-03 3.93E-02 2.23* ns 2.59***
Coprococcus sp. ART55 1 Clostridia GEN1 1.78E+00 9.12E-01 ns 1.77** −1.35**
Roseburia unclassified Clostridia GEN2 2.42E-02 2.95E-01 3.20** 0.00*** 2.89***
Ruminococcus sp. 5 1 39BFAA Clostridia GEN2 1.31E+00 2.28E+00 3.75** 0.69** ns
Dialister invisus Negativicutes GEN2 6.44E-01 2.17E+00 3.99** 0.31*** 2.04***
Dialister succinatiphilus Negativicutes GEN1 1.32E+00 0.00E+00 3.83*** Inf*** −2.79***
Megasphaera unclassified Negativicutes GEN1 6.41E-01 1.76E-01 3.23* 2.66*** ns
Akkermansia muciniphila Verrucomicrobia GEN2 3.84E-01 6.72E-01 ns 0.40*** 1.40***

0.05 ≥ * > 0.01 ≥ ** > 0.001 ≥ ***; adjusted for multiple comparisons; ns = not significant
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Figure 3. (a) A co-occurrence network of negatively correlated species. Each point represents a species, and the size of the point 
reflects the number of connections. The colors represent the walk-trap clusters identified in the network. The abundance of P. copri is 
negatively correlated with the abundance of B. longum and B. uniformis, among others. (b) Either P. copri, B. longum, or B. uniformis is 
present in every participant. Each point shows the abundance of the species, by participant (lines connecting participants), and the 
color of the point is the most abundant of these three species in each participant. Rarely do we observe equal abundance among these 
species, resulting in the negative correlations observed. (c) Dirichlet Multinomial Mixture (DMM) modeling identified two community 
clusters. The top community drivers (95 percentile) include these negatively correlated species. The highest driving component was 
determined as P. copri, suggesting this species has the greatest effect on community structure.
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respectively). A pairwise ADONIS test revealed 
that all population cohorts and YAI groups dif
fered significantly from each other (p < .01) 
(Table S2F).

Using the food frequency questionnaire data, we 
determined that the percent energy derived from 
carbohydrates compared to proteins was signifi
cantly higher in GEN1 recent immigrants 
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Figure 4. In the Bray–Curtis PCoA plots we observed (a) separation of the Canadian SA cohort from both the Indian and American 
cohorts. The open circles represent samples from GEN1 moderately recent (mid) and early immigrant groups. Boxplots show the 
dissimilarity distances for each group, on each axis. (b) This separation was primarily driven by the maximum taxa, with P. copri, 
Bacteroides spp., or D. succinatiphilus dominating the majority of the communities in the Indian cohort, and Bacteroides spp. or Clostridia 
spp. dominating the majority of communities in the American cohort. (c) A significantly higher percent of energy was derived from 
carbohydrates compared to proteins in the GEN1 recent immigrant group, compared to other YAI groups and GEN2, as determined by 
the food frequency questionnaire (FFQ). Participant macronutrient data was not available (NA) for external data sets. (d) 
D. succinatiphilus was significantly enriched (log-fold change (LFC) > 3, p < .001) in the Indian cohort and recent SA Canadian 
immigrants, compared to the early immigrants and GEN2. D. invisus is significantly depleted, particularly for the residents of Bhopal, 
who consumed primarily a plant-based diet (LFC < −1, p < .001). We extracted all the species of (e) Veillonellaceae (class Negativicutes), 
(f) Prevotella, and Bacteroides from the data to observe trends in the abundances of these taxa across all cohorts and YAI groups.
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compared to other YAI groups and GEN2 (Figure 
4, Table S1G). The difference in the relative abun
dance of species between both geographic regions 
of the Indian cohort, each YAI group of GEN1, 
GEN2, and the American cohort was assessed 
(Table S4D). D. succinatiphilus was significantly 
enriched for Bhopal, Kerala, and GEN1 recent 
immigrants when compared to GEN2 and the 
American cohort. D. invisus was enriched in 
GEN2 compared to residents of Bhopal and GEN1 
recent immigrants, but not when compared to resi
dents of Kerala. We observed an overall decreasing 
relative abundance of most Veillonellaceae and 
Prevotella species in the westernized populations 
(American cohort and GEN2 Canadians) relative 
to the Indian cohort. Due to the large effect of 
population on beta diversity, we did not examine 
the potential metagenomic functional differences 
between these population cohorts.

Functional redundancy identified in gut microbiota

The presence and relative abundance of gene 
families were identified using HUMAnN2. These 
gene families were normalized and re-grouped into 
metabolic enzyme (MetaCyc) gene groups. We did 
not identify any gene families that were differen
tially abundant between generations in the SA 
Canadian cohort despite differences in the species 
composition, suggesting functional redundancy. To 
gain a greater insight into the functional similarities 
among microbial taxa, we created a positive 

Spearman correlation undirected network based 
on gene family presence for each species. This ana
lysis links species based on their shared metabolic 
profiles (Table S5B).

The largest network contained six clusters 
made up of 60 species from the Firmicutes phy
lum (Figure 5). The two largest clusters were 
made up of many species from the class 
Clostridia, while D. succinatiphilus and 
D. invisus formed their own functional cluster. 
The second largest network contained two clus
ters made up of 37 species from the 
Bacteroidetes phylum. One cluster contained spe
cies of Alistipes, Bacteroides, P. copri, among 
others, while P. copri is positioned on the out
side of the network, suggesting a greater propor
tion of unique features.

Carbohydrate Metabolism of Bacteroidia, 
Negativicutes, and Clostridia spp

To understand the metabolic relationships between 
species from the phyla Firmicutes and Bacteroidetes, 
we sub-sampled the Canadian data set, extracted 
species of interest, and examined the MetaCyc 
enzyme gene families involved in the fermentation 
of simple carbohydrates and complex non- 
digestible fibers (i.e., polysaccharides) to the synth
esis of short-chain fatty acids (SCFA) (Table S6A 
and S6B).

We used the presence of the enzyme families 
of interest to cluster the species into hierarchical 

Figure 5. (a) The largest Spearman correlation network of gene family presence, consisting of Firmicutes species, and (b) the second 
largest network consisting of Bacteroidetes species. Each point represents a species, the size of the point reflects the number of 
connections. Colors separate the network clusters. Certain species of interest are labeled on the figure. Species with functional 
differences, such as D. succinatiphilus and D. invisus, are located on the periphery of the networks.
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groups by UPGMA (Figure 6, Figure S6). Many 
Bacteroides species harbored multiple gene 
families involved in these fermentation processes 
within a single species, while Negativicutes spe
cies and P. copri often contained only a single- 
gene family per fermentation process; missing 
many of the genes required to complete the 
fermentation pathway. We examined the average 
normalized Copies Per Million of these carbohy
drate degradation gene families by generation 
(Table S6C), specifically focusing on the poten
tial for cellulose, pectin, and xylan degradation. 
Although the differences were not significant, we 

observed a greater potential for xylan degrada
tion in GEN1 and a greater potential for pectin 
and mucin glycan degradation in GEN2. P. copri 
was the most abundant endo-1,4-B-xylanase 
containing species, followed by B. uniformis. 
Potential mucin degrading enzymes were identi
fied across the metagenome, present in 
B. longum and many Bacteroides, 
Alistipes, Clostridia, and Negativicutes species. 
Pectinesterase was present in P. copri but not 
in B. uniformis or B. longum.

The primary SCFAs produced from fermenta
tion are acetate, butanoate (butyrate), lactate, and 

a b c

d

Figure 6. (a) Hierarchical clustering of carbohydrate degradation and SCFA fermentation enzyme gene families. The presence of a gene 
family for a given species is indicated by a black tile. The associated taxa are indicated by the filled color bar at the top, and the 
rectangular boxes highlight the species of interest (for a detailed version, refer to Figure S6A). The average normalized Copies Per 
Million per generation group for the enzyme gene families in (b) non-digestible carbohydrate degradation and (c) SCFA fermentation. 
Enzyme gene families are labeled 1A, 1B, 2 and 3 for carbohydrate degradation and 6A – 6G for SCFA fermentation. (d) The presence of 
gene families in each SCFA fermentation pathway and their associated taxa (complete annotated pathways Figure S6B). Solid arrows 
indicate gene families identified in more than one species within the taxa group, while dashed arrows indicate only one associated 
species. Color-coding of the arrows corresponds to that shown in the legend of Figure 6A. Gene families shown as gray arrows were not 
observed in the data set. Gene families shown as black arrows, but with no taxa association, were identified in species outside of our 
interest group. The boxed letters for each component of interest correspond to Figure 6C
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propionate-succinate.49 We calculated copies 
per million of these SCFA-associated genes aver
aged by generation, and visualized the SCFA pro
duction pathways (Figure 6, Figure S6, Table S6B). 
We did not identify any of the genes required for 
a propionate end-product or many genes required 
to complete other SCFA pathways. We observed 
that all of the succinate-propionate pathway genes 
were identified throughout various Negativicutes 
species, and different portions of the pathway 
were identified in selected species of Clostridia, 
Alistipes, Bacteroides, and P. copri. Lactate produc
tion gene families were identified primarily in 
Firmicutes, including Megamonas and 
Eubacterium. Butanoate production gene families 
were identified in Bacteroides species, as well as the 
Clostridia species that clustered in the Bacteroides 
dominant clade.

Discussion

The gut metagenome of multi-generational 
South Asian (SA) Canadian immigrants differs 
between generations and changes over time 
spent in Canada. The metagenome structure pri
marily differed by the maximum taxa within the 
gut. First-generation (GEN1) experienced 
a higher prevalence of P. copri maximum, 
a higher average abundance of P. copri, and the 
presence of D. succinatiphilus. Second generation 
(GEN2) experienced a higher prevalence of 
Bacteroides spp. or Clostridia spp. maximum, 
a higher average abundance of multiple 
Bacteroides spp., and a higher abundance of 
D. invisus. These differences were in turn 
reflected in differences in carbohydrate degrada
tion and SCFA associated gene families.

We provide evidence that migration has an 
impact on the gut metagenome of multi- 
generation SA Canadians, resulting in changes 
in microbial taxonomic and genomic composi
tion. We find that the gut community of GEN1 
SA Canadians shifts from the structure that 
would have existed pre-migration, to 
a composition made up of a mix of stable taxa 
that were established during early life along with 
other taxa that are more characteristic of the 
general Canadian population (i.e., multi- 
generation North Americans). The extent of 

this shift appears to be dependent primarily on 
the time since immigration. This shift in micro
bial community structure likely contributes to 
the high prevalence of certain immune- 
mediated inflammatory diseases such as type 2 
diabetes mellitus, which is observed in GEN1 SA 
Canadians with an incidence rate proportional 
to time lived in Canada.18,19 On the other hand, 
GEN2 SA Canadians’ gut communities have fea
tures which resemble multi-generation North 
Americans. This community structure likely 
contributes to the high prevalence of other 
immune-mediated inflammatory diseases, such 
as inflammatory bowel disease and asthma, 
which are prevalent in GEN2 SA Canadians, 
non-SA Canadians, and Americans alike.10,18

We determined that the participants’ metagen
omes stratified primarily based on the most abun
dant taxa, which varied dramatically between 
individuals. P. copri was the most abundant taxa 
in early, mid, and recent GEN1 immigrants, while 
the relative abundance of Veillonellaceae decreased 
significantly over time since migration. This sug
gests that P. copri dominance may be determined 
by early life exposures and is more often main
tained, while Veillonellaceae abundance may be 
more susceptible to change based on current expo
sures and environments. The P. copri dominant 
community has been described previously for 
other Asian and Mediterranean populations, asso
ciated with higher carbohydrate and lower fat diets, 
while the Bacteroides and Eubacterium dominant 
communities have been previously described for 
North American populations, westernized diets 
outside of North America, and omnivores com
pared to vegetarians.4–7,38 An analysis of the 
P. copri pangenome species complex revealed dis
tinct subspecies clusters, including a divergent high 
diversity group of P. copri. A strain-based analysis 
suggests that this diversity is due to a higher pro
portion of multiple P. copri strains present within 
a given participant, as suggested by the higher per
centage of polymorphic sites, which is consistent 
with previous studies that found multiple strains of 
P. copri within gut communities.48,50,51 Tett et al. 
2019 observed that P. copri was nearly ubiquitous in 
‘non-westernized’ populations (95.4% in non- 
westernized vs. 29.6% in westernized population) 
with over 60% of non-westernized individuals 
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carrying all four previously examined P. copri 
clades. We identified two P. copri genomic bins in 
our data set that were found in differing propor
tions in all individuals containing P. copri. One of 
these bins clustered closely with Tett et al. 2019 
Clade C and D reference genomes and was found 
to be in a higher proportion in the high diversity 
group, suggesting that a higher rate of polymorph
ism may be identified in P. copri associated with 
these clades. The other P. copri genomic bin is 
clustered closely with Clade A reference genomes. 
As with our data, co-presence of multiple P. copri 
clades has been previously identified in many indi
viduals, with Clade A being the most prevalent in 
all individuals from both westernized and non- 
westernized locations.48

We did not observe a significant relationship 
between generation and P. copri diversity, but we 
did observe the greatest average percentage of 
P. copri polymorphic sites in GEN1 recent immi
grants compared to GEN2 and GEN1 mid and early 
immigrants. This suggests that even though P. copri 
is observed as the maximum abundant species in 
certain GEN1 and GEN2 participants, multi-strain 
complexes may be more often present upon arrival 
and lost over time in Canada. The low average 
percentage of polymorphic sites identified in 
Bacteroides spp., consistent with previous research, 
suggests the presence of only a few strains per 
species co-occurring in the gut.50 We hypothesize 
that the role of the P. copri species complex may be 
replaced by multiple Bacteroides species acting in 
concert for GEN2. Since each participant was only 
sampled once, we were unable to determine 
whether strain replacement within Bacteroides spe
cies occurs over time based on functional necessity, 
as has been previously shown specifically for 
B. fragilis.41

We hypothesize that the shift from P. copri to 
Bacteroides spp. is influenced by a change in diet. 
Different plant materials contain different types of 
non-digestible carbohydrates, which pass through 
the small intestine into the large intestine where 
they are fermented by gut microbes.52–54 

Fermentation of these carbohydrates, and the sub
sequent production of SCFA, is important for redu
cing metabolic and inflammatory disease 
symptoms.55 Prevotella has previously been identi
fied as a core constituent in the Indian microbiome, 

with Bacteroides and Dialister associated with cer
tain Indian sub-populations.3 The enrichment of 
D. succinatiphilus and P. copri observed in the 
Indian cohort and GEN1 Canadians could be due 
to the quantity and type of grains consumed, parti
cularly for GEN1 recent immigrants who derived 
a greater proportion of energy from carbohydrates 
compared to protein, and for residents of Bhopal 
who consumed primarily a plant-based diet.56–58 

The co-occurrence of P. copri and Dialister has 
been previously identified in first-generation 
Americans who immigrated from Korea and in 
rural Himalayan populations.8,59 In contrast, 
Canadian and American born individuals show 
highly similar community profiles, typically with 
low abundances of Prevotellaceae and high abun
dances of Bacteroidaceae, consistent with our 
observations.60

A limitation of comparing these Canadian data 
with preexisting data sets, is the possibility of infer
ring differences that exist simply due to differences 
in sample processing. Typically, the ‘kitome’ varies 
between DNA extraction kits and methods, but 
would generally result in false negatives due to 
poor cell lysis and would not produce high abun
dance false positives such as high abundance 
D. succinatiphilus identified in the Indian 
samples.61 Previous examination showed that esti
mated differential abundances were consistent 
across DNA extraction and sequencing methods, 
while differences in bioinformatic methodology 
produced inconsistent results.62 We have utilized 
the same analysis methods across all data sets and 
believe that despite other possible inconsistencies, 
multi-study examinations are relevant and impor
tant ways to connect the metagenomic data avail
able worldwide.

The mutual exclusivity of D. succinatiphilus and 
D. invisus observed in this study has not been pre
viously reported and requires further investigation. 
One clear functional difference between 
D. succinatiphilus and D. invisus is the ability of 
D. succinatiphilus to consume succinate. Succinate 
producers, including P. copri and multiple 
Bacteroides spp. appear ubiquitously in many gut 
communities.63–65 Other potential succinate consu
mers were identified in our study, including 
a known consumer, B. thetaiotaomicron. 66 The 
inverse relationship observed between time in 
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Canada and abundance of D. succinatiphilus and 
B. thetaiotaomicron suggests a shift in succinate 
consumers.

While the role of P. copri in human health, gut 
inflammation, and the development of immune- 
mediated inflammatory diseases is still poorly 
understood,30,64 recent research suggests that pro
biotic modulation and the reduction of circulating 
succinate may be a therapeutic target to poten
tially treat obesity and certain immune-mediated 
inflammatory diseases.67,68 Our results show 
a possible link between P. copri abundance and 
BMI. Recently, P. copri abundance and the pre
sence of multiple P. copri subtypes were shown to 
be positively correlated with beneficial cardiome
tabolic markers.69 We hypothesize that as P. copri 
strain diversity is lost over time in Canada, the 
modulation of succinate production and con
sumption in relation to D. succinatiphilus abun
dance, may be altered. This could affect BMI and 
potentially lead to the increased incidence of type 
2 diabetes mellitus observed in GEN1 SA 
Canadians.18 Whether due to changes in diet or 
other unknown factors, it remains unclear why 
this change in species association of succinate 
production and consumption has occurred over 
time and generations in Canada, and what other 
roles D. succinatiphilus may play in the gut com
munity unique to GEN1.

Bacteroides and Bifidobacterium species are 
known to possess multiple gene families capable 
of polysaccharide and monosaccharide degradation 
and can often switch between energy sources.70 The 
flexibility of what nutrients Bacteroides and 
Bifidobacterium can utilize may indicate that these 
species are less reliant on interspecies cross- 
feeding.71 We hypothesize that the negative corre
lation between the abundance of P. copri and both 
B. longum and B. uniformis, may be due to redun
dancy in certain functions, such as xylan degrada
tion. Without dietary fibers, certain species, 
particularly from the genus Bacteroides, will fer
ment host mucin glycans, creating a potentially 
proinflammatory environment.42,72,73 Other degra
ders, such as P. copri, though capable of breaking 
down the xylan backbone of mucin, do not contain 
the enzymes required to further debranch the 
attached sugars (Figure 6a). Previous research 
determined that the P. copri 1,4-beta-xylanase was 

present in 94% in vegans and only 58% in 
omnivores,74 and that individuals who consume 
a diet rich in cellulose and xylan have gut commu
nities with high abundances of Prevotella.75,76 This 
suggests that Prevotella-based xylan degradation is 
favored when exposed to consistent, high levels of 
complex carbohydrates, while B. longum and 
B. uniformis xylan degradation may be favored 
when the function is only required sporadically, 
and a range of other nutrient sources are often 
introduced to the gut.

We hypothesize that the observed susceptibility 
to inflammatory bowel disease in GEN2 SA 
Canadians, matching the high susceptibility of 
multi-generation Canadians and Americans,18 

may be due to the higher relative abundance of 
Bacteroides in these cohorts, and their potential 
contribution to the degradation of mucin glycans 
in the gut in the absence of fiber-rich foods.77,78 

The continued displacement of Prevotella with 
Bacteroides over generations, and the plausible 
effect on fiber degradation and SCFA metabolism 
has been previously described for immigrant com
munities in the United States 7,8. Our study recapi
tulates this observation, while further exploring the 
interaction between these potentially key taxa and 
the complete metagenome, and the functional 
redundancy between GEN1 and GEN2 associated 
species. In the future, it would be important to test 
these hypotheses in vitro to determine the xylan 
degrading capabilities of the Prevotella and 
Bacteroides species identified in this study.

The socioeconomic status of GEN1 and GEN2 
SA Canadians likely affects the gut metagenome, 
which may contribute to the development of 
immune-mediated inflammatory diseases for cer
tain individuals. Low-income rates are generally 
higher among immigrant Canadians compared to 
Canadian-born persons, particularly in urban 
populations.79 This study was limited to 
Canadians living in Toronto and the Greater 
Toronto Area, which is primarily composed of 
urban and suburban neighborhoods. Generally, 
a lower socioeconomic status is associated with 
type 2 diabetes mellitus prevalence for all 
Canadians.17,80,81 Globally, the incidence of inflam
matory bowel disease may be associated with 
a higher socioeconomic status, but poor disease 
outcomes and mortality are generally associated 

GUT MICROBES e1902705-15



with a lower socioeconomic status.82 Within 
Canada, children from low-income neighborhoods 
were more likely to utilize health services related to 
inflammatory bowel disease, and adults with 
inflammatory bowel disease were more likely to be 
unemployed compared to the general public.83,84 

Additionally, an individual’s socioeconomic status 
has been previously shown to affect the composi
tion of the gut microbiome.85

We observed that the estimated median total 
household income by participant dissemination 
area was lower, and the population density higher, 
for both GEN1 and GEN2 compared to the median 
values for the census districts in which participants 
resided. Since socioeconomic status was estimated 
by dissemination area and not reflective of personal 
socioeconomic status, these values were not incor
porated into the primary analysis to avoid over 
generalizations and incorrect inferences. However, 
we did observe that socioeconomic status was lowest 
for GEN1 recent immigrants, who also showed the 
greatest differences in the overall structure and con
tents of the gut metagenome (Figure 1). In Canada, 
inadequate nutrient intake was more prevalent in 
low-income individuals.86 Dietary acculturation is 
largely influenced by the availability of traditional 
ingredients, availability of specific tools, income, 
and food preparation time.87,88 All GEN1 early 
immigrants arrived as children, presumably with 
families or guardians. We hypothesize that large 
differences may exist between the nutrition and 
dietary acculturation of those who immigrate as 
children and those who immigrated as adults, with 
socioeconomic status contributing to these differ
ences. Furthermore, GEN2 contained a greater pro
portion of younger participants, which may 
influence the characterized community given the 
known changes that occur in the gut from child
hood to adulthood.89 Combined, these differences 
may result in the differences we observe in the gut 
metagenome. To determine the contribution of 
immigration age, dietary acculturation, and socio
economic status on the gut metagenome, we would 
require more representative sampling including age- 
and income-matched non-SA Canadians.

The effect of the gut microbiome on overall 
human health remains disputed, with previous stu
dies often describing completely opposite trends in 
species abundances related to inflammation and 

obesity.2,33,35,36 The contribution of the metagen
ome to the development of immune-mediated 
inflammatory diseases is likely due to a complex 
interplay between nutrient degradation, utilization, 
and SCFA production associated with the entire 
functionality of the gut community.

Methods

Recruitment and characteristics of participants

Study subjects included female and male indivi
duals who ethnically self-identified as South Asian 
(SA) and either were born in a SA country and 
immigrated to Canada (GEN1) or were the chil
dren-of-parents who immigrated to Canada 
(GEN2), self-reported as healthy, and were between 
18 and 35 years old. Participant recruitment took 
place for the most part on the campus at the 
University of Toronto in collaboration with SA 
student groups and at SA community events and 
centers outside the university (Festival of South 
Asia, Little India Festival).

Our exclusion criteria consisted of (1) use of 
antibiotics, (2) travel to SA in the 3-month period 
prior to the start of the study, or (3) existing 
chronic inflammatory conditions. Sample collec
tion occurred between 2016 and 2018. The study 
staff completed the Subject Screening and 
Demographics Questionnaire with the subject and 
recorded weight, height, and waist circumference. 
Personal identifiers, including name, sex, date of 
birth, contact information, and health history 
were collected. Subjects also completed a Food 
Frequency Questionnaire (FFQ) and General 
Health, Environment, and Lifestyle Assessment 
Questionnaire (GHELQ) on their own. After exclu
sions, a total of 96 adult subjects completed the 
study.

Body Mass Index (BMI) and Waist 
Circumference (WC) were analyzed to determine 
if there was a significant difference between genera
tions, years after immigration (YAI) groups, sex, or 
participation age. BMI was grouped into health 
categories: underweight (BMI < 18.5 kg/m2), nor
mal weight (BMI 18.5–24.9 kg/m2), overweight 
(BMI 25–29.9 kg/m2), and obese (BMI > 30 kg/ 
m2). WC was grouped into health categories: 
healthy female (WC < 80 cm), unhealthy female 
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(WC ≥ 80 cm), healthy male (WC < 94 cm), 
unhealthy male (WC ≥ 94 cm) (Figure S1E and 
S1F). Statistical analyses were performed using 
R Stats Software version 3.6.3.90 A one-way 
ANOVA was performed between generations for 
BMI and WC, for each sex separately. Ethnicity, 
age, and YAI were also assessed and added as cov
ariables to the BMI and WC ANOVAs. For GEN2 
participants, YAI was set as zero. Statistical signifi
cance was defined as p < .05 (Table S1B and S1C).

Stool collection

Participants used an at-home stool collection kit 
with instructions provided to collect stool samples. 
The instructions specified that the participants were 
to collect stool following the International Human 
Microbiome Standards protocol, utilizing 
a “FecesCatcher” and a 30 ml stool collection con
tainer. Once the stool was collected and contained, 
participants were instructed to place the collection 
device in a Ziploc bag and freeze at home. The stool 
was then submitted within 48 hours to the study in 
a frozen state and stored at −80 oC. Each participant 
collected and submitted a single stool sample.

Dietary analysis

We used the Canadianized Dietary History 
Questionnaire (CDHQ II), a validated FFQ. The 
CDHQ II has 134 food items and captures informa
tion on usual dietary intake over the past month, 
including cooking methods, serving sizes and diet
ary supplements.91 Participants were sent unique 
links to complete the food frequency questionnaire 
online. Once participants completed the question
naire online, data were electronically coded and 
constructed in spreadsheet format through 
Diet*Calc software. Participant reports of usual 
intakes were calculated into mean daily intake esti
mates of each nutrient and food group captured by 
the CDHQ II.92

The objective of this analysis was to determine 
the association between birthplace (SA or Canada) 
and daily intakes of various nutrients. The primary 
outcomes were daily intakes of total energy (kcal), 
total fat, saturated fat, polyunsaturated fat, and 
omega-3 fat (grams), protein (grams), vitamin 
A (retinoic acid equivalents or RAE), vitamin 

C (micrograms or mcg), vitamin D (international 
units or IU), folate (daily folate equivalents or 
DFE), calcium (milligrams or mg), fiber (grams), 
servings of fruits, servings of vegetables, total sugar 
(grams), sodium (mg), and caffeine (mg). 
Hypothesized clinically relevant covariates 
included living at home (yes/no), participant age 
in years, sex (male/female), age when immigrated 
to Canada (years), and total daily energy intake 
(kcal).

For each nutrient determined from the 
Canadianized Dietary History Questionnaire 
(CDHQ II), a valid FFQ, a multiple linear regres
sion model was used to determine the association 
between birthplace (SA or Canada) and daily intake 
of each nutrient. Each multiple linear regression 
model was adjusted for the following covariates: 
living at home (yes/no), participant age in years, 
sex (male/female), age when immigrated to Canada 
(years), and total daily energy intake (kcal). All 
models except for daily energy intake (kcal) were 
adjusted for total daily kcal intake. Statistical sig
nificance was defined as p < .05.

The percentage of daily energy from carbohy
drates, proteins, and fats was determined by the 
food frequency questionnaire.92 The ratio between 
daily energy from carbohydrates (%) to proteins 
(%) was determined for each birthplace and YAI 
group (Figure 4). A one-way ANOVA was used to 
compare Years After Immigration (YAI) groups. 
Pairwise comparisons between each YAI group 
were performed using the TukeyHSD method, 
available through R (Table S1G). Statistical signifi
cance was defined as p < .05.

Socioeconomic status estimations

Socioeconomic status is typically measured by 
assessing a combination of education, income, 
and occupation.93 To estimate the socioeconomic 
status of the participants, the postal code of the 
participant’s residences was used to determine the 
value of various socioeconomic status factors in for 
their Dissemination Area (DA). The University of 
Toronto Libraries “Map and Data Library” was 
used to access the Postal Code Conversion File 
(PCCF) from the 2016 Canadian Census data.94 

This conversion file was used to map the postal 
codes given by the participants to the dissemination 
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areas from the Computing in the Humanities and 
Social Sciences (CHASS) Canadian Census 
Analyzer, also available through the “Map and 
Data Library”. Within the Canadian Census 
Analyzer, the 2016 Census data were accessed, 
and the following data were collected: Population 
Density (v6), Employment Rate (v5472), Education 
levels – No certificate (v4921), Secondary (v4922), 
Postsecondary (v4923), Median total income of 
households in 2015 (v1876), Average household 
size (v121). These values were then compared 
between participants, as described below. Median 
values for each of these factors were also deter
mined as a comparator for the entire Census 
Division (CD) in which the participants resided. 
This included four census districts in Ontario, 
Canada: Toronto, Durham, Peel, and York.

Estimated Socioeconomic Status was compared 
between generations, YAI values, and YAI groups. 
Covariance and correlation between factors were 
determined using the cov and rcorr functions in 
R. socioeconomic status groups were compared as 
a mixed model ANOVA including all factors, 
including only factors that were not significantly 
correlated, and individually as separate one-way 
ANOVA analyses. These factors were Population 
Density (v6), Employment Rate (v5472), Education 
levels – No certificate (v4921), Secondary (v4922), 
Postsecondary (v4923), Median total income of 
households in 2015 (v1876), Average household 
size (v121). The relative proportion of postsecond
ary education to no certificate and secondary level 
was calculated per participant, to be used as a single 
value in the analysis. Statistical significance was 
defined as p < .05 with a Tukey-HSD correction 
for the YAI group multiple comparisons.

DNA extraction and metagenomic sequencing

DNA was extracted from stool samples following 
the International Human Microbiome Standards 
(IHMS) SOP 07 V1: Protocol H.95 DNA was quan
tified using Qubit BR DNA quantification kit 
(ThermoFisher Scientific). 500 ng of DNA was 
diluted to a final volume of 130 uL in 10 mM Tris- 
HCl pH 8 and sheared to 400 bp fragments using 
the Covaris S2 (Covaris) with the following speci
fications: Duty Cycle – 10%, Intensity – 4, Cycles 
per burst – 200, Time – 55 seconds. The sheared 

DNA was cleaned with Ampure XP magnetic beads 
(Beckman Coulter). 100 ng of Covaris sheared, 
cleaned DNA was input into the NEB Ultra II 
Prep kit and the standard protocol was followed 
(New England Biolabs), following the size selection 
guide for a 400 bp sheared fragment size, and five 
PCR cycles for the barcoding PCR reaction. The 
barcoded samples were quantified using Quant-iT 
PicoGreen dsDNA kit (ThermoFisher Scientific) 
and pooled to even concentrations. The pooled 
sequencing library was quantified using Qubit HS 
DNA quantification kit and diluted to 4 nM. The 
library was denatured and loaded on to the 
Illumina NextSeq 500 and sequenced using 
a 2 × 150 bp cycle kit (Illumina). The samples 
were sequenced in two batches, one to achieve 
high coverage and one to achieve moderate 
sequence depth. We did not identify significant 
differences in the predicted coverage of the meta
genome between batches, so the data were normal
ized and combined for the analysis. No significant 
differences in the percentage of species identified or 
mapped reads were identified between batches after 
HUMAnN2 analysis.

Metagenomic sequence processing and 
bioinformatic analysis

The sequences were trimmed to remove adapters 
and low-quality sequences using Trimmomatic, fol
lowing default parameters, an average quality mini
mum of 20, and a minimum sequence length of 125 
bp.96 Cutadapt was used to remove any stretches of 
sequences that contained homopolymers of G base, 
an error that can occur in the Illumina NextSeq due 
to the two-color sequencing system (Martin, 
DOI:10.14806/ej.17.1.200). PCR duplicates were 
identified and removed using PrinSeq.97 Human 
sequences were identified using Bowtie2 and the 
hg19 human sequence database available through 
NCBI (BioProject: PRJNA31257).98 The 
unmapped, non-human reads were processed as 
the microbial metagenome. Read1 and Read2 
were merged into one file and the metagenome 
coverage was estimated for 15 representative sam
ples using NonPareil sequence redundancy 
analysis.99

HUMAnN2 software was used to identify the 
taxonomic and functional profiles of each 
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community, using the MetaPhlAn2 program 
option for taxonomy and the UniRef90 database 
for function, following all default 
parameters.44,45,100 Resulting functional annota
tions were mapped to the MetaCyc gene family 
ontology.101 The pathways of interested were iden
tified using the online MetaCyc database, the 
BioCyc Omics Viewers, and Smart Tables tool.102 

The HUMAnN2 software was used to stratify the 
MetaCyc results to determine the taxonomic con
tribution for each gene family. The unmapped 
MetaCyc reaction gene families (undetermined 
species associations) were removed from the data 
set. Due to the lack of completeness of the meta
genomes (proposed hypothetical average coverage 
~85%, shown in results), the relative abundances of 
gene families were summed across all subjects and 
transformed into a binary table, representing the 
presence or absence of each gene families per 
organism, if detected in any participant’s metagen
ome (Table S6).

Data analysis was conducted in R.90 

Processing of the species relative abundance 
table created by HUMANn2 was conducted 
using the PhyloSeq package 103,104 and the 
Tidyverse.105 The data were filtered to remove 
species with an abundance less than the median 
total abundance (0.81), and with a prevalence 
less than 2. This resulted in 30% of the unique 
species removed due to low prevalence (single
tons) and 20% due to low abundance, but less 
than an average of 1% by relative abundance 
(minimum = 0%, maximum = 7.2%).

Years After Immigration (YAI) was examined 
as both a continuous and categorical variable. As 
a categorical variable, the GEN1 participants 
were divided into approximately even tertiles 
using the numeric YAI values. These tertiles 
were defined as recent immigrants (3 months 
to 4 YAI), moderately recent immigrants (4 to 
14 YAI), and early immigrants (greater than 14 
YAI). These tertiles were then treated as catego
rical variables and compared relative to GEN2, 
the Indian cohort, and the American cohort, 
when appropriate. As a continuous variable, the 
numeric YAI value was examined and a value of 
zero was assigned to those who had not immi
grated themselves.

MetaCyc analysis of glycoside hydrolases

We extracted all glycoside hydrolases (EC 3.2.1) 
from the MetaCyc results, as well as all documented 
mono and disaccharide sugar degradation pathway 
gene families. We focused the results on polysac
charides commonly found in foods, such as cellu
lose, pectin, xylan, xyloglucan, and starch, and the 
mucin glycans found in the mucus layer of the 
gastrointestinal tract. Mucin glycans included in 
the analysis were O-linked N-acetylgalactosamine 
(GalNAc), N-acetylglucosamine (GlcNAc), man
nose, xylose, and others.106 Enzymes involved in 
the degradation of mucin glycans were determined 
based on previous studies and overlap with the 
enzymes required to debranch the side chains on 
food-based xylans.78,107 We also included enzyme 
gene families involved in the major SCFA produc
tion pathways (acetate, lactate, butanoate, and pro
panoate-succinate) (Table S6). The CAZy database 
was used to validate the carbohydrate metabolism 
genes of interest, by manually cross-referencing the 
MetaCyc pathways with enzyme groups.108

The dendrogram clustering species by the 
MetaCyc Glycoside Hydrolase gene presence- 
absence profile (Figure 6a, Figure S6A) was created 
using the ‘dist’ and ‘hclust’ function with the 
method algorithm set as ‘euclidean’ and ‘average’, 
respectively. The ggplot function ‘ggdendrogram’ 
was then used to visualize the distance tree.90

Community composition and diversity analysis

The following methods are also described in com
plete detail as a knitr file (AnalysisMethods_ 
SouthAsianCanadian_Metagenome.html). The ana
lysis can be performed using files provided 
(DataFiles_SouthAsianCanadian_Metagenome.zip). 
The Bray–Curtis dissimilarity values between all 
samples were determined using the species relative 
abundance compositions from HUMAnN2 results, 
through Phyloseq, available in R. As specified in the 
results, the HUMAnN2 normalized or cumulative 
sum scaled values were used. Cumulative sum scal
ing was determined using the R packaged 
metagMisc:: phyloseq_transform_css, options for 
normalization and log transforming were selected. 
The Principal Coordinate values for each sample 
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were then identified and plotted using Principal 
Coordinate Analysis (PcoA) plotting. Axis 1 and 
Axis 2 were visualized for each PcoA plot. If present, 
ellipses were determined using the ‘stat_ellipse’ func
tion available in R, using the default multivariate 
t-distribution to draw the ellipse.

To approximate alpha diversity, the relative 
abundance data produced by HUMANn2 were 
transformed to mock coverage data, by inflating 
the normalized data to values out of 100,000 
sequences per sample. Due to this approximation, 
alpha diversity, specifically Chao1 index values, was 
not investigated independently. Chao1 index values 
were only used as a co-variable in other analysis, as 
described.

The most abundant taxa (Max Taxa) were iden
tified in each participant based on MetaPhlAn nor
malized relative abundances after filtering to 
remove low abundance and low prevalence species, 
as described above. For species identified as the 
most abundant in >3 samples, species name was 
specified (P. copri, E. rectale, and F. prausnitzii). If 
a species was identified in ≤3 samples but from 
a class otherwise not represented, species name 
was specified (D. invisus). If the species name was 
unknown or if ≤3 samples were associated with 
a certain species maximum, genus or family was 
specified (Bacteroides, Bifidobacterium, 
Erysipelotrichaceae, Megamonas, Ruminococcus, 
and Subdoligranulum). Singleton associations 
were labeled as ‘Other’. Max Taxa associations 
were used for ADONIS and RDA analysis, Max 
Taxa Group was used to label figures (Table S1F).

Beta diversity Bray–Curtis distances were deter
mined through PhyloSeq. Normalized data pro
duced by HUMANn2 were utilized, as well as 
cumulative sum scaled (css) data, which was deter
mined using the R package MetagMisc and the 
function ‘phyloseq_transform_css’. Significant 
sources of variation were identified using the ‘ado
nis’ function (permutational ANOVA), run with 
1000 permutations and a Benjamini-Hochberg 
false discovery rate correction, available through 
the Vegan package in R.109 Participant metadata 
including sex, age, BMI, WC, YAI, self-reported 
ethnicity, most abundant taxa in each participant 
sample, and an estimated within-sample alpha 
diversity index value (Chao1 value) were input 
into the model when available. The results were 

corrected for multiple comparison using the 
Benjamini-Hochberg-Yekutieli method. 
A pairwise ADONIS was determined using the 
package R package PairwiseAdonis.110 The effect 
of sequencing coverage, percentage of mapped 
human DNA, percentage of unmapped data, and 
number of identified gene families was also exam
ined to determine the effect on community compo
sition and Bray–Curtis distances. The same method 
was followed as described above, taking into 
account these factors of interest, while investigating 
and controlling for an interaction between data 
processing and participant metadata. Significance 
was defined as p < .01 (Table S2A – S2C).

The redundancy analysis (RDA) was performed 
on cumulative sum scaling of normalized species 
relative abundances using the ‘rda’ function in 
Vegan, following the suggested procedure 
(Oksanen et al., 2019). The adjusted R square 
value was identified in the results and a one-way 
ANOVA was performed to identify factors that 
contributed significantly to the redundancy analy
sis (Table S3E). The p-values were adjusted for 
multiple comparisons using the Benjamini- 
Hochberg-Yekutieli method. A biplot was created 
from the RDA species summary was plotted using 
the first two principal components. The arrows 
indicate the direction and standard deviation of 
each significant variable. Significance was defined 
as p < .01 (figure 1f).

The relative abundances of species in the GEN1 
and GEN2 communities were compared using 
MetagenomeSeq, which utilizes RNA-seq Limma 
software adapted for metagenomics. PhyloSeq was 
used to convert the data to MetagenomeSeq format. 
Zero-inflated Gaussian (FitZig) function in 
MetagenomeSeq was primarily used to identify dif
ferences between comparison groups, retaining 
results with a p-value <0.01 and a log-fold change 
(LFC) > 1. Participant age, sex, and YAI were con
trolled for and results were filtered to remove spe
cies that were not identified in the MetagenomeSeq: 
Effective Sample Size. Discovery odds ratio testing 
(MetagenomeSeq: FitDO), selecting for hits with 
a false discovery rate <0.01, and linear discriminant 
analysis (LDA) Effective Size (LefSe),111 following 
default parameters, were used to validate the results 
from FitZig. We retained species identified using 
two or more of these methods. Results were 
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adjusted for multiple comparisons using the 
Benjamini-Hochberg-Yekutieli method. Specific 
comparisons with more than two groups were 
achieved using the ‘makeContrasts’ function in 
MetagenomeSeq (Table S4A).

The relative abundances of species in the 
GEN1, GEN2, Indian, and American commu
nities were compared using 
MetagenomeSeq.47,112 PhyloSeq was used to con
vert the data to MetagenomeSeq format. Zero- 
inflated Gaussian (FitZig) was used to identify 
differences between comparison groups (Paulson, 
2016), retaining results with a p-value <0.01 and 
a log-fold change (LFC) > 1. Participant age and 
sex were controlled for and results were filtered 
to remove species that were not identified in the 
MetagenomeSeq: Effective Sample Size. Results 
were adjusted for multiple comparisons using 
the Benjamini-Hochberg-Yekutieli method. The 
data were first examined by comparing the 
Indian and American cohorts with the Canadian 
cohort divided by YAI groups. Then, the Indian 
data were further divided into their two sampling 
locations, Bhopal and Kerala. Specific compari
sons with more than two groups were achieved 
using the ‘makeContrasts’ function in 
MetagenomeSeq (Table S4D).

Comparator datasets

A metagenomic dataset from an Indian cohort 
(NCBI BioProject PRJNA397112) was down
loaded from the Sequence Read Archive (SRA). 
Our inclusion criteria were participants 
a minimum of 18 years of age. A representative 
set of 40 age matched healthy participant sam
ples was retrieved from the Indian BioProject, 
consisting of 20 women and 20 men sampled 
from two geographical regions. The raw 
FASTQ data were downloaded and analyzed 
with the same pipeline used to analyze the 
Canadian immigrant data set.

A metagenomic dataset from the United States, 
representing a westernized North American 
cohort (NCBI BioProject PRJNA398089), was 
downloaded from the Inflammatory Bowel 
Disease Multi’omics Database (IBDMDB) at 
(https://ibdmdb.org/tunnel/public/HMP2/WGS/ 

1818/rawfiles). This data was used as a proxy for 
Canadians, since a diverse and representative 
Canadian metagenomic data set is not currently 
available. Canadians and Americans exhibit simi
lar patterns in health lifestyle, particularly for 
Canadian who live close to the American border 
such as people living in Toronto and the Greater 
Toronto Area, such as these participants.113 The 
data set has been previously filtered to remove 
low-quality sequences and sequences that map to 
the human genome. The metagenomic data were 
selected to include participants who were 
a minimum of 18 years old, that self-identified 
as ‘non-IBD’ for their diagnosis, and ‘white’ for 
their ethnicity, according to the associated meta
data file provided by the IBDMDB. A single data 
time point was selected for each participant ran
domly, resulting in a total of 10 samples, three 
samples from women and seven samples from 
men, added to the analysis to represent 
a ‘westernized’ metagenome. The FASTQ data 
were downloaded and analyzed with the same 
pipeline used to analyze the Canadian immigrant 
data set.

Dirichlet multinomial and cluster analysis

Dirichlet Multinomal Mixtures (DMM) deter
mined community clusters through PhyloSeq 
from the species relative abundances, using an infi
nite mixture model. The DMM model was tested 
for a maximum of 10 community types, and the 
best fit was selected as 2 communities.114 The top 
community drivers were defined as those in the 
95% percentile of determined Dirichlet 
Component values (Figure 3).

UPGMA clusters for each metagenomic com
munity were identified from cumulative sum 
scaled species relative abundances Bray–Curtis 
distances, determined through PhyloSeq, and 
clustered using hclust with the method algo
rithm set as ‘average’.90 The cluster number 
was determined using the GMD package and 
the elbow batch method.115 The GK tau values, 
comparing clusters to maximum abundant taxa 
and other metadata factors of interest, were 
performed using the GoodmanKruskal 
package.116
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Anvi’o analysis of P. copri metagenome 
assembled genomes

Anvi’o was used to create metagenome assembled 
genomes (MAGs) following their ‘Tutorial for 
Metagenomics Workflow’, described as follows.117 

Quality filtered reads used in previous analysis were 
selected from samples containing P. copri, as iden
tified in the MetaPhlAn2 and PanPhlAn analysis, 
shown as Groups 1, 2, Div/Multi, and Unclustered 
in Table S3A. Anvi’o was used to assemble these 
quality filtered reads into contigs for each sample 
using megahit, following default settings.118 The 
anvi’o script anvi-script-reformat-fasta were used 
to select contigs with a minimum length of 2500 bp, 
as suggested in the workflow. Bowtie2 was used to 
map contigs to each sample.98 A contigs database 
was then created and hmm profiles were identified 
using the anvi’o scripts anvi-gen-contigs-database 
and anvi-run-hmms, respectively. An anvi-profile 
was determined for each sample using the anvi’o 
script anvi-profile and Centrifuge was used to iden
tify taxonomies.119 All sample profiles were merged 
using anvi’o anvi-merge and genomic bins were 
identified using anvi’o anvi-cluster-contigs with 
the driver set as Concoct, and default parameters 
were followed.120 The taxonomy for each contig 
was then identified using the anvi’o script anvi- 
estimate-scg-taxonomy following default para
meters and ‘compute-scg-coverages’ specified. 
Genomic bins identified as ‘Prevotella copri’ were 
selected from all the MAGs identified in the sam
ples, as well as genomic bins identified at the genus 
level as ‘Prevotella’ with at least 10 single copy genes 
(scg) associated with this taxonomic call. All other 
binning programs available through anvi’o were 
tested; however, these were unable to identify 
P. copri at the species level, and so analysis was 
not carried out with these other results. The bins 
identified in Concoct were selected using the anvi’o 
script anvi-split and set as ‘internal genomes’. 
External genomes were sourced from the Tett 
et al., 2019 P. copri reference data set, including 
P. copri genomes from Clades A, B, C, and 
D. Contigs were generated for these reference gen
omes using the anvi’o script anvi-gen-contigs- 
database using Prodigal and were set as ‘external 
genomes’.121 Anvi’o was used for pangenome ana
lysis of these internal and external genomes using 

the anvi’o script anvi-pan-genome and Diamond 
122 and genome similarity was identified using the 
anvi’o script anvi-compute-genome-similarity with 
pyANI set as the program.123 The average nucleo
tide identity (ANI) results showing ‘full percentage 
identity’ newick tree of Euclidean distances were 
used to visualize the similarity between the internal 
P. copri and Prevotella genomes and the reference 
genomes. The anvi’o script anvi-summarize was 
used to identify the relative abundance and varia
bility of each P. copri bin across each sample.

Relative abundance and functional network 
analysis

We used the R package ‘igraph’ to construct the 
networks of relative abundance correlation values 
and of gene family presence-absence. We followed 
an established protocol.124,125 For the relative abun
dance correlation network, we determined that the 
data followed a non-normal distribution, and so we 
used Spearman correlation values and the ‘graph 
adjacency’ function to create undirected networks. 
The correlation coefficient critical value was deter
mined to be 0.4, selected based on the approximate 
midpoint of the sigmoidal curve when the correla
tion coefficient was plotted against number of clus
ters (Figure S5A). This value determines the degree 
of co-occurrence association between pairs of taxa 
required for retention of the edge in the resulting 
network. Clusters were identified using ‘clusters’ 
function in ‘igraph’. Sub-networks were identified 
using the ‘induced subgraph’ function, from all 
network clusters with more than three species. 
The walk-trap algorithm was then used to identify 
clusters within each sub-network.

For the gene family network, we selected all 
Negativicutes (phylum Firmicutes) and all 
Bacteroides (phylum Bacteroidetes) species from 
the Canadian cohort. We also extracted potentially 
relevant species from previous analyses, including 
all maximum abundance taxa (Figure 1c), species 
determined to be at significantly different relative 
abundances between GEN1 and GEN2 (Table 3, 
Figure 1), and hub species in the relative abundance 
networks (complete list of species: Table S6A). 
A correlation coefficient critical value was deter
mined to be 0.75, selected again based on the 
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approximate midpoint of the sigmoidal curve 
(Figure S5). By selecting a single correlation cutoff 
for all species in the metagenome, we accept that 
poorly characterized species and highly dissimilar 
singleton species to be filtered out from this analy
sis. Clusters were identified using ‘clusters’ function 
in ‘igraph’. Sub-networks were identified using the 
‘induced subgraph’ function, from all network clus
ters with more than three species. The walk-trap 
algorithm was then used to identify clusters within 
each sub-network. The three largest relative abun
dance correlation subnetworks were visualized 
(Figure S5).

PanPhlAn pangenome analysis

PanPhlAn was used to estimate the pangenome of 
Prevotella copri within the Canadian data set, fol
lowing all default settings. The P. copri reference 
genomes REF_G000157935 and REF_G000435255 
from the PanPhlAn database were used. The 
resulting pangenome profiles from each sample 
were clustered using ‘hclust’ available through R, 
with the method algorithm set as ‘average’ for the 
UPGMA method. The cluster number was deter
mined using the GMD package. We defined sam
ples as containing the ‘Div/Multi’ when P. copri 
was identified as a maximum species in the pre
vious MetaPhlAn analysis but were not included 
in the pangenome output based on the standard 
thresholds. We verified that these samples all con
tained at least 5% P. copri sequence data as deter
mined by the initial PanPhlAn read mapping, 
with an average of 15% across all samples in this 
‘Div/Multi’ group. The ‘Unclustered’ cluster con
tained highly diverse pangenome profiles, result
ing in clusters with two or less samples each. 
Samples that were listed as ‘No Cluster’ contained 
an average and median of 2.12% and 0.13% , 
respectively, and P. copri was not identified as 
the maximum species based on the previous 
MetaPhlAn analysis.

StrainPhlAn strain analysis

StrainPhlAn3 was used to estimate the presence of 
multiple Prevotella copri strains within the 
Canadian data set following all default settings. 
The MetaPhlAn mpa_v30_CHOCOPhlAn_201901 

database was used to map reads to marker 
sequences, 17 P. copri reference genomes from 
Tett et al., 2019 (NCBI-BioProject PRJNA559898) 
strain analysis were used to generate the alignments 
and phylogenetic trees. The percentage of poly
morphic sites was output in the polymorphic.txt 
file by the StrainPhlAn command. The average 
percentage of polymorphic sites was determined 
for each PanPhlAn P. copri cluster. The 
StrainPhlAn polymorphic average for Bacteroides 
spp. was determined for species identified in at least 
70% or participants or with an average relative 
abundance >1% and were not filtered out by 
StrainPhlAn due to poorly inferred phylogeny. 
This included B. dorei, B. ovatus, B. plebeius, 
B. stercoris, B. uniformis, and B. vulgatus.

Amplicon validation set

The following methods are also described 
in complete detail as a knitr file 
(Comparison_V4_Metagenomics_SouthAsianCa
nadian.html). A validation set of samples was 
randomly selected (n = 14). The V4 region of 
the 16S rRNA gene was amplified and sequenced 
for these samples. These results shown in 
Comparison_V4_Metagenomics_SouthAsianCa
nadian.html were used to compare and validate 
the metagenomic data.
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